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Emergence of explosive synchronization bombs in
networks of oscillators
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Jesús Gómez-Gardeñes 2,3✉ & Alex Arenas 1✉

Research on network percolation and synchronization has deepened our understanding of

abrupt changes in the macroscopic properties of complex engineered and natural systems.

While explosive percolation emerges from localized structural perturbations that delay the

formation of a connected component, explosive synchronization is usually studied by fine-

tuning of global parameters. Here, we introduce the concept of synchronization bombs as

large networks of heterogeneous oscillators that abruptly transit from incoherence to phase-

locking (or vice-versa) by adding (or removing) one or a few links. We build these bombs by

optimizing global synchrony with decentralized information in a competitive percolation

process driven by a local rule, and show their occurrence in systems of Kuramoto –periodic–

and Rössler –chaotic– oscillators and in a model of cardiac pacemaker cells, providing an

analytical characterization in the Kuramoto case. Our results propose a self-organized

approach to design and control abrupt transitions in adaptive biological systems and elec-

tronic circuits, and place explosive synchronization and percolation under the same

mechanistic framework.
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The emergence of abrupt, explosive transitions in the mac-
roscopic behavior of complex networked systems is a fas-
cinating phenomenon, ubiquitous in fields ranging from

neuroscience to biology and engineering. There is increasing
empirical evidence that explosive synchronization in brain
activity is associated with the onset of anesthesic-induced
unconsciousness1–3, epileptic seizures4,5 and fibromyalgia6 and
it explains biological switches displaying abrupt responses to
external perturbations7. Also, in infrastructural and power-grids
networks, it is crucial to detect and control small vulnerabilities
that can lead to abrupt structural damages and global desyn-
chronization blackouts8,9.

From a theoretical perspective, explosive percolation—an
abrupt growth of the giant component of the network induced by
the addition or removal of single links—was found to occur when
competitive rules are applied on the choice of the links in a way
that the formation of a giant cluster is delayed10. The discovery of
this abrupt structural transition, which was shown to be con-
tinuous in the thermodynamic limit but with anomalous scaling
properties, triggered further analyses to understand the
mechanisms that can lead to the explosive behavior in the net-
work growth. In parallel, abrupt transitions were explored in the
collective dynamics of the system when considering a physical
process among the units, as the spreading of a disease11–13,
opinion diffusion14 or traffic flow15,16, to name a few17,18.

A particularly suitable framework to model the birth of explosive
transitions is the synchronization process of coupled oscillators.
The phenomena of collective synchronization are widely spread in
natural, social and technological systems19,20. Its ubiquity has
attracted the interest of the physics community, that have tackled
its study through minimal models that capture the transition
between a disordered phase and coherent dynamics. For popula-
tions of heterogeneous phase-oscillators coupled all-to-all19,20,
abrupt transitions in synchrony as the coupling parameter is
increased were found to occur for a uniform distribution of
frequencies21 and the hysteresis cycle involving incoherence and
partial synchrony was exactly characterized for a bimodal dis-
tribution with a shallow dip22. However, the bistable nature of
explosive synchronization—an abrupt jump from incoherence to
global synchrony induced by a change in the coupling parameter
among the units, with an associated hysteresis cycle—was firstly
discovered for scale-free networks (i.e. networks with very het-
erogeneous degree distributions) in the presence of positive cor-
relations between the internal frequencies and the nodal degrees23.
Further analyses showed that this is only one of the possible
mechanisms that inhibit the emergence of a large synchronization
cluster, and it was found that, by imposing frequency anti-
correlations among connected units in the form of frequency
gaps24 or adaptive anti-Hebbian rules for the weights25, explosive
transitions occur as the coupling constant is tuned. Furthermore,
explosive transitions can also appear in multilayer and dynamically
coupled systems26,27 and they can be enhanced by the presence of
noise28 and higher-order -beyond pair-wise- interactions29.

While our fundamental understanding of explosive synchro-
nization has significantly increased in the last years, some key
questions remain open. Due to the analytical challenges of
studying synchronization dynamics on arbitrary complex net-
works, a rigorous framework analogous to explosive percolation is
still missing17. Research on explosive synchronization and per-
colation has focused on different aspects of the system, namely in
the abrupt changes on the macroscopic dynamical or structural
properties, respectively, when subject to small variations of the
control parameter (the coupling strength or the density of links).
Interestingly, in ref. 30, the authors found that a particular choice
of frequency-dependent coupling (which again induces anti-cor-
relations) produces an explosive synchronization process where

the formation of synchronized clusters is delayed analogously to
its percolation counterpart. While these results unveiled a con-
nection between both phenomena, the specific model used in
ref. 30 is tailored ad hoc to show explosive phenomena and the
system displays the transitions under changes in a global control
parameter (the coupling strength), unlike the explosive percola-
tion which is induced locally, by adding or removing single links.
Also, it is well established that dynamical and structural corre-
lations are necessary to induce the explosive behavior17,18,23 and
recently, it has been suggested that these correlations can be
related to maximal global synchrony31,32. However, it is not
understood how empirical oscillator networks can self-organize
toward these explosive regimes, when they usually evolve under
uncertain or stochastic conditions and exploit only limited,
decentralized information available in the immediate surround-
ings of the units5,7,17,33.

To tackle some of the aforementioned challenges from a the-
oretical perspective, here we present a self-organized dynamical
network that act as a synchronization bomb, i.e. showing an
abrupt synchronization transition in the course of a self-
organized wiring process. In this way, our model attempts to
bridge the conceptual gap between explosive synchronization and
percolation by imposing local structural perturbations instead of
global ones and proposes a self-organized route to explosive
synchronization by invoking a simple principle of synchrony
maximization in a decentralized and stochastic process.

The remainder of this paper is organized as follows. We first
present our model of the synchronization bomb for an ensemble
of Kuramoto oscillators. We introduce the optimal local rule for
connecting or disconnecting units, derived from the truncated
expansion of the linearized dynamics31 under the assumptions of
maximizing global synchrony with local information, and explore
the basic mechanisms and phenomenology of the synchrony-
driven percolation process. Second, we analyze the explosive
fingerprints that emerge on the underlying structure, in the form
of degree-frequency correlations, disassortative dynamical and
structural patterns, and a delayed percolation threshold. Third,
we provide an analytical characterization of the dynamics by
means of the Collective Coordinates34,35 (CC) and Ott-
Antonsen36 (OA) model reduction techniques, unveiling the
dependence of the main parameters and observing an excellent
agreement with numerical simulations. Next, we extend the
model to numerically produce synchronization bombs of coupled
chaotic Rössler systems and cardiac pacemaker cells. We con-
clude with a discussion of our Results and a Methods’ section,
including the mathematical machinery used to derive the local
rule and the analytical predictions for the percolation and syn-
chronization critical thresholds.

In the Supplementary Information, we study the robustness of
the presented phenomenology under variations in system para-
meters. In particular, in Supplementary Note 1, we study the
effects of size and noisy sampling, showing that the explosive
transitions induced by single links are sustained for increasing
size and that the presence of some randomness is beneficial
because it improves the decentralized optimization of synchrony
driven by a local rule. In Supplementary Note 2, we study the
effect of different choices of frequency distributions. In Supple-
mentary Note 3, we validate the extension of the model to
directed networks, and in Supplementary Note 4, we explore in
more detail the relation between percolation and synchronization
onsets in the model.

Results
Model. We consider a large system of heterogeneous coupled
oscillators on top of a network of interactions that evolves under a
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competitive link percolation process10,17. For the dynamics, we
begin with the classical Kuramoto model, a paradigmatic example
of the emergence of collective synchronization19,20,37. An
ensemble of N heterogeneous Kuramoto oscillators interacting on
top of a network follows the equations of motion:

_θi ¼ ωi þ λ ∑
N

j¼1
aij sinðθj � θiÞ; 8 i 2 1; ¼ ;N; ð1Þ

where θi is the phase and ωi is the intrinsic frequency of the i-
oscillator, aij are the entries of the adjacency matrix A, that
capture the interactions among the units and λ is a constant
coupling strength. As usual, the macroscopic behavior of the
system is captured by the modulus of the Kuramoto order
parameter:

rðtÞ ¼ 1
N

∑
N

j¼1
eiθjðtÞ

����
����; ð2Þ

which measures the degree of phase synchronization and is
bounded between zero and one. In the following, we will make
use of temporal averages of the order parameter, i.e. r=〈r(t)〉.
Although our results can be extended to more general settings, in
the following we restrict our study to the case of unweighted
(aij= 0, 1) and undirected networks (aij= aji), and consider, for
analytical convenience, a uniform frequency distribution g(ω)∈
[−γ, γ], shifting the resulting frequency vector to have
zero mean.

The growth of the synchronization bomb is made by keeping
the coupling strength λ constant and varying the density in the
number of connections between the units, p, that acts as the
control parameter and ranges from 0 (disconnected network) to 1
(fully-connected network). In the forward process we initialize
our system from scratch, with a completely disconnected network
(p= 0) of oscillators with assigned random phases drawn from
(−π, π) (other choices are explored in Supplementary Note 2).
We then run the percolation processes in which at each step one
new link is added. This way the control parameter p changes
sufficiently slow such that the system in Eq. (1) reaches the
stationary state at each network step in the process. The addition
of a new link at each p-step is made as follows: We uniformly
sample M pairs of disconnected oscillators and select the
connection (i, j) that maximizes the gain of synchrony given by:

Δrij ¼
1

λ2N

ωi

ki
� ωj

kj

 !
ωi

k2i
� ωj

k2j

 !
: ð3Þ

In practice, when connecting isolated nodes at the very initial
steps of the process, we add an infinitesimal ϵ to the degrees of
the nodes with ki= 0 to evaluate Eq. (3) in terms only of the
natural frequencies (ϵ= 1 does not alter the results). In the
backward process, we just remove the links in the reversed order
of the forward process. The proposed model is stochastic in
nature but becomes completely deterministic in the limit M→∞,
and it reduces to the random percolation case in M= 1.

Equation (3) captures the actual change in the order parameter
r in the strong phase-locking regime (i.e. after the transition) but
it can be used to estimate the impact of each link in the whole
synchronization process (see Methods section “Derivation of the
local rule” for in depth derivation and discussion of this
expression). Note that Eq. (3) only exploits local information of
the considered nodes, and it is maximum when the ratios
frequency-degree of the nodes are large and also when their
difference is large as well, pinpointing a clear signature of
frequency-degree correlations and frequency-frequency anti-
correlations. These correlations were imposed ad hoc in previous
models that induce explosive synchronization17, and they could
indeed emerge from applying a broader class of local percolation

rules in the form p(ωi, ki, ωj, kj), but we focus on Eq. (3) since it is
the rule that is derived from a decentralized optimization of the
phase-locking state, without other assumptions or guesses
required.

In Fig. 1a, we illustrate the former basic mechanics for
assigning a link out of M= 5 possible candidates and in Fig. 1b
we show the histogram of the values of Eq. (3) for all the existing
links at a given step of the process, highlighting the value of the
five sampled, potential new links. We take the forward process
(construction of the network by adding links) as an example. As
shown in Fig. 1a the functional form of the basic rule, Eq. (3),
induces some relevant features on the interplay between
structural and dynamical patterns during the network growth.
We observe that nodes with large (small) absolute frequencies
accumulate more (less) neighbors, whereas links tend to be more
present between nodes with alternate frequencies, producing
bipartite-like structures, as we will explore in the following lines.
In Fig. 1c we show the forward and backward explosive
synchronization transitions by plotting the curves r(p) when
different values of M are used. We observe that as M increases so
it does the abruptness of the transition as well as the hysteresis
region. To illustrate better the explosive nature of these
transitions we show in Fig. 1d, e the transition from incoherence
(r ≈ 0.05) to full phase-locking (r ≈ 0.9) when a unique link is
added to the system (in Supplementary Note 1 we check that this
effect holds for larger sizes). This phenomenon motivates our
choice for referring to these growing networks as synchronization
bombs.

Structural explosive fingerprints. Before characterizing the
synchronization transition of explosive bombs in more depth, we
now focus on the structural changes that the network undergoes
during the percolation process governed by Eq. (3). In the fol-
lowing we analyze the emergence of several structural and
dynamical patterns that are usually associated with explosive
transitions17,31.

Degree-frequency correlations and frequency-frequency antic-
orrelations. During the network growth process, the system tends
to a stationary degree distribution (which scales with system
density) as sampling increases in the process (for larger M). To
understand this effect, we recall that the rule of Eq. (3) tends to
connect pairs of oscillators with large frequency differences and
low degrees. When a link is chosen, the degrees of the adjacent
nodes increase, reducing the value of Δrij for other potential links
of these nodes. This constant competition between fixed fre-
quencies and evolving degrees acts as a self-organized feedback
that tends to homogenize the distribution of Δrij among the
potential links, and frequencies and degrees become balanced in
the precise way that makes Δrij more similar among these—still
absent—links. Since the rule predicts the scaling Δr ~ ω2/k3, we
find that, in the deterministic (large M) regime (see Methods
section for details) the relation is given by:

ki �
5
3
pNγ�2=3jωij2=3; ð4Þ

where the scaling is controlled by the mean degree, expressed in
terms of the density of links p and size N, since 〈k〉 ≈ pN. As
expected, Eq. (4) becomes more accurate as sampling increases in
the system, as observed in Fig. 2a. In Fig. 2b, we see that fre-
quency anti-correlations among pairs of connected nodes are also
present in the system and become stronger for large sampling M.
Let us note that these type of correlations are explicitly imposed
in the majority of studied mechanisms that induce explosive
synchronization17,18 whereas here emerge from a decentralized
optimization of the synchronized state. In the following, we
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explain how these dynamical anti-correlations translate into
structural ones.

Spectral signatures: toward optimal and bipartite networks. We
study the evolution of the extreme eigenvalues μmax and μmin of
the Laplacian matrix L=D− A (D is the diagonal matrix of
degrees) and of the normalized Adjacency matrix Â ¼ D�1

2AD�1
2

during the percolation process, for different values of sampling
M. In Fig. 2c, d, we observe that the network evolves in a path
that maximizes both the largest positive eigenvalue of L, μmax(L),
ranging from zero to N, and the largest negative eigenvalue of Â,
μminðÂÞ, ranging from minus one to zero, when randomness is
reduced in the process (larger sampling M). Also, the frequency
of the oscillators tends to correlate with the entries of the asso-
ciated extreme eigenvectors (see insets of both panels). These
spectral signatures pinpoint that our model evolve toward opti-
mal and bipartite configurations. First, it is well understood that
optimal synchronization is achieved by the alignment of the
frequencies with the largest eigenvector of the Laplacian matrix
and by increasing the magnitude of the associated eigenvalue
μmax(L)38. Second, note that the normalized Adjacency matrix, Â,
is a stochastic row sum and its spectra is bounded in
μðÂÞ 2 ½�1; 1�, with the largest eigenvalue μmaxðÂÞ ¼ 1 if the

network is connected. The remaining of the spectra follows
Wigner’s semicircle law for random networks, becoming nar-
rower as the link density increases, and it deviates from the
random case in the presence of modules (shifting toward positive
eigenvalues) or bipartite-like structures (shifting toward negative
eigenvalues)31. Thus, from Fig. 2d we observe that bipartite pat-
terns arise as determinism is increased (larger M) and the tra-
jectory of the extreme eigenvalues tuple follows a clear
asymmetric path toward the all-to-all (p= 1) limit. This effect
shows that the rule derived in Eq. (3) induces negative structural
correlations (bipartitivity) as a consequence of the negative
dynamical correlations that emerge in terms of natural fre-
quencies, and vice-versa.

Delayed percolation threshold. From the former results, it is clear
that, as the percolation process evolves, the network self-
organizes its architecture according to well-known explosive
patterns. Two main issues are how this synchrony-driven per-
colation is related to the natural one, i.e. that observed when links
are chosen at random, and, as we will cover below, how the
emergence of a giant component (the proportion of the nodes
connected in the largest cluster of the network) is related to the
synchronization onset. To address these issues we study the
emergence of the giant component as a function of the control

Fig. 1 Basic phenomenology in the Kuramoto bomb. a Illustrative network of N= 50 oscillators where the size of the node is proportional to its degree, the
color is related to its natural frequency (blue for ω=−1, gray for ω= 0 and red for ω= 1) and the black lines represent the links between the oscillators.
Green lines mark the M= 5 potential links sampled in that p-step. The continuous line represents the chosen link and the dashed ones are the discarded
ones. b Histogram of the Δr values for the existing links of the network, where red lines correspond to the values of the five sampled links. c Example of the
typical synchronization transition in our bomb-like model, with the order parameter r depending on the fraction of links, p in a system of N= 200 Kuramoto
oscillators for fixed coupling strength λ= 0.05 and three values of samplingM. Equation (1) is numerically integrated using Heun’s method, with dt= 0.05,
104 time steps and temporal averages of r are taken at each link change. In d, we represent the oscillators phases for the M= 10 case before and in e after
the forward transition. Note that this jump in the Kuramoto order parameter from incoherence to complete phase-locking takes place just with the addition
of one link.
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parameter p when the rule of Eq. (3) is applied for different values
of the sampling parameter M. In Fig. 2e, we observe that the
proposed rule delays the percolation threshold with respect to the
random case, and it produces more abrupt transitions. Looking
more closely at the effect of the system parameters on the per-
colation threshold, in Fig. 2f, g we observe that, when increasing
both the size of the system (large N) and the determinism in the
rule (large M), percolation transitions become sharper and occur
at higher p. Nevertheless, the nature of the transition appears to
be continuous (i.e. second order) even for large system sizes. We
can obtain a rough approximation for the average value of the
percolation threshold by using the well-known Molloy and Reed
criterion39 in the deterministic limit and neglecting the negative
structural correlations that the rule induces. Using this criterion
and leveraging the emergent degree-frequency correlation we
obtain, for a uniform g(ω), (see Methods) that the threshold is
estimated as:

pc ¼
42
25N

; ð5Þ

which can be written in terms of the percolation threshold in a
random network9 as pc � 1:68 � prandc . In Fig. 2e we observe that
Eq. (5) works quite well for sufficiently large M. More sophisti-
cated analytical tools, as the recently developed feature-enriched
percolation framework40, could improve the predictions under
local rules, such as Eq. (3), that exploit information both from the
degrees and the frequencies of the units.

Analytical characterization of the Kuramoto bomb. Now we
explore, by analytical and numerical means, the dynamical
regimes of our system depending on the coupling, λ, and sam-
pling, M, values. We remark that, despite the apparent simplicity
of Eq. (1), the Kuramoto Model on complex networks does not
have an analytical solution and approximations are required to

predict the dynamical behavior using the information contained
in A and ω17,20.

To the best of our knowledge, the current method that
better captures the finite-size effects and the precise interplay
between the structure and the oscillator dynamics in Eq. (1) is
the model reduction technique based on Collective Coordi-
nates, introduced first by Gottwald to globally coupled
systems34 and extended to complex networks in35. We use
this approach to estimate the value of the oscillator phases and
the corresponding evolution of the order parameter r(p) in the
backward branch and also to calculate numerically the
backward synchronization threshold, pbc . See Methods section
“Collective coordinates ansatz” for the precise details of this
method. The agreement between CC theory and numerical
simulations becomes evident in the backward synchronization
diagrams shown in Fig. 3a for λ= 0.02 and 0.04 (M= 10).

For the forward process we cannot use the CC approach and
we rely on the celebrated OA ansatz36, which has been
successfully used to characterize systems in the presence of
frequency and degree correlations41–43. Specifically, we benefit
from a recent elegant development used to describe the mean-
field dynamics of Janus oscillators43 and consider the limit of
large N and M. Complete calculations to predict the loss of
stability of the incoherent state, and therefore the forward
synchronization threshold, are given in the Methods section “Ott-
Antonsen ansatz”. For the particular case of a uniform
distribution g(ω)∈ [−1, 1] we obtain the closed form:

pfc �
21

25λN
: ð6Þ

The predicted value pfc is plotted in Fig. 3a showing again a
remarkable agreement. This analytical estimation allows addres-
sing the aforementioned issue about the relation between
synchronization and percolation onsets by making use of Eqs.

Fig. 2 Explosive fingerprints. Left column: a scatter plot of the tuples (∣ωi∣, ki) and b (ωi,〈ω〉i)—where 〈ω〉i is the average frequency of the neighbors
of the ith-node—for each oscillator at p= 0.1, in a single realization of the forward process, for three values of sampling and N= 200, including in a the
deterministic prediction of Eq. (4). Middle column: scatter plot of c the maximum and minimum eigenvalues of the Laplacian matrix, μmin(L) and μmax(L)
and d of the normalized Adjacency matrix, μminðÂÞ and μmaxðÂÞ at different p-steps of the forward process (the size of the dots decreases for larger p) for
different values of M. In the inset, we plot the relative correlation αi=〈ω, vi〉 between the frequency vector and the eigenvector of L (or Â) associated
with the maximum (or minimum) eigenvalue. Right column: e Evolution of the average size of giant component (SGC), for sampling ranging from the
random scenario of (M= 1) to a more deterministic one with (M= 20) in a network of size N= 5000. Results are averaged over 20 realizations of the
process. Inset in e shows a single realization in log scale. In f we show the effect of network size on the percolation transition for the M= 1 and
g M= 20 scenarios. It is observed that larger and more deterministic networks under the rule of Eq. (3) experiment sharper transitions.
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(5) and (6). Combining both expressions we can write a simple
relation for the percolation pc and forward synchronization pfc
thresholds as:

pc � 2λpfc ; ð7Þ

which illustrates the natural connection between the structural
and dynamical aspects of our model.

We extend our numerical and analytical characterization of the
synchronization diagram in the (p,M)-plane, Fig. 3b), and (p, λ)-
plane, Fig. 3c). In Fig. 3b, we observe that, fixing λ= 0.05, the
collision of the theoretical backward curve and the approximated
forward threshold successfully predicts the codimension-two
point, where a saddle-node bifurcation collides/appears with a
pitchfork bifurcation and bistability emerges29. This critical point
for which explosive behavior shows up takes place around M ≈ 5.
In Fig. 3c, we focus on the coupling strength λ, a parameter that
does not play a role in the percolation process, but it is crucial to
synchronization dynamics. The precise location of the synchro-
nization thresholds can be controlled from occurring simulta-
neously with the percolation one for large values of λ (where the
oscillators immediately synchronize when connected and the
synchronization curves follow the percolation ones shown in
Fig. 2e), to occur much later for smaller values of λ (where
bistability and abruptness of transitions is maximized) and to
finally disappear for sufficiently small λ. Interestingly, in the
explosive range of λ, the emergence of a bipartite structure for
sufficiently large M—as discussed in the previous section—
hinders the formation and growth of microscopic small clusters
in the incoherent regime (see for instance Fig. 1d), against what
occurs in other models of explosive synchronization17,23,30.
Furthermore, we note that the system transits more abruptly
for a relatively large λ (low p), but has a larger region of hysteresis
for low λ (large p).

In Supplementary Note 1 we explore the dynamics of the
model for different system sizes, confirming that the abrupt jump
in r occurring at single link changes remains large for increasing
size, and we analyze in more detail the role of the noisy sampling
in the model, finding that an optimal amount of sampling can
enhance the explosive performance of the synchronization bomb
because it improves the self-organized optimization process
driven by a local rule. In Supplementary Note 2 we show that
both phenomenology and theory are robust to changes in the
distribution of intrinsic frequencies, g(ω). In particular, we show
results for Gaussian (and bimodal) cases, exploring scenarios
with less (and more) polarization than the uniform distribution,
finding the expected result that polarization in g(ω) increases the
bistable regime and the abruptness of the transitions. In
Supplementary Note 3 we show that the bomb-like transitions
also occur for directed networks. Lastly, in Supplementary Note
4 we also illustrate in more detail the relation between
percolation and synchronization curves under the parametriza-
tion of Fig. 3c.

Chaotic synchronization bombs. One of the most relevant
applications of synchronization theory is its implementation
when coupling chaotic systems44, a counter–intuitive non-linear
phenomenon as it achieves a perfect dynamical coherence
between systems that, when isolated, display exponential diver-
gence of nearby trajectories. Thus, to show the generality of our
results, we round off by extending them beyond the Kuramoto
framework and considering the Rössler system, a paradigmatic
model for the emergence of chaotic dynamics45.

Here we use an ensemble of diffusively coupled heterogeneous
chaotic oscillators46–48, a modified, piece-wise linear Rössler

Fig. 3 Analytical characterization of the Kuramoto bomb. a Two examples
of synchronization curves, r(p) in the forward and backward processes, for
a rule dependent (M= 10) case in a network of size N= 200 and fixed
coupling to λ= 0.02 and λ= 0.04. Measurements here are taken every 40
links and results are obtained in a single realization of the process.
b Synchronization phase-space depending on M and p for a fixed λ= 0.05.
In the three panels, dashed (solid) lines correspond to the theoretical
predictions of the forward (backward) synchronization thresholds, and
circle markers in a give the analytical prediction of the whole backward
curve (see main text and Methods section for the derivations). Note that
the results displayed in Fig. 1c correspond to three M− slices here.
c Synchronization phase-space depending on λ and p for a certain level of
sampling M= 10. The color in the two-dimensional colormap indicates the
numerical values of the tuple (rf, rb), and shows that the system is either in
the incoherent (purple), bistable (white) or full phase-locking regime (red).
Results are averaged over 20 realizations.
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system45, which evolves in a 3-dimensional space following:

_xi ¼� f i τ xi � λ ∑
N

j¼1
aijðxj � xiÞ

� �
þ βyi þ δzi

� �
;

_yi ¼� f i �xi þ νyi
� �

;

_zi � f i �gðxiÞ þ zi
� �

;

ð8Þ

where the non-linear function that induces the chaotic behavior is
defined as g(x)= 0 if x ≤ 3 and g(x)= μ(x− 3) if x > 3. The
remaining parameters are set following47,48, with τ= 0.05,
β= 0.5, δ= 1, ν= 0.02− 100/R. R= 100 ensures that the system
is in a phase-coherent regime46–48, where a phase can be defined
after projecting onto the xy-plane, i.e. θi= arctan(yi/xi), such that

the synchronization order parameter r can be measured by the
standard Eq. (2). See Fig. 4c, d for a 3D representation of the
trajectories of the chaotic, phase-coherent, oscillators at two
different p-steps of the forward process. As in Eq. (1), λ is the
fixed coupling strength and the entries aij of the adjacency matrix
A capture the presence of undirected and symmetric interactions
between the oscillators and evolve under the rule of Eq. (3). The
instantaneous velocity of each unit is determined by fi, which we
assign proportional to the frequency, fi= 10+ 0.2ωi, drawn again
from a uniform distribution g(ω) in [−1, 1].

Figure 4a illustrates three examples of synchronization
transitions r(p) for a system of N= 200 and different choices of
λ and M. Similarly to the Kuramoto case, it is observed how, in
the construction process, for sampling values of M > 1 the order
parameter experiments abrupt jumps from dynamical incoher-
ence of r ~ 0.1 to a more coherent state with r≃ 0.7, that
continues to continuously grow to stronger synchronization
(r≳ 0.9) as the link fraction, p, increases. For the backward
transition the inverse process takes place but with the jump to
incoherence happening for lower values of p, resulting in a small
hysteresis cycle. In Fig. 4c we show the synchronization diagram
in the (p,M)-plane, where it becomes clear that the bistable
region shows up even for very small values of M.

The success of the chaotic synchronization bomb is grounded
on previous research that exploits optimal48 and explosive47

synchronization properties of the Kuramoto Model on the
diffusively coupled Rössler system. However, as numerical results
in Fig. 4a, b manifest, the phenomenology is slightly noisier than
in the Kuramoto case and the tuning of more parameters along
with the chaotic behavior of the units may difficult its design and
control. From a practical standpoint, these results show that
synchronization bombs could be potentially implemented in the
lab, at least by means of electronic circuits47.

Application to cardiac pacemaker cells. Lastly, we demonstrate
the existence of self-organized explosive synchronization bombs in
the biologically-plausible application of cardiac pacemaker cells—the
collection of cells responsible for generating a strong, coherent pulse
that propagates through the entire heart and initiates each
contraction49. For simplicity, we consider a system of network-
coupled pacemaker cells using, for each pacemaker, a two-variable
system describing the dimensionless trans-membrane voltage v and
gating variable h which summarizes ionic concentrations49. For a
system of N such pacemakers the equations of motion are given by:

_vi ¼ τ�1
i f ðvi; hiÞ þ Kv ∑

N

j¼1
aijðvj � viÞ; ð9Þ

_hi ¼ τ�1
i gðvi; hiÞ þ Kh ∑

N

j¼1
aijðhj � hiÞ; ð10Þ

where the local dynamics of vi and hi are described by:

f ðv; hÞ ¼ hðv þ 0:2Þ2ð1� vÞ
0:3

� v
6
; ð11Þ

gðv; hÞ ¼ 1
150

þ ð8:333´ 10�4Þ½1� sgnðv � 0:13Þ�
´ f0:5½1� sgnðv � 0:13Þ� � hg:

ð12Þ

The timescales τi represent local heterogeneity between the different
pacemakers, scaling the period of each isolated cell, ultimately
resulting in an effective natural frequency for each pacemaker pro-
portional to τ�1

i . Taking a system of N= 200 pacemakers with τ�1
i

uniformly distributed in [0.4, 1.6] and using coupling strengths
Kv= 0.009 and Kh= 0.0044 (to indicate a stronger coupling via the
voltage diffusion compared to ionic diffusion) we implement the

Fig. 4 Chaotic synchronization bombs. a Example of synchronization
curves for several values of M and λ. It is observed that a hysteresis cycle
appears when M > 1 and that lower (higher) values of λ translate into wider
(more narrow) cycles and less (more) abrupt transitions. b Synchronization
phase-space, depending on p and M for a fixed λ= 0.02. Results are
qualitatively similar to the ones found in Fig. 3b, although here the
transitions are less abrupt and narrower than in the Kuramoto case, and the
birth of hysteresis occurs for lower sampling (lower M). c Evolution of the
oscillators trajectories in the Rössler attractor for M= 10 and λ= 0.02 at
two different p-steps, before and d after the forward synchronization
transition. The color bar corresponds to the frequency of the oscillator
relative to the mean. Equation (8) is numerically integrated using Heun’s
method, with dt= 0.05 and 103 time steps and temporal averages of r are
taken at every 5 link changes.
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coupled percolation and synchronization dynamics as presented
previously in this work.

To measure the synchronization of the full system we consider
the error in the voltage dynamics, quantified by the overall

standard deviation. Taking temporal means of the error as the
percolation dynamics are run forward and backwards, we plot the
voltage error in Fig. 5a. In Fig. 5b, c we present the actual voltage
dynamics right before and after the backward explosive transi-
tion, plotting each individual voltage time series vi(t) in a light
blue stroke, and indicating the overall mean using a thick, dark
blue stroke. Note here the physiological implications of the
pacemakers ability or inability to produce a strong, coherent pulse
for strongly and weakly synchronized behavior, respectively.

By inspecting Fig. 5a, we observe a region of bistability and
explosive transitions in the voltage error, being more abrupt in the
backward direction, where the transition occurs at a single link
removal. As occurred with Rössler dynamics, results are noisier than
in the Kuramoto case and the precise location of the thresholds—and
the associated width of hysteresis—vary across realizations, pre-
sumably due to the small network size considered here. A detailed
exploration of the synchronization bombs in these more nuanced
oscillator models remains open for further research, but current
results already confirm that the main phenomenology is sustained
beyond systems of Kuramoto-like phase oscillators.

Discussion
Abrupt and explosive phenomena in the structure and dynamics
of complex networks have been one of the most studied phe-
nomena in non-equilibrium statistical physics and non-linear
dynamics in recent years. Not only do they allow us to further our
theoretical understanding of phase transitions, but also to develop
models that are able to explain and reproduce the changes in the
topology and behavior observed in natural and engineered sys-
tems, such as biological switches, brain activity and blackouts in
power-grids. Motivated by the wide range of applications, net-
work percolation and collective synchronization have become
paradigmatic frameworks to understand the explosive changes in
the structural and dynamical macroscopic properties of large
complex systems. A crucial feature of explosive percolation is that
it is induced by applying small localized structural perturbations
to the system (addition or removal of a few links) by means of
competitive rules that delay the formation of a connected com-
ponent. This aspect was not explored in the synchronization
counterpart, where explosive transitions were usually studied by
fine-tuning of global coupling parameters in fixed or evolving
structures. Furthermore, while the specific theoretical require-
ments for the explosive behavior become better understood, there
is less knowledge on the actual routes that real systems may
follow to self-organize toward these particular configurations.

In this work, we have attempted to bridge these gaps by deriving a
local percolation rule for systems of heterogeneous phase-oscillators
under the minimal assumption of maximizing global synchronization
with decentralized information. We have shown that under this
percolation rule the system behaves as a synchronization bomb. This
way the network undergoes an explosive synchronization transition
at some point of the wiring process, abruptly switching from inco-
herence to global phase-locking, and display a hysteresis cycle. We
have also shown that as the network grows, it self-organizes in a way
that several well-known explosive properties on the network structure
show up. Crucially, this growth delays the percolation threshold as
compared to the usual random case. We have provided an analytical
characterization of the system using state-of-art model reduction
techniques, obtaining a fair agreement with numerics and being able
to reproduce the bistable region in the synchronization phase dia-
grams. As we show in the SI, all these results are robust under the
variation of model assumptions and parameters, and also hold for
directed networks. Interestingly, we find that a noisy, low sampling is
beneficial in our model because it improves the decentralized opti-
mization of synchrony driven by the proposed local rule. Finally, we

Fig. 5 Application to a model of cardiac pacemaker cells. a Voltage error
(quantified by the standard deviation) as a function of the percolation
parameter p, under forward and backward percolation dynamics plotted in
dot-dashed and solid lines, respectively. b, c Individual voltage time series
vi(t) and the mean, plotted in light and dark blue stokes, respectively, from
right before and after the backward explosive transition.
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have shown that synchronization bombs can be also obtained for
systems of coupled chaotic units, paving the way to their imple-
mentation in the lab and in a model of cardiac pacemaker cells,
proving potential applications in biological systems.

While the current results provide a self-organized and sto-
chastic route to the emergence of these bombs, alternative,
deterministic approaches could lead to a better optimization of
the explosive behavior and control of the location of the transi-
tions in empirical networked systems. From a theoretical per-
spective, our results propose a mechanistic origin of explosive
synchronization in phase models, in terms of a local percolation
rule that exploits both structural and dynamical information from
the degrees and the frequencies of the oscillators. In this sense,
our model can be seen as a synchrony-driven process in the
recently established framework of feature-enriched percolation40.
Furthermore, the analytical and numerical findings presented
here align well with the novel hypothesis of self-organized bist-
ability in neuronal dynamics50 and also provide a missing
explanation to the emergence of explosive behavior in pair-wise
networks via the activation of a single self-organized mechanism,
somewhat analogous to the explosive transition described in
globally coupled networks when a single parameter, the one
controlling the strength of higher-order interactions, is switched
on in the system51.

In a nutshell, our findings show that growing networks of
heterogeneous dynamical units can develop to operate in a bis-
table regime, forming networked switches that display the
dynamical-structural correlations that are observed when graphs
are tuned to display explosive behavior. Also, engineered net-
works can be designed to be at the onset of total synchrony in
which they show no dynamical coherence but, after a minimal
wiring (just one or few links), experience synchronization
explosions. This finding provides a justification for naming these
systems as synchronization bombs.

Methods
Derivation of the local rule. We begin with two key assumptions: (1) the system
attempts to maximize the overall degree of synchronization, by adding or removing
undirected connections in a percolation process and (2) only limited information is
available, making this percolation a decentralized process. This means that the
units have access only to their immediate surroundings and they can exploit only
local information to maximize synchronization, without having access to the
overall network synchronization. In order to derive the rule under the previous
assumptions, we invoke linearization arguments on the original system Eq. (1),
which are shown to be valid when looking for optimal structural and dynamical
properties even far away from the linearized regime38,52. Under the linearization,
the resulting system reads in matrix form as:

_θ ¼ ω� λLθ; ð13Þ
where L=D− A is the Laplacian of the network. The solution of Eq. (13) in the
stationary state is found by setting _θ ¼ 0. In the corotating frame at speed
〈w〉= 0, the solution reads as:

θ� � 1
λ
Lyω; ð14Þ

where L† is the Moore-Penrose pseudoinverse of the Laplacian matrix, which can
be constructed via the spectral decomposition of L for undirected networks (see
ref. 38 for more details). Since we are close to the synchronization attractor, the
phases in Eq. (2) can also be expressed in a Taylor expansion38. Invoking again
linearization, the order parameter is given by:

r � 1� jjθjj2=2N: ð15Þ
In principle, one needs all the spectral information of the network to estimate the
value of r. However, we can leverage recent results on the geometric expansion of
Eq. (14)31, where it is shown that the linearized solution can be expressed as a sum
of contributions from increasingly further neighborhoods. This way, the local
approximation of synchrony31 is obtained by truncating the expansion at its second
term (taking into account the effect of the nearest neighbors of the nodes), leading
to:

r � 1� 1

2λ2N
∑
N

i¼1

ωi þ zi
ki

� �2

; ð16Þ

where zi ¼ ∑N
j¼1 aijðωj=kjÞ is the contribution of first neighbors. For more details

on the accuracy of Eq. (16), see ref. 31. From Eq. (16), we can estimate the local
impact in the synchrony of adding or removing a single link between oscillators
(i, j). Both discrete (considering single link perturbations) and continuous (using
derivatives with respect to the degrees and the approximation
∂zn=∂kn0 � ± δnn0ωn0=kn0 , evaluating the resulting expression at zi= 0) calcula-
tions, in the limit of large degree, lead to Eq. (3) in the results section, an expression
that depends only on the local variables (ωi, ki) of a given pair of nodes. Explicitly:

Δrij ¼
± 1

λ2N

ωi

ki
� ωj

kj

 !
ωi

k2i
� ωj

k2j

 !
; ð17Þ

where the ±sign accounts for the addition (removal) of a link. We remark that this
result is derived assuming no bias in the coupling function of Eq. (1), symmetric
and unweighted interactions and a frequency distribution of zero mean, meaning
that the actual frequencies of the oscillators may need an appropriate shift to satisfy
the condition31. Also, note that one could obtain more accurate rules for the
maximization of r by using the exact result for the phases given by Eq. (14) or by
including higher-order terms beyond the local approximation, although this
increase of accuracy would require to use either spectral (thus global) information
or to go beyond the local variables up to second-neighbors and so on. Furthermore,
we note that a quadratic approximation of Eq. (17) as Δr � ðωi=ki � ωj=kjÞ2 also
induces the explosive phenomena and may simplify the analytical treatment, but its
study is left for further research.

Derivation of the percolation threshold. The percolation threshold is approxi-
mated by the Molloy and Reed criterion39, that predicts the transition for random
network without correlations for the value of p= pc at which:

hk2iðpcÞ ¼ 2hkiðpcÞ: ð18Þ
To compute 〈k〉 and 〈k2〉, we consider a uniform distribution, such that
g(ω)= 1/(2γ) if ω∈ [− γ, γ] (the same analysis could be done for any other fre-
quency distribution) and also take into account that, explicitly, we have the general
correlation ki= c∣ωi∣2/3 where c is a normalization constant which depends on the
network density, p, as well as the distribution of natural frequencies, g(ω). Using
that 〈k〉= p(N− 1), we find that c= p(N− 1)/〈∣ω∣2/3〉, with hjωj2=3i ¼ 3

5 γ
2=3.

Thus we obtain the correlation:

ki �
5
3
pNγ�2=3jωij2=3; ð19Þ

and with it:

hk2i � 25
9
p2N2γ�4=3hjωj4=3i ¼ 25

21
p2N2: ð20Þ

Thus, substituting in Eq. (18) we obtain:

pc �
42
25

� 1
N

¼ 1:68 � prandc ; ð21Þ

which corresponds to Eq. (5) in the Results section.

Collective coordinates ansatz. We use the theory introduced in refs. 34,35 to
predict the phases of the oscillators at any given p-step of the backward process and
also the transition from phase-locking to incoherence. The main idea of the
method is to reduce the dimensionality of the system by considering, as an ansatz,
that the phases of the oscillators in the phase-locking regime are in the form:

θi ¼ qðtÞψi; ð22Þ
where ψi is the exact solution of the linearized dynamics of Eq. (1)38, i.e.
ψi ¼ 1

λ L
yω. By minimizing the error made by Eq. (3) in the full dynamics of Eq. (1)

and after some manipulation35, one ends up with only one differential equation for
the evolution of the q coefficient, thus drastically reducing the dimensionality from
N coupled differential equations to a single one. The resulting equation reads as:

_q ¼ 1þ 1
ψTLψ

∑
i;j
ψi sinðqðψj � ψiÞÞ: ð23Þ

Solving the implicit Eq. (23) for _q ¼ 0 allows estimating the phases of the oscil-
lators in Eq. (1) beyond the linear regime of the system. Here, we use this theory to
predict the phases of the oscillators and the corresponding curve for the order
parameter in the full phase-locking regime of the system. Furthermore, to predict
the appearance of the (backward) critical threshold pbc within this theory, we use an
explosive trick. We assume beforehand that in the explosive regime of our system,
the backward process transits from full phase-locking to complete incoherence.
With this idea in mind, we predict the backward threshold by looking at the last
values (p, λ) for which Eq. (23) has a solution. Additionally, we check that the
solution is linearly stable by numerically computing the eigenvalues of the Jacobian
matrix of the full system in Eq. (1) around the equilibrium solution q ¼ q̂. The
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Jacobian evaluated at the equilibrium point reads as35:

Jij ¼ aij cosðq̂ðψj � ψiÞÞ; i≠ j

J ij ¼�∑
k
aik cosðq̂ðψj � ψiÞÞ; i ¼ j:

ð24Þ

The system is stable if all the eigenvalues of J are negative. Thus, the backward
critical threshold occurs at the last value of pbc at which Eq. (23) admits a solution
that is linearly stable. The explosive trick is particularly useful to simplify the
calculation because, when considering transitions from full phase-locking to
incoherence, we do not need to compute partial synchronized solution involving
clusters of smaller size than the whole network35. In other words, we predict the
loss of stability of the full phase-locking state, which in the explosive regime of our
system corresponds to the desired backward synchronization threshold.

Ott-Antonsen ansatz. In the forward direction, we cannot use the Collective
coordinates approach anymore because our system departs from the incoherent
state where the ansatz Eq. (22) is not valid. Numerical simulations showed that,
usually for M > 1, the incoherent state r ≈ 0 remains stable beyond the backward
critical transition, thus creating a bistable region and a delayed forward transition.
In order to analytically predict the forward critical threshold, we consider the limit
of large N and also large M (toward a deterministic rule). In practice, the following
results turn out to be valid even for quite small values such as N= 200 and M= 5,
but we remark that the theory is derived in the infinite size and deterministic limits
of the model. Our approach is based on the celebrated OA ansatz36 and follows a
very similar development to that shown in ref. 43.

We begin by defining the local order parameter:

Ri ¼ ∑
j
aije

iθj ; ð25Þ

such that Eq. (1) can be written as:

_θi ¼ ωi þ λIm½eiθi Ri� 8 i 2 1; ¼ ;N: ð26Þ
Following43, we consider a large ensemble of systems, described by the joint

probability density ρ(θ, ω, t), with θ= (θi,…, θN) and ω= (ωi,…, ωN). The
evolution of the joint probability has to satisfy the continuity equation36:

∂ρ

∂t
þ ∑

N

i¼1

∂

∂θi
ðρ _θiÞ ¼ 0: ð27Þ

where θi is given by Eq. (26). Multiplying the density function ρ by ∏j≠idωjdθj and
integrating, one obtains the evolution for the marginal oscillator density, ρi(θi, ωi, t)
which reads as43:

∂ρi
∂t

þ ∂

∂θi
ðρi _θiÞ ¼ 0: ð28Þ

Now, the OA ansatz can be applied by expanding ρi in a Fourier series and setting
the coefficients of the expansion as bi;n ¼ αni

36,43. By inserting the Fourier series
with the ansatz in Eq. (28), one ends up with:

_αi þ iαiωi þ
λ

2
α2i Ri � R�

i

� � ¼ 0; 8 i 2 1; ¼ ;N ð29Þ

Ri ¼ ∑
N

j¼1
aij

Z 1

�1
α�j ðωj; tÞgðωÞdωj; 8 i 2 1; ¼ ;N: ð30Þ

where R* and α�j represent the complex conjugate and i the imaginary unit. Now
we invoke the large M assumption. In this deterministic limit, the underlying
network is purely bipartite, split between nodes with positive frequencies and nodes
with negative ones (see the Results section and Fig. 2c, d). Also, in this limit, the
frequencies of the oscillators are completely determined by their degrees. Then, we
can look for solutions αi= αk,±43, reducing the problem to finding solutions for the
coefficients of degree classes in the two groups. The local order parameter in this
setting can be written as43:

Rk;± ¼ k
hki∑k0 k

0pk0α
�
k0 ;± : ð31Þ

The frequencies of the degree classes in the two groups are completely determined
by the percolation rule for a wide range of p, leading to:

ωk;± ¼ ±
k
c

� �3=2

; ð32Þ

where c is a scaling constant given in Eq. (19). After these considerations, the
resulting system can be written as:

_αk;þ ¼ �i k
c

� �3=2
αk;þ

þ λk
2hki ∑

k0
k0pk0αk0 ;� � α2k0 ;þ ∑

k0
k0pk0α

�
k0 ;�

� �

ð33Þ

_αk;� ¼ þ i
k
c

� �3=2

αk;�

þ λk
2hki ∑

k0
k0pk0αk0 ;þ � α2k0 ;� ∑

k0
k0pk0α

�
k;þ

� �
:

ð34Þ

Since we want to evaluate the stability of the incoherent state αk,± = 0, we
linearize the system above and evaluate it around αk,± = δαk,± ≪ 1. After
neglecting smaller terms of order δα2, the dependence on the complex
conjugates vanish and we up with the following system for each degree
class:

δ _αk;þ ¼ �i
k
c

� �3=2

δαk;þ þ λk
2hki∑k0 k

0pk0δαk0 ;� ð35Þ

δ _αk;� ¼ þi
k
c

� �3=2

δαk;� þ λk
2hki∑k0 k

0pk0 δαk0 ;þ: ð36Þ

By defining the variables δx ¼ ∑k0k
0pk0δαk0 ;þ and δy ¼ ∑k0k

0pk0δαk0 ;� , and
summing over degree classes (taking into account the degree distribution),
we can write:

∑
k
kpkδ _αk;þ ¼ �i∑

k

k
c

� �3=2

kpkδαk;þ þ∑
k

λk2pk
2hki δy ð37Þ

∑
k
kpkδ _αk;� ¼ þi∑

k

k
c

� �3=2

kpkδαk;� þ∑
k

λk2pk
2hki δx: ð38Þ

With the approximation ∑kk5/2pkδαk,+ ≈〈k3/2〉δx and ∑kk5/
2pkδαk,− ≈〈k3/2〉δy, the set of equations reduces to a 2-dimensional
variational system for the evolution of δx and δy that reads as:

δ _x ¼ � ihk3=2i
c3=2

δx þ λhk2i
2hki δy ð39Þ

δ _y ¼ λhk2i
2hki δx þ

ihk3=2i
c3=2

δy: ð40Þ

It is straightforward to show that the critical condition for the stability of
the incoherent state is given by:

c3=2λhk2i ¼ 2hk3=2ihki: ð41Þ
In particular, the eigenvalues of the Jacobian matrix change from being both
imaginary to become both real as density increases in the system. In fact,
the fully imaginary spectrum predicts the existence of a center attractor,
indicating a marginal stability of the incoherent state. Therefore, one might
expect stationary oscillations of the order parameter43. Here we do not
observe these oscillations in the forward process. The system is initialized
with isolated units (in the incoherent state) and remains there as the
network evolves in an adiabatic manner. Fortunately, the forward abrupt
transition to phase-locking is well predicted by the critical condition given
by Eq. (41), when the eigenvalues become real (one positive and one
negative) indicating the appearance of an unstable saddle point.
Accordingly, when the condition is achieved in the forward, growth process,
the marginal stability of the incoherent state is lost and the system transits
to phase-locking.

Using that in the deterministic limit we have that ki= c∣ωi∣2/3, and for a general
g(ω) the constant is given by c=〈k〉/〈∣ω∣2/3〉, we obtain a general closed form for
the forward critical threshold (pc, λc) that is given by:

pfc ¼
2hjωj2=3i2hjωji
λNhjωj4=3i : ð42Þ

For the particular case of a uniform distribution g(ω)∈ [−γ, γ] we can easily
compute the expected moments and, after plugging these results in Eq. (42), we end
up with the simple formula:

pfc ¼
21γ
25λN

: ð43Þ

which corresponds to Eq. (6) in the Results section.

Data availability
Numerical data presented in this work are available from request to the authors.

Code availability
Computational and visualization codes to reproduce the results of this work are available
from request to the authors.
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