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Emergence of consensus as a 
modular-to-nested transition in 
communication dynamics
Javier Borge-Holthoefer1,2,3, Raquel A. Baños3, Carlos Gracia-Lázaro3 & Yamir Moreno3,4,5

Online social networks have transformed the way in which humans communicate and interact, leading 

to a new information ecosystem where people send and receive information through multiple channels, 

including traditional communication media. Despite many attempts to characterize the structure 

and dynamics of these techno-social systems, little is known about fundamental aspects such as how 

collective attention arises and what determines the information life-cycle. Current approaches to 

these problems either focus on human temporal dynamics or on semiotic dynamics. In addition, as 

recently shown, information ecosystems are highly competitive, with humans and memes striving for 

scarce resources –visibility and attention, respectively. Inspired by similar problems in ecology, here 

we develop a methodology that allows to cast all the previous aspects into a compact framework and 

to characterize, using microblogging data, information-driven systems as mutualistic networks. Our 

results show that collective attention around a topic is reached when the user-meme network self-

adapts from a modular to a nested structure, which ultimately allows minimizing competition and 

attaining consensus. Beyond a sociological interpretation, we explore such resemblance to natural 

mutualistic communities via well-known dynamics of ecological systems.

Nowadays, online social networks constitute mainstream ways to communicate, exchange opinions, and reach 
consensus1–4. �ey are characterized by a multichannel information �ow and by an adaptive topology. In recent 
years, it has increasingly become evident that competition signi�cantly shapes the topology of and the dynamics 
on these information-driven platforms5,6, also at the macro scale7. Given the many sources of information to 
which a typical individual is exposed, it is likely that the economy of attention rules the system dynamics8: even 
opinion-aligned individuals compete to increase their visibility among other peers, given the limitations of our 
social brain5,6. Such competition may not be direct, but rather mediated by the symbols (memes) that take part 
in the communicative interaction9,10 –which similarly compete11 for the attention of those who produce and 
consume them (users).

�e accent on intra-class (user-user, meme-meme) competition renders however a partial picture. Turning to 
inter-class interactions, these appear under the form of mutualism: the choice of more frequent memes increases 
the visibility of individuals, which makes the popularity of those memes even larger, thus decreasing the likeli-
hood that other competing memes also become fashionable. Under this diversity of actors and connections, an 
information-driven system can be thought of as a bipartite network in which individuals and memes concurrently 
compete (within their class) and cooperate (between classes), see Fig. 1. Such a system is reminiscent of those that 
have been reported in other areas, be them plant-animal12–14 or manufacturer-contractor networks15, in which 
nestedness –a widely reported structural pattern in mutualistic ecological systems– is a prominent topological 
feature. �e question is then whether similarities at the dynamical level (same type of interactions) are mirrored 
at the structural one, and (if so) why a nested architecture, in which specialists –interacting with only a few part-
ners– tend to be connected with generalists –those interacting with many others, emerges.

Microblogging platforms stand out as the perfect test bed to answer such question, since messages are explic-
itly limited to a small number of characters –competition in such restricted environments is �erce, and the choice 

1Qatar Computing Research Institute, HBKU, Doha, Qatar. 2Internet Interdisciplinary Institute (IN3), Universitat 
Oberta de Catalunya (UOC), Barcelona, Spain. 3Institute for Biocomputation and Physics of Complex Systems 
(BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain. 4Department of Theoretical Physics, Faculty of 
Sciences, Universidad de Zaragoza, Zaragoza 50009, Spain. 5Institute for Scientific Interchange (ISI), Torino, Italy. 
Correspondence and requests for materials should be addressed to J.B.-H. (email: borge.holthoefer@gmail.com) or 
Y.M. (email: yamir.moreno@gmail.com)

Received: 01 March 2016

accepted: 28 December 2016

Published: 30 January 2017

OPEN

mailto:borge.holthoefer@gmail.com
mailto:yamir.moreno@gmail.com


www.nature.com/scientificreports/

2Scientific RepoRts | 7:41673 | DOI: 10.1038/srep41673

of memes (hashtags in Twitter, for instance) critically determines the success of the message (outreach) and 
its lifetime on the system (persistence). Moreover, even though the �nding of a nested architecture in bipartite 
communication networks would be suggestive, online social networks additionally provide us with time-resolved 
data, which makes it possible to trace back the origins of the nested pattern –at variance with all previous works: 
we have scarce evidence of how nestedness arises in nature, given the observational limitations and costs of 
�eldwork16. �is is the reason why ecologists have focused rather on other aspects17–19, letting aside the temporal 
dimension, i.e., the growth and evolution of the system and the emergence of nested patterns.

Figure 1. Time-dependent Mutualistic Networks. Bipartite representation of the user-hashtag interaction 
network at the beginning of the observation period (a). An undirected link is shown whenever a user 
(represented here by an integer number) authors a tweet containing the corresponding hashtag. �e size of 
hashtags and users is proportional to their frequency/activity. Panel (b) sketches the sliding-window scheme, 
which produces the matrices Mt that contain the interactions between users and hashtags starting at time t0 and 
lasting till time t, with w =  t – t0.
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Here we show that in the information ecology context, it is possible to monitor the emergence of a nested 
architecture out of an incipient system, which, surprisingly enough �rst appears under the dominant form of a 
modular network. To do so, we represent a communication platform as a bipartite graph where connections exist 
only between agents (users) and the symbols (memes) they produce. Exploiting the inherent time-stamped nature 
of the data, the bipartite setting yields longitudinal observation of initially modular-and-nested, then nested-only 
structures from large, public collections of online microblogging data. Additionally, we perform extensive numer-
ical simulations on synthetic networks and �nd that the observed modular-to-nested transition is due to the fact 
that the user-meme community is pushed towards a nested architecture to accommodate mutualistic interactions 
–as opposed to antagonistic ones intrinsic to a modular scenario20–22. Our results provide a novel mechanism 
to explain the emergence of consensus in social systems, and clear the path for a new set of concepts and tools 
–borrowed from ecology– to be applied in such systems. Last, but not least, our observation of an empirical 
modular-to-nested structural transition can shed light into the problem on the origin of nested architectures, 
which remains an elusive question.

Results
We �rst present results for a dataset corresponding to civil protests in Spain (15 M movement) that resonated on 
Twitter, in the period April-May 201123,24. �e dataset was obtained from a prede�ned set of keywords relevant 
to the movement (section A and Appendix of the Supplementary Materials (SM) describe in depth all datasets 
used in the work). �ese data, taken in w-wide sliding windows, contain all the necessary information to build 
time-resolved bipartite networks –who said what, and when– suitably encoded as a rectangular, time-dependent 
matrix. Speci�cally, the Twitter stream is parsed and bipartite graphs –see Fig. 1a and 1b– are built up as follows: 
�rst, time windows are set to a �xed, arbitrary, w =  t2 – t1 width. We then choose the n most active users and the 
m memes (hashtags) that those users produced within that time interval. �is bipartite network is encoded in 
an n ×  m rectangular binary matrix, Mt, where t indicates the origin of the time window w and Mu,h =  1 if user 
u mentioned the hashtag h within the period spanning from t1 to t2 and zero otherwise. �is procedure allows 
generating bipartite networks as time goes on by using a rolling-window scheme to evaluate the evolution of the 
system, such that a window at time t has a ϕw overlap with that at time t – w (ϕ =  0.5 in the results reported here; 
for ϕ closer to 1.0 results com at higher resolution, whereas ϕ =  0.0 implies non-overlapping windows).

Once the networks associated to the 15 M social movement at di�erent times are assembled, we proceed 
to analyze their structure focusing on two topological characteristics. As the interest is in inspecting whether 
groups of individuals using the same memes build up, we �rst look for the optimal modular partition of the nodes 
through a community detection analysis25,26, applying a simulated annealing heuristics to maximize Barber’s26 
modularity Q.

Next, we study whether nested patterns arise in the system. Here we evaluate nestedness following the �nd-
ings by Bell et al.27,28 and further developed in Staniczenko et al.29, who showed that it is given by the maximum 
eigenvalue of the (n +  m) ×  (n +  m) adjacency matrix of the network, i.e. the square matrix counterpart of Mt. As 
shown in Fig. S2, our results are robust against other existing measures of nestedness (i.e., NODF30). For details 
on both Q and nestedness, see Materials and Methods, and Sections B and C in the SM.

Figure 2 shows the results of the application of these structural analyses for the 15 M dataset and a window 
width of w =  1 day. If we focus on the days around which the main demonstrations happened (May 15th and 
onwards), we see that the network presents a highly nested pro�le. �is alone is a quite interesting result, as it 
implies that when the activity around certain topic peaks, the user-meme system is highly nested. Note that this 
scenario is more optimal for information di�usion than a predominantly modular topology, as in the latter archi-
tecture information �ow can get stuck and never reach throughout the whole system. �us, our �ndings contrib-
ute yet another example of commonalities between ecological, human15,31 and proto-cultural32 systems –for which 
we typically have static perspectives (but see ref. 33–35).

Importantly, we can trace back in time the emergence of the �nal nested state by inspecting the structure of the 
matrix Mt at di�erent times t. With few exceptions, from the very the beginning of the observation time (April 25, 
2011) the network exhibits signi�cant (zQ >  1.96) modularity and nestedness (zλ >  1.96) values. �is means that 
before the general onset of collective attention around the 15 M activity, the (proto-) topic is composed of a set of 
modules (Fig. 2, bottom le�) which hardly interact with the rest of the system. At the same time, the structure of 
the network is nested (Fig. 2, top le�). Both patterns exhibit a coupled growing trend (r =  0.7997) for some time, 
suggesting that discussion communities become clearer and more internally organized. �is picture however 
changes as the movement gains momentum and consensus arises. Indeed, around the climax of the event (May 
15–17) we observe an abrupt transition, i.e., nestedness keeps increasing as modularity collapses in a marked 
anti-correlated pattern (r =  − 0.7819). A�er such transition, the architecture of the network is radically di�erent.

�e compelling evidence of nested patterns provides a parsimonious explanation of how large amounts of 
activity can coexist with natural constraints to attention and memory. �e user-meme network self-organizes 
towards a nested structure minimizing competition and facilitating the coexistence of individual participants36. 
Even when the network is predominantly modular, nestedness appears to have signi�cant values well beyond ran-
dom counterparts, which already indicates the existence of an incipient consensus around sub-topics. Moreover, 
the unraveled structural change to a highly nested-only architecture allows interpreting the evolution of the 
Spanish mobilization episodes as a build-up e�ort from segregation (scattered activists acting locally) to coordi-
nation (a global movement with a well-de�ned and shared main message).

Such interpretation in sociological terms can be quantitatively supported if we actually explore the survival 
conditions under which the topic can persist. To do so, we build a set of synthetic networks that purposefully 
present an almost perfect modular architecture, and an almost perfect nested structure (see section E.1 in the SM 
for details), mimicking the initial and “climax” state of the real system, April 25–30 and May 15–20 respectively. 
To each pair (equal size and equal link density) of these networks, we apply the mutualistic dynamics proposed by 
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Bastolla et al.36 exploring a wide range of model parameters’ values (see Materials and Methods and Section E.2 in 
SM). �e aim is to compare the persistence of these two distinct topologies when equilibrium is reached. �e �rst 
noticeable �nding shows that the nested architecture presents large areas in the parameter space for which the 
system largely survives, whereas the modular structure does not (Fig. 3a). In all the cases (see additional results 
in Figs S7 to S11) it is possible (and actually very frequent) to observe high persistence for the nested architecture 
whereas it is low for the modular one, but never the other way around. In this context, the persistence is de�ned 
as the survival of a hashtag or user once the system has become stable, while the survival rate represents the �nal 
diversity (i.e., number of users and hashtags in the steady state) relative to the initial collection. �en, the survival 
area represents the region with a survival rate greater than a given value (see Section E.2 of the SM). We systemat-
ically compare the survival areas for pairs of systems with di�erent sizes and densities (Fig. 3b) and two remark-
able facts stand out: �rst, nested architectures consistently out-survive modular ones. Second, the di�erence in 
survival areas increases with network size, being narrower for small system sizes. �is latter �nding suggests the 
reason why topic-centered bipartite networks in information systems exhibit a modular structure while they 
remain small-sized: the pressure for an architecture shi� remains low, as the transition towards a nested topol-
ogy does not yet present a critical advantage in terms of the survival of the topic. In other words, when a topic is 
emerging, and thus its user-meme network is small, it needs to reach a critical mass (here the size) and self-adapt 
to a nested architecture to increase the likelihood of topic’s survival.

It is possible to get further insights into the microscopic mechanisms behind the modular-to-nested topologi-
cal transition. As seen from Fig. 2, once the nested patterns begin to dominate the network structure –around the 
day when the movement fully develops–, nestedness remains at high levels for some time. �is makes it possible 
to consistently track the set of users and memes that accumulate many interactions (generalists) and inspect 
whether these sets are time-independent. To this end, we identify which nodes and which memes assemble the 
core37,38 of the network at di�erent times. �e core can be thought of as the set of most generalist nodes (users 
and memes) in the network, see section F of the SM for further details. Figure 4 compares the resemblance to the 
“reference core” DRC, i.e. similarity between a snapshot’s core (Ct) and the one extracted when the nestedness is 
maximal (Cmax) (see section F in the SM for a de�nition). Notably, for both w =  12 h (top panel) and w =  3 days 
(bottom) there is a high turnover in users who occupy the core: in most snapshots t, only 0–10% of the users in 
Cmax are also present in Ct, even when the network’s architecture has reached the nested stage. Instead, hashtags 

Figure 2. Modularity and nestedness bifurcate at the onset of system-wide attention. �e central panel 
shows the evolution of modularity and nestedness, as standardised z-values. Remarkably, both metrics evolve in 
a coupled way up to the onset of the main protests (around May 15). At this point, modularity collapses, whereas 
nestedness continues growing towards its peak value coinciding with the political movement’s central dates 
–that of the largest demonstrations across the country (May 17–20th). Top panels represent four snapshots of 
the data –encoded as bipartite networks–, rows and columns are sorted in decreasing connectivity order (for an 
optimal visualization of nested patterns, if they exist). Similarly, lower panels represent the exact same matrices, 
where rows and columns are sorted module-wise (for an optimal visualization of the community structure).
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have a much more stable core –around 20% of the Cmax is shared during the entire observation window, and values 
above 50% are reached a�er the movement onset and beyond. �ese results suggest that it is the set of generalist 

Figure 3. Modular and nested architectures under mutualistic dynamics. Two synthetic networks with 
the same size (N =  1000) and density (ρ =  0.25), but di�erent architecture (modular, nested), exhibit radically 
di�erent outcomes when the mutualistic dynamical framework is applied on them via extensive numerical 
simulations. Le�: Persistence as a function of the competition β and mutualism γ terms. For a wide range of 
parameters the modular network shows poor survival; conversely, the nested architecture performs equally or 
better than the modular counterpart in any given region. Right: di�erences in the “survival areas” increase with 
size, which indicates that the pressure for an architectural shi� (modular to nested) grows as new nodes (users 
and hashtags) join the system. Note that the x-axis in the right panels (“Persistence”) corresponds to the z-axis 
(color code) in the le� panels. All results are averaged over 1000 realizations. Additional results for other sizes 
and densities can be found in Figs S7 to S11.

Figure 4. Topical consistence over time despite user turnover. We track the similarity DRC of the generalist 
cores of the network in time (Ct) with respect to a �xed reference (the core of the network when the maximum 
of the nestedness is observed, Cmax). Results for di�erent w (12 h in the top panel; 3 days in the lower) show that 
only hashtags build a stable core, guaranteeing the semantic coherence of the topic across time; whereas the core 
of users su�ers a high rate of turnover, indicating that users are frequently pushed to and from the periphery of 
the network.
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memes, rather than the existence of generalist individuals, that takes the burden of the topic’s persistence in time. 
Indeed, it is less costly to linger on a set of hashtags –the passive elements of the system39– as they are not subject 
to users’ limitations (sleep, attention focus, etc.), with high volatility of new users who enter and leave the core 
rather intermittently. As shown in Fig. S4, these results are robust to di�erent window widths.

Finally, to rule out the possibility that our results are speci�c to socio-political phenomena of the kind of 
the 15 M movement, we have analyzed an un�ltered dataset of Twitter tra�c corresponding to tweets in United 
Kingdom. As before, bipartite user-hashtag networks are built, but now we chose the subset comprising the top 
1,024 most-active users and, independently, the subset of 1,024 most-used hashtags. Note that such independent 
sampling implies that the corresponding adjacency matrix could be empty –the most active users might not use 
the most popular hashtags. Results for this dataset show strongly �uctuating patterns for both modularity and 
nestedness, when measured at large window widths (w >  3 h) –not resembling the more persistent, smoothly 
developed 15 M movement. �is is not surprising, as most online topics that succeed in getting collective atten-
tion do not demand for days to brew and emerge, but they arise and decay at very fast time scales4,40. Figure 5 thus 
shows the results obtained for the UK dataset over a much shorter time scale (w =  1 h), revealing that collective 
attention around certain topics is reached when the network is maximally nested and minimally modular (with 
overall r =  –0.7126). Here we do not observe coupled modularity-nestedness regimes (r >  0), as the incipient 
stages of a forming topic go unnoticed in the un�ltered stream. For example, a post hoc inspection of the un�l-
tered stream revealed the consolidation (but not the incipient stages) of the XLVIII Super Bowl topic, that started 
on February 3rd, 2013 at 12:30AM CET, showing the highest peak (lowest valley) in the nestedness (modularity) 
values in the studied period.

Discussion
In summary, our analyses have unveiled the mechanisms underlying the evolution of an information ecosystem, 
revealing that there is a traceable pattern for an emerging collective attention event to culminate. Such pattern 
implies a sudden transition from an initially disperse scenario (modular architecture) to a cohesive situation 
(nested architecture). Extensive numerical simulations reveal that user-meme mutualistic interactions9 drive the 
networked structure towards that nested-only stage, i.e. the architecture that best accommodates the coexistence 
of individual participants12,36. �ese results stem from an integrated view of the temporal dynamics of emer-
gent collective attention in the context of interdependence and coevolution of human-meme ecosystems, both in 
online and o�ine communication.

�e present work thus places the study of user-meme structures within the framework of mutualistic com-
munities. �is implies that the lessons from such rich tradition can be applied in this new informational context, 
with the advantage of the �nest temporal resolution –time-resolved datasets are scarce in the ecological literature. 
For instance, the concepts of competition, cooperation and facilitation, vaguely used in reference to information 
environments, can now be put on �rm theoretical standpoints. By connecting meme-mediated human interaction 
to one of the landmarks in systems ecology –nestedness–, we enlarge the list of complex systems for which such 
con�guration has been reported –with the implications it bears. Such is the case of organizational networks14,16 
or cultural assemblages32. Our �ndings support the idea that nestedness is indeed a dominant pattern in complex 
networked systems –but it has, paradoxically, received much less attention than modularity. Last but not least, 
our results provide empirical evidence –at least in the human communication scene– that modularity and nest-
edness, two dominant architectural principles in complexity, can coexist in a single topology at its early stages, 
but abruptly bifurcate as the system reaches maturity. Such �ndings have deep implications on a system, a�ecting 
its dynamical properties in terms of diversity, stability, di�usion, and so on. �is is then a valuable addition to an 
ongoing debate about modular and/or nested topologies coexistence, which has mainly occurred in the eco- and 
biological arena41–43 but also, implicitly, on the theoretical one18. Our results suggest deep constraints not yet 

Figure 5. Maximum nestedness marks ephemeral topics at faster time-scales. Un�ltered, topic-independent 
Twitter tra�c o�ers similar evidence as the main example (Fig. 2), provided that a suitable time-scale is 
examined. In particular, nestedness and modularity show strongly anti-correlated behavior (r =  − 0.7126), with 
zλ peaking when a collective attention gathers around an outstanding topic (the most notable one in this plot 
being the Superbowl event, between February 3 and 4, 2013).
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fully understood about network formation and evolution, which perhaps analytical e�orts can disentangle in the 
future. �is opens the path to further studies along the lines explored here. Finally, the phenomenology of the 
transition described in this work suggests that the methodological approach presented here could be applied to 
other datasets, provided that there is a brewing period in which consensus is built up as time progresses. As such, 
it cannot describe situations in which unexpected4 or exogenous40 events (lacking precursory activity) suddenly 
emerge.

Materials and Methods
Data. �e analyzed data comes from two disjoint sets of Twitter collections. �e data for the Spanish 15 M 
movement were harvested by a startup company (Cierzo Ltd.) for a period of 30 days, starting on April 25, 2011. 
In that period, protests emerged in Spain in the a�ermath of the so-called Arab Spring, with a large demonstra-
tion on May 15th and strong echoes up to May 22nd (local elections in Spain). �us our analysis covers a brewing 
period with low activity rates (up to May 15th) plus an “explosive” phase beyond that day, decaying beyond May 
22nd. Our collection comprises 521,707 messages. �e UK collection is not �ltered topic-wise in any sense. It 
comprehends almost 29 million messages for a three month period in 2013, the only restriction being the local-
ization of these tweets: they correspond to messages emitted either from the United Kingdom or Ireland. See 
section A of the SM for details on the events and data collection in both cases.

Bipartite modular structure. Community analysis is performed via Barber’s modularity Q maximization. 
In his work26, Barber provides an appropriate null model given the bipartite nature of our networks. In particular, 
a bipartite network is represented as a block o�-diagonal binary matrix:
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where L is the number of interactions (links) in the network, ~aij denotes the existence of a link between nodes i 
and j, =p k k L/

ij i j  is the probability that a link exists by chance, and δ is the Kronecker delta function, which takes 

the value 1 if nodes i and j are in the same community, and 0 otherwise. We give some additional details in Section 

C of the SM44–47. Note that the o�-diagonal blocks 
∼
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T respec-
tively. Modularity z-scores (Figs 2 and 5) have been obtained against the average and standard deviation of an 
ensemble of Q for 102 random realizations of A44.

Nestedness. In interaction networks, nestedness ref. 48-50, 51, 52 indicates the extent to which special-
ists interact with proper nested subsets of those species interacting with generalists12. Among many methods to 
quantify nestedness in bipartite networks, here we evaluate it following the spectral approach27–29, i.e. the level 
of nestedness is given by the maximum eigenvalue λmax of the adjacency matrix A of the network. Nestedness 
z-scores (zλ in Figs 2 and 5) have been obtained against the average and standard deviation of an ensemble of λmax 
for 104 random realizations of A. Section B of the SM discusses the robustness of the reported results compared 
to NODF30, as well as across the most used of signi�cance tests.

Mutualistic dynamical model. We model a topic’s evolution integrating the set of di�erential equations in 
Bastolla et al.36 for both classes of nodes on top of synthetic networks, which have been purposefully built to be 
almost perfectly modular, and almost perfectly nested (see section E.1 of the SM for further details). In particular, 
we consider a mutualistic community consisting of n users and m di�erent hashtags (memes); the diversity is 
denoted by N(t) and refers to the sum of active users and hashtags at a given moment t. Let U be the set of users 
and H be the set of hashtags, su refers to the relative activity of user u and sh represents the relative frequency of 
hashtag h. In order to model the evolution of the system, we consider that elements of the same group (users or 
hashtags) are in competition between each other, while they hold a mutualistic relationship with elements of the 
other group. �erefore, the activity of a given user u evolves according to36:
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where the �rst term αu represents the speci�c growing rate. �e second term of eq. (4) refers to the competition, 
where δuv is the Kronecker’s delta (taking the value 1 when u = v and the value 0 otherwise) and the parameter ρ 
modulates the strength of the competition between di�erent users (in correspondence with the biological inter-
speci�c competition term). Finally, the third term of eq. (4):
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models the mutualism. �e user-hashtag interactions are represented through the bipartite graph Mt =  {muh}, 
where muh =  1 if user u has posted a message containing the hashtag h, and 0 otherwise. λ corresponds to the 
Holling term that imposes a limit to the mutualistic e�ect, decreasing the mutualistic term to 1/λ for large fre-
quencies. �e formula for the evolution of hashtags can be obtained by interchanging the indices of the equation:
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Our aim is to study the evolution of the system in di�erent topologies (nested versus modular) focusing on 
the survival of memes and hashtags, that is, the diversity in the stationary state. To this end, we performed exten-
sive numerical simulations by integrating the N coupled di�erential equations (4,6) by means of a fourth-order 
Runge-Kutta method. Section E.2 in the SM reports the explored parameter space ref 53 and other details44–54.

References
1. Wu, F. & Huberman, B. A. Novelty and collective attention. Proc Natl Acad Sci USA 04(45), 17599–17601 (2007).
2. Crane, R. & Sornette, D. Robust dynamic classes revealed by measuring the response function of a social system. Proc Natl Acad Sci 

USA 105(41), 15649–15653 (2008).
3. Leskovec, J., Backstrom, L. & Kleinberg, J. Meme-tracking and the dynamics of the news cycle. Proc 15th ACM SIGKDD pp. 497–506 

(2009).
4. Lehmann, J., Gonçalves, B., Ramasco, J. J. & Cattuto, C. Dynamical classes of collective attention in Twitter. Proc 21st Int Conf WWW 

pp. 251–260 (2012).
5. Gonçalves, B., Perra, N. & Vespignani, A. Modeling users’ activity on Twitter net- works: Validation of Dunbar’s number. PloS One 

6(8), e22656 (2011).
6. Weng, L., Flammini, A., Vespignani, A. & Menczer, F. Competition among memes in a world with limited attention. Sci Rep 2, 

(2012).
7. Kleineberg, K. K. & Boguña ́ , M. Evolution of the digital society reveals balance between viral and mass media in�uence. Phys Rev X 

4(3), 031046 (2014).
8. Ribeiro, B. & Faloutsos, C. Modeling Website Popularity Competition in the Attention-Activity Marketplace. Proc 8th ACM Intl 

Conf Web Search and Data Mining, 389–398 (2015).
9. Cattuto, C., Loreto, V. & Pietronero, L. Semiotic dynamics and collaborative tagging. Proc Natl Acad Sci USA 104(5), 1461–1464 

(2007).
10. Cattuto, C., Barrat, A., Baldassarri, A., Schehr, G. & Loreto, V. Collective dynamics of social annotation. Proc Natl Acad Sci USA 

106(26), 10511–10515 (2009).
11. Gleeson, J. P., Ward, J. A., O’Sullivan, K. P. & Lee, W. T. Competition-induced criticality in a model of meme popularity. Phys Rev Lett 

112(4), 048701 (2014).
12. Bascompte, J., Jordano, P., Melia ́ nC, J. & Olesen, J. M. �e nested assembly of plant-animal mutualistic networks. Proc Natl Acad Sci 

USA 100(16), 9383–9387 (2003).
13. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 

312(5772), 431–433 (2006).
14. Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Ann Rev Ecol Evol System pp. 

567–593 (2007).
15. Saavedra, S., Reed-Tsochas, F. & Uzzi, B. A simple model of bipartite cooperation for ecological and organizational networks. Nature 

457(7228), 463–466 (2009).
16. Bascompte, J. & Stou�er, D. B. �e assembly and disassembly of ecological networks. Phil Trans Roy Soc B: Biol Sci 364(1524), 

1781–1787 (2009).
17. Saavedra, S., Stou�er, D. B., Uzzi, B. & Bascompte J. Strong contributors to network persistence are the most vulnerable to extinction. 

Nature 478(7368), 233–235 (2011).
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