Neural Systems and Artificial Life Group,
Institute of Psychology,
National Research Council, Rome

Emergence of Functional Modularity in Robots

Raffaele Calabretta, Stefano Nolfi, Domenico Parisi and Giinter P. Wagner

In: R. Pfeifer, B. Blumberg, J.-A. Meyer and S.W. Wilson (eds.), From Animals to Animats 5, pp.
497-504, MIT Press (1998).

Department of Neural Systems and Artificial Life
Institute of Psychology, Italian National Research Council
V.le Marx, 15 00137 Rome - Italy
Phone: +39-06-86090233, Fax: +39-06-824737
E-mail: ﬂ:alabretta@ip.rm.cnr.it, parisi@ip.rm.cnr.it

http://gral.ip.rm.cnr.it{rcalabretta



mailto:lusi@iol.it
http://gral.ip.rm.cnr.it/

Emergence of Functional Modularity in Robots

Raffaele Calabrettal’z, Stefano Nolﬁz, Domenico Parisi’ and Giinter P. Wagner

1

! Department of Ecology and Evolutionary Biology, Yale University
New Haven, CT 06511, U.S.A.
e-mail: raffacle@peaplant.biology.yale.edu

? Department of Neural Systems and Artificial Life
Institute of Psychology, National Research Council
00137 Rome, Italy

Abstract

The origin and structural and functional significance
of modular design in organisms represent an
important issue debated in many different disciplines.
To be eventually successful in clarifying the
evolutionary ~ mechanisms  underpinning  the
emergence of modular design in complex organisms,
one should be able to cover all different levels of
biological hierarchy. Specifically, one should be able
to investigate modularity at the behavioral level - the
level on which natural selection operates - and
understand how this level is related to the genetic
level — the level at which natural selection works
through mutation and recombination. We describe a
simulation of the evolution of a population of robots
that must execute a complex behavioral task to
reproduce. During evolution modular neural
networks, which control the robots’ behavior, emerge
as a result of genetic duplications. Simulation results
show that the stepwise addition of structural units, in
this case genetic and neural 'modules', can lead to a
matching between specific behaviors and their
structural  representation, i.e., to functional
modularity.

1. Introduction

The origin and structural and functional significance of
modular design in organisms represent an important issue
debated in many different disciplines such as evolutionary
and developmental biology (e.g., Wagner, 1996; Raff, 1996;
Wagner, 1995; Fontana and Buss, 1994; Needham, 1993;
Bonner, 1988; Gould, 1977), the neurosciences, and
cognitive science (e.g., Bates, 1994; Karmiloff-Smith, 1992;
Fodor, 1983; Chomsky, 1957).

Many researchers tend to assume that human cognitive
processes are accomplished by means of specialized
modules (see e.g., Moscovitch and Umilta, 1990) and, in
fact, the modularity of mind is one of the most fundamental
assumption of cognitivism (Fodor, 1983). The meaning of
the word «module», however, is rather problematic since the
word itself "is used in markedly different ways by

neuroscientists and behavioral scientists, leading to
considerable  confusion and  misunderstanding in
interdisciplinary discussions" (Bates, 1994). This is just an
example of a more general problem, that is, the existence of
critical differences in the vocabularies and concepts used by
the sciences which study organisms at different levels of
organization: the biological sciences, the neurosciences,
psychology, ecology, and the social sciences. The lack of a
common conceptual apparatus represents a problem in that it
makes more difficult to study the emergence of complex
adaptations such as modularity, whose explanation may
require the simultaneous analysis of phenomena and
processes at many different levels (molecular, genetic,
neural, behavioral, and population level).

In evolutionary biology, the concept of modularity is used
to capture the fact that the bodies of higher organisms
appear to be composed of semi-autonomous units (Raff,
1996; Wagner, 1996; Bonner, 1988). This observation raises
several problems (Wagner, in preparation). First of all, the
problem of identifying these 'natural kinds' (Quine, 1969;
see also Griffiths, 1997; Wagner, 1996; Wagner, 1995), that
is, the problem of 'decomposing' the organism into the
appropriate units of phenotypic adaptation. (Notice that a
similar problem exists in behavior-based robotics, where
one may want to break down the desired complex behavior
into an appropriate set of behavioral modules in order to
design an integrated robot control system; see Nolfi, 1997a;
Nolfi, 1997b; see also below). It has been argued that
modularity is a prerequisite for the adaptation of complex
organisms: modularity would allow the adaptation of
different functions with little or no interference with other
functions (Bonner, 1988). However, there is little
understanding of how modularity originates, works, and
remains incorporated in the genome.

In the field of Artificial Life, some researchers have tried
to exploit modular design for improving the performance of
various artificial systems such as artificial neural networks,
evolutionary algorithms, and robots (see e.g., Nolfi, 1997a;
Cho and Shimohara, 1997; Gruau, 1994). Conversely,
evolutionary biologists are starting to appreciate the insights
that could come from using these simulation models for the
study of complex adaptations (see e.g., Levin et al., 1997,
Wagner and Altenberg, 1996; Frank, 1996; Toquenaga and



Wade, 1996; Wagner, 1995). The cross-fertilization between
Artificial Life and Real Life could take place since Artificial
Life partially shares the theoretical apparatus and
vocabulary of evolutionary biology and, therefore, could
supply it with additional methodological tools.

More specifically, models based on neural networks and
genetic algorithms allow us to reproduce in a computer both
the organisms and the environment in which they live,
behave and reproduce. An organism can be simulated as
having a body with a specific size, external shape, sensory
and motor organs, etc., and an internal structure made up of
a genotype, the nervous system, and other organs. Artificial
neural networks that model organisms can be analyzed at the
genetic level, at the level of the mapping from genotype to
phenotype (development), at the neural and behavioral level,
at the level of the effects of the network's output on the
environment, at the level of the reproductive chances of each
individual (fitness), at the level of populations of individuals
and of entire ecosystems. Examining organisms at various
levels could be crucial for understanding their behavior,
because often an explanation of what happens at one level
can be found at another level (see, for example, Miglino et
al., 1996; Calabretta et al., 1996). As a consequence, one
could hypothesize that the evolution of modularity results
from the interaction among processes at different levels.

To evolve a neural controller for a mobile robot, Nolfi
(1997a) used a modular neural network architecture that
clearly outperformed other architectures in performing a
task of garbage collecting (see below). It was denoted as an
“emergent modular architecture” because it allows the
required behavior to be broken down into sub-components
corresponding to different neural modules as a result of an
evolutionary adaptive process. Interestingly, Nolfi pointed
out that evolved modules were correlated with a 'proximal’'
description of behavior, i.e., a description from the point of
view of the robot's sensory-motor system that accounts for
how the agent itself reacts in different sensory situations,
rather than with a 'distal' description of behavior, i.e. a high
level description in which terms such as 'approach' or 'avoid'
are used to describe, from the observer's point of view, an
entire sequence of sensory-motor steps (Sharkey and
Heemskerk, in press). In other words, differently than in
biology where distal functions are mapped to developmental
modules, in evolved robots there was no correspondence
between distal functional tasks and their structural
representation.

It is important to stress that Nolfi was mainly concerned
with exploiting modular design for synthesizing control
systems for physical robots able to produce complex
behavior. As a consequence, in his simulations the
architecture of neural networks was pre-designed as modular
right from the beginning and it remained fixed throughout
the evolutionary process (hardwired modularity).

To investigate the issue of how modularity can emerge in
nature, we present a modification of Nolfi's model (Nolfi,
1997a) in which gene duplication is also included as part of
the evolutionary process and, therefore, modular neural

Figure 1 The Khepera robot.

networks can evolve starting from a population of non-
modular ones as a result of gene duplication (constructed or,
more specifically, duplication-based modularity). Our
preliminary simulation results show that duplication-based
modular architecture outperforms non-modular architecture,
which represents the starting architecture in our simulations.
Moreover, an interaction between mutation and duplication
rate emerges from our results. Interestingly enough,
duplicated modules, which are identical when duplication
first takes place, begin to differentiate across generations as
a result of genetic mutations and, eventually, a match
between 'distal' modules and their genetic representation
tends to emerge.

2. The model

We ran a set of simulations in which neural networks
(Rumelhart and McClelland, 1986) are evolutionarily
trained to control a mobile robot (see Figure 1) designed to
keep an arena clear by picking up trash objects and releasing
them outside the arena. The robot has to look for 'garbage',
somehow grasp it, and take it out of the arena.

This task can be broken down into several sub-tasks: (a) to
explore the environment, avoiding the walls; (b) to
recognize a target object and to place oneself in a position
such that the object can be grasped; (c) to pick up the target
object; (d) to move toward the walls while avoiding other
target objects; (e) to recognize a wall and to place oneself in
a position with respect to the wall that allows the object to
be dropped out of the arena; (g) to release the object.
Moreover, these sub-tasks can be broken down into smaller
components. It should be noticed that the task chosen is
particularly well suited for studying the role of modularity
because it involves different basic behaviors that may be
implemented in different neural modules. The task requires
a controller able to produce very different motor responses



for similar sensory states. As an example consider the robot
in front of a target object. The robot should avoid or
approach the object as a function of the presence or absence
of a target on the gripper. If there is already a target on the
gripper, the target object should be ignored. If there is no
target on the gripper, the target object should be picked up.
The only difference between the two situations is the state of
one sensor out of 7. A modular neural network that can use
different neural modules in different environmental
situations should have an advantage with respect to an
uniformly connected network in learning to produce very
different motor responses for very similar sensory patterns.

The organism is a miniature mobile robot called Khepera,
developed at E.P.F.L. in Lausanne (Mondada et al., 1994;
see Figure 1). The robot is supported by two wheels that
allow it to move in various directions by regulating the
speed of each wheel. In addition, the robot is provided with
a gripper module with two degrees of freedom. The two
arms of the gripper can move in parallel through any angle
from vertical to horizontal while the gripper can assume
only the open or closed position. The robot is also provided
with eight infrared proximity sensors (six sensors are
positioned on the front of the robot and two on the back) and
an optical barrier sensor on the gripper capable of detecting
the presence of an object between the two arms of the
gripper. The infrared sensors allow the robot to detect
obstacles to a distance of about 4 cm.

The environment is a rectangular arena 60x35 cm
surrounded by walls containing 5 target objects. The walls
are 3 cm in height and target objects are cylindrical boxes
with a diameter of 2.3 cm and a height of 3 cm. The targets
are positioned randomly inside the arena. To speed-up the
evolutionary process a simulator was used (see Nolfi,
1997b).

In this work we compare the results obtained with three
different neural network architectures (see Figure 2). In all
cases the robot has 7 sensor neurons and 4 motor neurons.
The first 6 sensory neurons are used to encode the activation
level of the corresponding 6 frontal sensors of Khepera (the
two back sensors are ignored) and the seventh sensory
neuron is used to encode the light sensor on the gripper. On
the motor side the 4 neurons respectively codify for the
speed of the left and right wheels and for the triggering of
the 'object pick up' and 'object release' procedures.

The first architecture (a) is a simple feedforward network
with 7 input units encoding the state of the 7 sensors and
four output units encoding the state of the four effectors.
The input units are directly connected to the output units
through 28 connection weights (plus 4 biases). This
architecture is not divided into modules.

The second architecture (b) is a modular one and it has
been called emergent modular architecture (Nolfi, 1997a)
because it allows the required behavior to be broken down
into sub-components controlled by different neural modules,
although it does not require the designer to do such a
partition in advance. (Notice that in this paper the emergent
architecture is referred to as hardwired modular

selector
neurons

motors

output -
neurons

OB-sensor

IR-sensors

Figure 2 Architectures (a) and (b) are shown on the left and right
side, respectively. Architecture (a) is used in the nonmodular
population. Architecture (b) is used in the two modular populations
(i.e., in both hardwired and duplication-based modular
populations). However, in the hardwired modular population two
modules compete to gain control of each of the four actuators. In
the duplication-based modular population individuals of the initial
generation have only one module for each motor, that is, they
initially have architecture (a). A second competing module may be
added in individuals of successive generations as a result of the
duplication operator. Another difference is that in the hardwired
modular population competing modules have different random
weights from the beginning, while in the duplication-based
modular population, when a second competing module is
introduced, the two competing modules have identical weights.

architecture). There are two modules for each of the four
outputs (two wheels, the object pick up procedure, and the
object release procedure). In any particular input/output
cycle only one of the two competing modules can control
the corresponding output. Each module includes two output
units: a motor output unit and a selector unit. The motor
output unit determines the speed of the corresponding wheel
or whether or not the two procedures are executed. The
selector unit determines the probability that the module will
control the corresponding output. In other words, which of
the two competing modules determines the output depends
on which of the two competing selector units is more
activated. Both the motor output unit and the selector unit of
each module receives 7 connections (plus one bias) from the
7 sensory neurons.

The third architecture (b) is also modular and is denoted as
duplication-based modular architecture because, in this
case, the modules are not hardwired in the architecture from
the beginning of evolution but they can be added during the
evolutionary process. Each module, as in the case of
hardwired architecture, consists of two output units (one
motor output unit and one selector unit) which receive
connections from the 7 sensors. At the beginning of the
evolutionary process there is only one module for each of
the four outputs, i.e., always the same module controls the
corresponding output. However, during reproduction,
modules may be duplicated (see below). Duplicated
modules, which are exactly the same when duplication takes
place, can differentiate across generations because of genetic



mutations.

A genetic algorithm (Holland, 1992) was used to evolve
the connection weights of our neural networks. Each
connection weight or bias is encoded as a sequence of 8 bits
in the genotype. We begin with 100 randomly generated
genotypes each representing a network with the same
architecture and a different set of random connection
weights. Each individual is allowed to 'live' for 15 epochs,
each epoch consisting of 200 input-output cycles or actions.
At the beginning of each epoch the robot and the target
objects are randomly positioned in the arena. An epoch is
terminated either after 200 actions or after the first object
had been correctly released. At the end of life, the best
individuals are selected for reproduction. The 20 individuals
that have accumulated the highest 'score' during their lives
generate 5 copies each of their neural networks. These
20x5=100 new robots constitute the next generation. The
process is repeated for 1000 generations.

Reproduction consists in generating copies of an
individual's genotype encoding the network’s connection
weights (we are assuming non-sexual reproduction in
haploid populations) with the addition of random changes to
some of the bits of the genotype sequence (genetic
mutations) and, in the case of the duplication-based modular
architecture, the duplication of a random selected neural
module. Individuals were scored for their ability to perform
the complete sequence of correct behaviors, i.e., for their
ability to release objects correctly outside the arena.
However, in order to facilitate the emergence of this ability
individuals were also scored (even if with a much lower
reward) for their ability to pick up targets (see Calabretta et
al., 1998).

In the present preliminary model the maximum number of
duplicated modules allowed in the case of the duplication-
based modular architecture is one for each motor output and
no module-deletion operator was used. As a result, the
hardwired modular architecture, already described in Nolfi
(1997a), is the more complex architecture that can possibly
evolve starting from architecture (a). However, the addition
of competing modules during the course of evolution
(instead than right from its beginning) that are initially
identical to their competing module (instead of being
completely unrelated) may produce qualitatively different
results in the case of the hardwired and duplication-based
modular architecture, respectively.

3. Results and discussion

We present the results of several simulations in which we
compare a simple feedforward neural network, the
hardwired modular architecture, and the duplication-based
modular architecture (see Figure 2). In all simulations a
mutation rate of 1% was used (i.e., 2% of the bits of the
genotype randomly selected were replaced with a new
randomly selected value). For the duplication-based modular
architecture we investigated the performance obtained with
a duplication rate of 0.02%, 0.03% and 0.04% (i.e., 0.02%,

0.03% and 0.04% of the modules were duplicated per
replication). We ran 10 simulations for each of the 3
different architectures described above. Each simulation
started with populations of 100 networks with randomly
assigned connection weights and lasted 1000 generations.

Both populations with modules reach a higher fitness level
than a population with only the basic architecture and no
modules (Calabretta et al., 1998). However, the two
populations with modules do not differ in terms of overall
fitness except that fitness growth is slightly slower in the
population with duplication-based modules (Calabretta et
al., 1998). In order to demonstrate that modularity plays a
critical role, we varied the duplication rate in the population
with duplication-based modules, with the result that both
average and peak performance decreased linearly with a
decreased duplication rate until the advantage of modular
design was lost (Calabretta et al., 1998).

Let us now examine the behavior of a typical evolved
individual with hardwired modularity and a typical evolved
individual with duplication-based modularity.

Nolfi (1997a) pointed out that in hardwired modular
architecture there was no correspondence between evolved
modules and 'distal' description of behavior; rather, module
switching and interaction was correlated with low-level
sensory-motor mapping. He explained this by pointing out
that the neural modules and the selection mechanism are
represented homogeneously and evolve at the same time,
and that, therefore, solutions in which both components are
kept as simple as possible tend to be selected. Because of
gene duplication (see Weiss, 1990; Ohno, 1970), a different
evolutionary dynamic is involved in our model. In fact, if
we look at the behavior of a typical evolved individual of
Nolfi's simulations and a typical evolved individual of our
simulations, an interesting difference emerges.

In the former case, the evolved individual described in
Figure 5 always uses a single module to control the left
wheel, the pick-up procedure, and the release procedure
(LM, PU, and RL) while it uses both neural modules only
for the right wheel (RM). Nolfi (1997a) stressed that "those
two modules competing for the control of the right motor
are both used in all the phases that can be described as distal
sub-behaviors: when the gripper is empty and the robot has
to look for a target (i.e., when sensor LB is off); when the
gripper is carrying a target and the robot has to look for a
wall (i.e., when sensor LB is on); when the robot perceives
something and has to disambiguate between walls and
targets (i.e., when the W/T graph shows the upper or bottom
line); when the robot does not perceive anything (i.e., when
the W/T graph does not show any line); when the robot is
approaching a target (i.e., when sensor LB is off and the
perceived object is a target); when the robot is approaching a
wall (i.e., when sensor LB is on and the perceived object is a
wall); when the robot is avoiding a target (i.e., when sensor
LB is on and the perceived object is a target); when the
robot is avoiding a wall (i.e., when the sensor LB is off and
the perceived object is a wall)." In other words, he did not
find one of the two neural modules competing for the
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Figure 5 A typical evolved robot with a hardwired modular architecture. The top part of the figure represents the behavior of the robot in
its environment. Lines represent walls, empty and full circles represent the original and the final position of the target objects, respectively,
the trace on the terrain represents the trajectory of the robot. The bottom part of the figure represents the type of object currently perceived,
the state of the motor of the two wheels, and the state of the sensors across 500 cycles. The "W/T' graph shows whether the robot is
currently perceiving a wall (top line), a target (bottom line), or nothing (no line). The 'LM', 'RM', 'PU', and 'RL' graphs show the state of the
left and right motors and of the pick-up and release procedures. For each motor, the top portion of the graph shows the activation state
(after the arbitration between component modules has been performed by the selector units) and the bottom part shows which of the two
competing neural modules has control (the thickness of the black line at the bottom indicates whether the first or the second module has
control: thin line = module 1; thick line = module 2). The graphs '10' to 'I5' show the state of the 6 infrared sensors. Finally, the 'LB' graph
shows the state of the light-barrier sensor. The activation state of input and output units is represented by the height with respect to the
baseline. (In the case of output units the activation state of the output units of the module that currently has control is shown). (Figure

redrawn from Nolfi, 1997a).

control of the right motor to be responsible for specific
distal sub-behaviors. On the contrary each sub-behavior was
the result of the contribution of both neural modules (see
Figure 5).

In the case of duplication-based modular architecture, on
the other hand, the evolved individual described in Figure 6
uses both competing neural modules to control the left
motor, the right motor, the pick-up procedure and the release
procedure (LM, RM, PU, and RL). In this individual - a very
successful one (it is able, in fact, to accomplish the correct
sequence of behaviors for all the 5 objects present in the
environment) - neural modules or combinations of neural
modules appear to be responsible specific distal behaviors.
In other words, this evolved individual tends to use different
modules in different environmental situations. More
precisely, both in the case of the left motor and in the case
of the right motor, module switching is significantly
correlated to the presence (i.e., when sensor LB is on) or

absence (i.e., when sensor LB is off) of a target object on the
gripper (see Figure 6). Furthermore, in the case of the pick-
up procedure output unit (PU), module switching takes place
every time the robot has to pick up an object, while in the
case of the release procedure output unit (RL) it happens
when the robot has to pick up and to release the object (see
Figure 6).

4. Conclusions

Our results suggest that the stepwise addition of structural
units, in this case genetic and neural 'modules', can lead to a
matching between distal functional tasks and their structural
representation, i.e., to functional modularity. A comparison
with Nolfi's simulations (Nolfi, 1997a) indicates that such a
match is functionally not necessary (performance level is
similar in the two conditions; Calabretta et al., 1998), but it
results from the stepwise addition of structural units.
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Figure 6 A typical evolved robot with a duplication-based modular architecture (see Figure 5).

A possible explanation of this effect is that the structural
units have already adapted prior to the duplication event and
most likely they have adapted to participate in multiple
functions. After duplication the modules tend to specialize
for one of these functions ultimately leading to a close
match between functional tasks and structural modules.
According to this interpretation modularity is a side-effect
of this mode of evolution rather than dictated by the nature
of the task to which the robots adapt. This is different from
an earlier proposal (Wagner, 1996) in which the selection
regime itself is defining the division of tasks. It is also
different from  Altenberg's constructional selection
mechanism in which a structural unit increases in frequency
if it has fewer pleiotropic effects (Altenberg, 1995).
(Pleiotropy is «the influence of the same genes on different
charactersy, Futuyma 1998, p. 429). In our model the
duplicated units all have pleiotropic effects but they tend to
reduce these effects by functional specialization after
duplication. We conclude that our model suggests a third
possible mode for the origin of modularity, besides
constructional selection (Altenberg, 1995) and selection
against pleiotropic effects (Wagner, 1996): modularity as a
secondary effect of duplication. Functional modules
originally emerge as duplicated modules which
subsequently diverge and specialize for some specific
function.

In the present work we have described some preliminary
results in support of this model of evolution of modularity.

We are currently engaged in further statistical analyses that
should substantiate our hypothesis.
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