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Abstract—Recent work in neuroscience is revealing how the
blowfly rapidly detects orientation using neural circuits dis-
tributed directly behind its photo receptors. These circuits like
all biological systems rely on timing, competition, feedback, and
energy optimization. The recent realization of the passive mem-
ristor device, the so-called fourth fundamental passive element
of circuit theory, assists with making low power biologically
inspired parallel analog computation achievable. Building on
these developments, we present a memristor-based neuromorphic
competitive control (mNCC) circuit, which utilizes a single sensor
and can control the output of N actuators delivering optimal
scalable performance, and immunity from device variation and
environmental noise.

Index Terms—Neuromorphic, Memristor, Distributive Control,
Divisive Gain, Cybernetics, Neural Networks, Emergence

I. INTRODUCTION

Flies are nature’s supreme aerobatic pilots. The control

system that sits behind the eyes of a male House Fly is

capable of chasing an equally maneuverable female at angular

velocities exceeding 3000 deg/s in less than two hundredths of

a second and in any direction [1]. Amazingly, the few hundred

neurons responsible for this extraordinary level of control,

constitute less computational hardware than is present in most

toasters [2]. Furthermore, in contrast to signals in a toaster,

which move at relativistic speeds, the speed of the signals in

the fly’s neuronal controller propagate at well below 100 m/s

[3], [4]. Not surprisingly, the optic flow processing controlling

such performance has been the focus of much recent research

[5].

Of the many profound developments to date, has been the

discovery that the neural computation involved in fly motion

vision and the compensatory motor response, begins both

physically and temporally immediately after input enters the

eyes [6]. Moreover, this computation is fully parallel and

with no central processing element acting as a bottleneck,

information moves at close to the conduction velocity of the

signal from the sensors (eyes) to the actuators (wings) and is

processed as it travels (Fig. 1) [7]. In this paper, we present

a control circuit that draws its inspiration from the elegance

and efficiency of the fly eye. We call this biologically-inspired

control system: Neuromorphic Competitive Control (NCC).

Like the fly eye, it utilizes fundamental elements such as

Fig. 1. Optic flow processing circuits in the blowfly Calliophora vicina,
modified from [7].

timing, competition, and feedback in order to optimize energy

and ensure robustness to noise and other nonidealities.

Along with the challenge of modeling the emergent prop-

erties of such a control system, we also examine how such

a circuit can be physically implemented. We show that the

recently rediscovered fourth fundamental circuit element, the

memristor, can simplify the circuit design and illustrate how it

can be used in several modes in order to facilitate the operation

of NCC or memristor-based NCC (mNCC).

II. CONTROL IN ARTIFICIAL SYSTEMS AND IN NATURE

Control systems come in many forms. A simplified diagram

of a control system in a conventional configuration is given in

Fig. 2. Here the plant is required to give a particular output. A

sensor is then employed to measure the output of the system.

This measured output is then compared with a reference signal

and the error between the two signals is used to drive a

controller. The output of the controller is a signal that changes

the state of the system in such a way that its output should

move closer to the desired output (i.e. the input or reference

to the control system).

Conventional control systems, as described above, are used

to control today’s most advanced technology. Since such

systems conventionally employ digital microcontrollers, the
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Fig. 2. Conventional digital control system.

signal(s) measured by the sensor, the reference signal, and con-

trol signal used to drive the actuator(s) need to be discretized

both in amplitude and time. The accuracy of the system is

dependent on the number of digital bits utilized and this can

significantly affect the power consumption and complexity of

the entire system.

The control systems utilized in biology (such as the fly

eye) and the modern digital control system described above

are two drastically different and highly optimized solutions to

very similar control problems. The differences between these

control solutions reflect the fundamentally different processes

that shaped their design and the constraints that led to their

creation.

The evolution of the fly was in response to an unpredictable

environment with energy, and its limited supply the major

constraint. The development of the fly eye control system

via evolution relies on emergent behavior rather than rational

design. In emergent systems, simple components interact to-

gether through multiple pathways resulting in complexity, both

in design and in performance [8]. In stark contrast, artificial

control systems, in particular those that must perform complex

tasks, are often broken into subsystems where the complexity

is found within each subsystem but where the interactions

between subsystems are kept as simple as possible. Thus,

while a conventional control system is easy to understand, an

emergent system can be easily scaled with no data conversion

bottlenecks or processing power limitations due to its use

of simple building blocks. Moreover, emergent systems are

inherently power efficient, while artificial control systems

incur a trade-off between power consumption and complexity.

Control systems in nature are analog, however, attempting

to replicate these systems using an analog computer comes

with a significant set of complications [9]. Specifically, analog

computers are power hungry. They also often suffer from

instability and have only a narrow operating range, which

must often be manually ascertained [10]. The precision of the

analog computer is also relatively low due to its poor signal-

to-noise ratio and reliance on matched circuit elements. These

factors together with the design complexity of analog and

mixed signal systems are the main reason for the dominance

of digital computing [11]. Thus, in order to develop a control

system that is inspired by nature, the limitations of the analog

computer must be addressed. This challenging task has been

taken on by the field of neuromorphic engineering [12], [13].

In the next section, we discuss the memristor, a circuit

element that facilitates low-power analog computation. Fol-

lowing this we present our control algorithm, memristor-

based Neuromorphic Competitive Control (mNCC), which is

based on emergent control systems that use stochastic rather

than deterministic processing and thus, subverts the narrow

operating range of the analog computer.

III. THE MEMRISTOR

As the transistor’s feature size approaches 16 nm and

beyond, a number of fundamental issues emerge that create

a set of practical difficulties in fabrication, voltage scaling,

and energy efficiency. As a result, technology scaling is not

having the same impact on computing performance as it did

in the past. In this situation, the memristor is one of the

promising disruptive technologies to enable further energy

efficiency per operation through ultra-high density integration

and parallelism.

Unlike three-terminal transistors, it is a two-terminal device

and does not require power to retain its states. Memristor’s

resistance state, memristance, can be controlled by either

charge or fluxlinkage [14], [15].

Fig. 3. The four fundamental two-terminal circuit elements and their current
voltage response to a sinusoidal input, modified from [16].

As shown in Fig. 3, the pinch hysteresis loop in the current-

voltage characteristic of the memristor make it distinguishable

from the rest of the fundamental passive elements [15]. Change

in the resistance state can be used to store digital or analog

information in a crossbar array of memristive devices. Mem-

ristive device concept covers a wide range of devices with

inherent memory. In fact, any hysteretic resistive device that

is able to retain its state without the need of a power supply,

is a memristive device.

Memristors implemented in compatibility with CMOS have

a Metal-Insulator-Metal (MIM) device structure [14]. The

switching effect occurs by the formation of a conductive



filament inside the insulator layer due to electrostatic, elec-

trochemical metalization, valency change, phase change, or

thermochemical effects [17]. A current controlled memristor

device can be described with the following relationship [14],

⇢

V (t) = R(x, I, t)I(t)
ẋ = f(x, I, t) ,

(1)

where R(·) is the device resistance (memristance), f(·) is

a continuous function describing the state variables, x. The

simplest model of an ideal memristor can be found in [14],

[16]. The analog memristive effect is the result of gradual, and

incremental changes in resistance as the result of continuous

motion of metal ions that are incorporated into the insulator

material during the fabrication process [18], [19]. This prop-

erty is used as a key part of our mNCC system.

In addition to the memory application of memristors, these

devices have shown a number of promising capabilities, such

as performing logic operations [18], [20], the appearance of a

memory element under stochastic conditions [21], and mim-

icking synapse functionality through Spike Timing-Dependent

Plasticity (STDP) [18], given that this STDP functionality

is crucial for use in neuromorphic computation [22], these

findings have garnered significant attention.

The memristor also promises a revolutionary change in

the computing architecture that plays an important role in

the future improvement of our proposed control system. As

mentioned earlier, a radical change in computer architecture

is required to be able to physically mimic natural system’s

behavior. Today’s artificial control systems, however, are based

on the centralized von Neumann computing machine that

suffers from a large sequential (fetch-execute-store cycles)

processing overload due to the existence of the data bus be-

tween memory and logic. In contrast, neuromorphic computing

hardware introduced a more efficient implementation but not

necessarily low-power implementation for complex systems.

Therefore, tighter coupling between memory and logic seems

to be necessary to significantly increase energy efficiency and

reduce power consumption. Experimental results [18] show

that the memristor is able to provide a solution at the very

bottom level of design hierarchy (device level). In fact, each

memristor combines (non-volatile) memory characteristics and

in-situ computing capability, which promises an entirely new

computing architecture.

Considering the nanometer scale feature size of a mem-

ristive device and the tremendously large neuron-synapse

connectivity in addition to the extremely high synaptic density

in biological systems, memristive devices may provide a

significant change in the traditional approach of CMOS-based

implementation of neuromorphic engineering. Furthermore,

owing to the highly nonlinear (exponential) relationship be-

tween the voltage bias and programming pulse width, highly

energy efficient memristor-based systems can be achieved [14].

In this paper, we use the memristor in two different modes

of operation. These two modes are described graphically in the

Fig. 4. Current-Voltage characteristics of the memristor in response to a
train of spikes. The memristor response, (a) in the IV (current in, voltage out)
synaptic operating mode, and (b) in the VI (voltage in, current out) choke
operating mode.

current-voltage characteristic plots in Fig. 4 and the transient

response plots of Fig. 5.

In Fig. 4, the plot on the left shows the synaptic operating

mode for the memristor. Here, the input to the memristor

is a current-controlled train of pulses which progressively

increases the resistance (slope), the measured output is the

voltage across the memristor. Thus, since the input current is

kept constant, the output voltage progressively increases. This

is the same mode of operation as that used for the emulation

of synaptic weight adaptation.

The plot on the right, in Fig. 4, shows the choke operating

mode for the memristor. Here, the input to the memristor

is a voltage-controlled train of pulses which progressively

decreases the conductance (slope), the measured output is the

current drawn by the memristor. Thus since the input voltage

across the memristor is kept constant, the output current

rapidly decreases. This mode of operation proves to be of

critical significance in the design of mNCC.

IV. MEMRISTOR-BASED NEUROMORPHIC COMPETITIVE

CONTROL

Memristor-based Neuromorphic Competitive Control

(mNCC) is a control scheme that emerges when simple

building blocks, namely neurons, are connected together in

such a way that competition is created between the individual

units. Here, competition is generated through inhibitory

connections between neurons.

Fig. 6 shows the top-level block diagram of the mNCC

system embedded, in an example application: a smart torch.

Here the N LEDs that make up the light emitted from the

torch are the actuators while a sensor resides in the centre

of the LED array. For each actuator there is a mNCC circuit

regulating its output while there is only one sensor for the

entire system. In mNCC the output of each of the actuators

is the result of complex non linear interactions between three

recurrent loops that operate simultaneously.

In order to explain the overall behavior of the entire system,

we will examine each recurrent path in isolation describing:

how it performs as a single neruo-computational unit, how



Fig. 6. Top-level functional block diagram of memristor-based Neuromorphic Competitive Control (mNCC) system.

it brings the system closer to its performance goals, and the

additional features it requires in order to meet the performance

specification. Invariably, these additional features lead to the

creation of another loop.

As a preliminary consideration we begin with the reference

signal to the system, which we will call reference energy.

This signal determines the stochastic level of actuation at the

output and is analogous to the battery in the smart torch. It

is distributed between each actuator’s mNCC circuit based on

the actuator’s effectiveness as measured by the sensor. In the

following subsections each recurrent loop is described along

with its interactions with the energy signal.

A. Loop 1: The modified leaky-integrate-and-fire neuron based

on the memristor

Fig. 7 gives a more detailed diagram of the modified leaky-

integrate-and-fire neuron (LIF) based on the memristor. Unlike

the description of the ideal memristor in Section III, the

memristor here is leaky. The principle of the leaky memristor

is illustrated in Fig. 5. Here, panels b) and c) show the

difference in the voltage output of a memristor with, c),

and without, b), a constant leak. While d) and e) show the

difference in the current output of a memristor. The leak is



Fig. 5. Time domain simulation of the memristor in its two modes. The
top graph shows input signal (voltage or current) and the others illustrate
memristor responses.

introduced in fabrication and, just as in biology, ensures that

memory is not perpetual but rather adapts over time giving

the strongest response to the most recent or common events.

In this case, the leak also ensures that the operating range of

the circuit does not become too large.

Fig. 7. Modified Leaky-Integrate-and-Fire (LIF) neuron based on the
memristor.

In Fig. 7, U is an inhibitory input, Q is the membrane

potential and V is the output of the LIF. A description of

the LIF’s operating principles follows. In the forward path of

the LIF, the energy signal, which is in the form of a constant

current, is integrated by the memristor until the memristor

output reaches a threshold (here the threshold, Q, is zero) at

which point the relay outputs a signal (here 1 Volt). The signal

is then immediately inverted and fed back to the memristor’s

input via a feedback loop. This in turn switches the relay,

resetting the LIF. The net result is a sharp 1 Volt spike

periodically produced at the output.

Fig. 8. The effect of noise (or equivalently component mismatch) on the
activation pattern of N = 100 highly inhibitively coupled Leaky Integrate
and Fire neurons. In the panel (a), the high level of noise causes a minority
of neurons to completely dominate their neighbors. In (b), the noise is very
finely tuned to minimize the domination effect, while also avoiding the phase
locking effect. The panel (c) shows the characteristic phase locking of seen
in low noise networks.

When large networks of LIFs are globally (all-to-all) con-

nected such that the positive output of each is inverted and fed

back to the input of the rest (mutual inhibition), a surprising

number of organised behaviors can occur. These behaviors

include: random spreading, decoherence, and coordinated

spiking.

From a neuro-computational point-of-view, the decoherence

phenomenon is of particular interest. This describes regular

out-of-phase spiking as illustrated in Fig. 8 c). The ability of

LIF networks to decohere facilitates decentralized yet highly

effective sampling of a neural network’s external environment.

In this paper we present an actuator/sensor system, however,

this phenomenon may underpin more complex and interesting

problems in neuro-computation.

There are, however, a number of major problems with a

global inhibition network of LIF neurons. Specifically, for our

application where we assume real-world conditions, i.e. mis-

matched variables and noise, there is only a narrow operating

range where the organised behaviors listed above can occur,

as shown in Fig. 8. Outside this range the network of neurons

will phase lock or synchronize in a low noise environment



or permit some LIFs to dominate the output in a high noise

environment. For a detailed analysis of inhibitive LIF networks

see [23]. Either situation is undesirable and stops the free flow

of information through the network.

Within the narrow central operating range (Fig. 8 b)),

the decoherence of inhibitory LIFs is delivered by a simple

chance scattering of spikes. Thus due to noise, this neuro-

computationally desirable behavior is granted for free [24].

Fig. 9. The mNCC enforced decoherence across 3 orders of magnitude
difference in noise. A simple LIF network with similarly high inhibitive
coupling and high/low noise would immediately enter a domination/phase
lock state.

The major drawback of globally inhibited networks of LIFs

is their lack of robustness. Any introduced positive feedback

(for example to allow the more effective neurons to spike

more often) can result in the system becoming permanently

stuck in a sub-optimal state where neurons that had been

reinforced previously refuse to relinquish their dominance.

Such a situation can lead to degraded performance and even

instability.

B. Loop 2: The LIF output and the feedback from the sensor

To address the shortcomings of the simple LIF network, a

second control loop is introduced. This loop ensures that the

activation of dominating neurons is self limiting and that all

neurons are given an equal opportunity to fire.

Loop 2 is labelled in Fig. 6. Starting at the LIF output,

a memristor in the VI choke mode is placed immediately

behind the system’s actuators. As a LIF fires more frequently,

the memristor acts as a choke constricting the output current.

Concurrently, a weak unchoking path is introduced, where

the feedback from the sensor is inverted, divided by the

number of actuators in the network, N , and channelled into

the choked memristor. Since the input coming in from the

sensor corresponds to the summed output spikes of all the

neurons, the strength of an effective neuron is sustained by

the firing of all other effective neurons. A yet more subtle

consequence of this actively enforced order, is that formerly

ineffective neurons are always offered an opening to probe

their environment with test spikes, allowing them to reactivate

quickly in response to a changed environment.

This interplay of competition and cooperation delivers an

efficient and stable foundation on which more complex func-

tionality can be designed.

Fig. 9 illustrates the consequence of Loop 2 on the spiking

behavior of 6 competing neurons in both low noise and high

noise situations. In Fig. 9 a) and c) we see the LIF output,

V, and the membrane voltage, Q, for the high and low noise

conditions respectively. While in Fig. 9 b) and d) we see

the spiking outputs of 6 LIFs. These plots show that each

neuron has an opportunity to spike, with no phase-locking or

dominance by a particular neuron. If Loop 2 were disabled

then the system would revert to the domination or phase-

locked states of the simple LIF network as shown in Fig. 8 a)

and c).

C. Loop 3: The output spike, the detected echo and the

adjustment of energy

The requirements of our control system demand we weaken

ineffective neurons and strengthen effective neurons thus com-

pensating for external as well as internal imbalances. The two

variables from which effectiveness can be measured are the

LIF output, V, and the echo received by the sensor, U. An

effective neuron is one whose output spike is followed shortly

by an echo at its input, and an ineffective neuron is one whose

output spikes are not echoed back. We change the energy level

into a neuron based on this measure of effectiveness.

In the energy adjustment block (labelled “3” in Fig. 6) a co-

incidence detection circuit detects the neuron’s effectiveness,

any subsequent change in energy is then stored on a memristor

operating in the synaptic mode.

In the following section we provide simulation results that

verify that the resultant network performs efficiently and effec-

tively under a number of operating conditions. This robustness

is crucial for successful silicon implementation.

V. RESULTS

The mNCC system was simulated across a wide range

of parameters using Matlab and Simulink software. The

mNCC’s performance was verified to be invariant to internal

and external noise, network size, neuron non-uniformity, and

variation, thus, the results in Fig. 10 from a six neuron network

accurately captures the salient behaviors of mNCC networks

for N > 1.

Fig. 10 (a) shows the raw combined output of the mNCC.

The positve half of the graph [0; 1] is the super-imposed output

of all neurons N1–N6. This corresponds to the LIFs’ output, V.

The bottom half of the graph [0;−1] is the super-imposed plot

of the neuron’s membrane potentia,l Q. The mid-line at zero is

the spike threshold. In Fig. 10 (b), the positive half of the graph

[0;N ], here N = 6, the output V is summed (Cyan), here the

black plot Vavg is a scaled moving average of V showing the

overall activation level. The negative half of the graph [0;−2]
shows the input U to the mNCC (green), this corresponds

to the inhibitory feedback from the sensor. The black plot

Uavg is the scaled moving average of U showing the overall

activation detected by the sensor, note that Vavg ≥Uavg.



Fig. 10. The dynamic response of a 6 neurons mNCC to the distuptive actions of 6 virtual moths.

Fig. 10 (c) shows the raster plot of each of the neurons N1–N6
and Fig. 10 (d) shows the super-imposed plot of the neruons’

dynamic energy level.

The capital letters, A – M below Fig. 10 correspond to

external interruptions to the network. For the purposes of

illustration we discuss these interruptions in the context of the

smart torch example, where we have 6 light sources (actuators)

and a single sensor. The operating principle of the smart

torch is that a constant illumination level is set. If one of

the lights becomes obstructed or ineffective for any reason,

the remaining lights must compensate to ensure the desired

illumination. An external interruption in this context refers to

a light(s) being blocked or unblocked. Each of these external

interruptions can be explained as follows:

A — The simulation begins with section A. Initially, due

to all the lights being blocked (say by six virtual moths), all

neurons are fully ineffective and their output spikes are not

followed by a delayed echo at the sensor input U= 0.

The energy levels of all neurons are equal and at a mini-

mum. Furthermore, the net output of the LIFs, ΣV, is also

at a minimum. Note that, due to identical initial states, the

system is initially synchronized, but the noise soon causes the

neurons to decohere.

B — Light-1 is unblocked, thus neuron 1 is now effective

as spikes at its output V are followed by a delayed echo spike

at the sensor input. This coincidence is detected in neuron 1

causing its energy to rise rapidly, increasing its output with

a corresponding increase in the inhibitive feedback from the

sensor. This in turn causes the other still ineffective neurons

to emit test spikes less frequently. This is the mechanism

through which an equilibrium based on relative effectiveness is

rapidly reached (B). This is the optimal energy and actuation

solution for the smart torch. Note that for t → ∞, the actuation

detected by the sensor from Neuron-1’s actuator→ %75 of full



actuation.

C–F — During stages C through to F, Light-2 through

to Light-5 are sequentially unblocked. Thus, with each new

unblocked actuator a new optimal solution must be reached.

Through the same mechanisms described above the system

adapts optimally to its new environment.

G — At the beginning of stage G, Neuron-6 has its

light unblocked, the system now moves toward a perfect

competition equilibrium. The absolute effective actuation of

the system (Uavg) as well as the efficiency Uavg/Vavg is at

its maxiumum when all energy levels are exactly equal. A

close up of Fig. 10 in such a state would produce the plot

shown in Fig. 9.

H–M — From stage H onwards, the lights are again

blocked in the same order as they were unblocked. At the

beginning of stage H Light-1 is blocked, Neuron-1 rapidly

becomes dormant (after only three failed spikes), with its

energy at minimum. The same process is repeated for Neuron-

2 through to Neuron-5, at each stage an increase in activity

can be observed in the other neurons. This corresponds to the

compensation seen in Uavg in Fig. 10 (b). By the beginning

of stage L only Neuron-6 remains effective. Its output and

energy response mirrors that of Neuron-1 in stage B. Finally

during stage M Neuron-6 is blocked and the system’s response

is again reduced to probing its environment for a response.

VI. CONCLUSION

In this paper we have presented a novel, biologically-

inspired control network, mNCC, that is robust to noise,

element mismatch, network size, and actuator performance.

The control system does not require finely tuned operating

points, but rather utilizes both competition and cooperation

between the actuators in order to obtain a stable operating

state. In order to design an efficient neuromorphic circuit that

would allow the implementation of mNCC we utilized the

memristor, operating in two distinct states. The memristor

facilitates low-power analog computing while the emergent

properties of the control network itself subverts the other

problems associated with analog computing. We have demon-

strated the functionality of mNCC using Matlab simulations

and verified its robustness to a number of nonidealities. The

robustness of this architecture is critical if it is to be useful

in real-world applications and implemented in silicon with

nonideal components.
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