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Emergence of geometrical optical nonlinearities in photonic crystal fiber nanowires
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Max Planck Institute for the Science of Light, Günther-Scharowsky Str. 1, Bau 26, 91058 Erlangen, Germany

We demonstrate analytically and numerically that a subwavelength-core dielectric photonic
nanowire embedded in a properly designed photonic crystal fiber cladding shows evidence of a previ-
ously unknown kind of nonlinearity (the magnitude of which is strongly dependent on the waveguide
parameters) which acts on solitons so as to considerably reduce their Raman self-frequency shift. An
explanation of the phenomenon in terms of indirect pulse negative chirping and broadening is given
by using the moment method. Our conclusions are supported by detailed numerical simulations.

Photonic nanowires (PhNs), i.e. dielectric waveguides with a sub-wavelength core diameter, tight mode confinement
and strong waveguide dispersion, have recently attracted a growing interest due to accessibility of new fabrication
techniques for a large variety of materials, which may lead to a number of miniaturized, high-performance photonic
devices [1]. The small effective modal area exhibited by PhNs, which increases considerably the Kerr nonlinear
coefficient, and the degree of controllability of the dispersion characteristics, make PhNs especially suitable for the
investigation of extreme nonlinear phenomena such as supercontinuum generation, as many optical solitons can be
excited by using small pump energies [2].
In recent theoretical work, a novel propagation equation that accurately describes the nonlinear evolution of light

pulses in PhNs was introduced [3], see also Eq. (2) of the present Letter. The fundamental feature found in [3] is
that, thanks to the fact that the correct equation takes into full account of variations in the linear mode profiles of
the waveguide with wavelength, new nonlinear effects arise in PhNs, unknown in previous formulations based on the
generalized nonlinear Schrödinger equation (GNLSE) [4], which all assume fixed transverse field profiles. Most of the
additional terms described in Ref. [3] have been found to have an extremely small magnitude, so that they can be
safely neglected for large core fibers. However, the longitudinal component of the electric field of the fundamental
mode of PhNs becomes progressively more important when decreasing the core diameter or when increasing the
refractive index contrast between core and cladding [3]. This vigorously breaks the rotational symmetry of the mode,
whose transverse profile becomes very sensitive to frequency, thus making the new geometrical nonlinearity - as we
shall call it in the following - extremely important. In fact, for small enough core sizes, such new nonlinear terms may
even enter into strong competition with the Raman effect term for some range of frequencies.
Only the circular geometry for PhNs has been considered in Ref. [3]. Circular strands of high-refractive index

materials in air or in a homogeneous cladding, however, are far from optimal for detecting experimentally the effects
of the novel term, because the maximum of the geometrical nonlinear coefficient is located, as a rule, far away in a
region of strong normal dispersion, where bright solitons cannot exist. In fact, as has been anticipated in Ref. [3], the
new nonlinearity is visible only in presence of solitons, and its effects being nearly invisible in the normal dispersion
regime.
However, one is by no means restricted to the use of a homogeneous cladding around the high-index core. Here we

explore the possibility of introducing the PhN into a silica-based photonic crystal fiber (PCF, [5]) with a triangular
arrangement of the holes [see Fig. 1(a)]. We call such a design a photonic crystal fiber nanowire (PCF-NW). Such a
structure has the additional advantage that relatively long PhNs can be supported by the robust PCF cladding [5, 6].
In this Letter we theoretically demonstrate that, by means of careful choice of parameters in the design of PCF-NWs,
one can move the maximum of the geometrical nonlinearity inside the region of anomalous dispersion. This will make
it much easier to observe the new geometrical nonlinearity experimentally, in that it causes considerable suppression of
the soliton self-frequency shift (SSFS, see Ref. [7]) from the very start of the propagation. Thus, just a judicious choice
of the geometry of the PCF cladding around the nanowire, which affects the dispersive properties of the waveguide
and the way the mode profiles change with wavelength, is sufficient for the emergence of this completely unexplored
optical nonlinearity, a feat that would be extremely difficult if not impossible to achieve with other simpler geometries.
The fiber geometry that we propose in this Letter is shown in Fig. 1(a). It is made of a silica PCF cladding

with a triangular lattice of air holes, with pitch Λ = 1.4 µm and hole radius R = 0.56 µm. The central core, of
radius Rc = 0.5 µm, is made of a high refractive index tellurite glass (T2 composition taken from Ref. [8]), which
possesses an estimated nonlinear coefficient n2 ∼ 4× 10−19 m−1W−1, almost 15 times larger than that of fused silica
[9]. Its Raman gain spectrum h(ω) is shown in Fig. 1(b), and has a large peak centered around 20 THz. In this
waveguide, light confinement is provided by total-internal-reflection at the core-cladding boundary. Air holes in the
rings modify the dispersion in such a way as to match our requirements, as will be explained shortly. Typically, only
one ring of holes is sufficient to obtain the dispersive features described below. Our choice of core material and PCF
parameters has been dictated by two conditions, which cannot easily be simultaneously met. The first requirement is
that there must be a relatively large refractive index contrast between core and cladding, so that the magnitude of the
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FIG. 1: (Color online) (a) Schematics of the proposed PCF nanowire geometry. The central nanowire core is made of tellurite
glass (77TeO2-10Na2O-10ZnO-3PbO composition, T2 glass from Ref. [8]), while the cladding is made of silica with a triangular
lattice of air holes. Parameters are: pitch Λ = 1.4 µm, hole radius R = 0.56 µm, core radius Rc = 0.5 µm. Inset, the mode
profile ||ê(r⊥)|| of the waveguide for λ = 1.55 µm is shown. (b) Profile of the Raman gain spectrum for the T2 composition.
Solid blue line: experimental data taken from Ref. [8]. Dotted red line: fit used in our simulations.

longitudinal component of the electric field becomes appreciable, and in turn that the mode profile changes strongly
with frequency. The second requirement is that the holes should considerably modify the GVD, in such a way that
the maximum of the geometrical nonlinear coefficient is located inside the region of anomalous dispersion. However,
the larger the refractive index contrast, the more the field is localized in the core, which makes the dispersion of the
waveguide progressively more and more like that of a single rod surrounded by homogeneous silica, which has been
proved to be non-optimal in Ref. [3]. A trade-off between the above conditions must be found. We have examined
the dispersion of many high-index glasses for the core material (chalcogenide, bismuth, germanium-doped silica), and
even some nonlinear liquids such as carbon disulfide, and systematically explored hundreds of specific parameters
for the PCF cladding, but the above tellurite-based design seems to be one of the best solutions for our purposes.
Such multi-glass hybrid waveguides can be fabricated by using the pressure-cell approach [10]. Melted tellurite glass
is pressed under large external gas pressure into the holes of silica PCFs. The technique relies on the fact that the
tellurite glass has a significantly lower softening point than silica, leaving the geometry defined by the silica host
unchanged during filling [11]. The problem of surface-induced glass crystallization in tellurite compound glasses has
been solved in recent experiments and will be published elsewhere. Altogether, the pressure-cell technique provides a
potential way to realize the proposed structures.
For each frequency ω, the linear fundamental mode of the waveguide of Fig. 1(a) has a normalized electric field

profile given by êω(r⊥), where r⊥ are the transverse coordinates. The inset in Fig. 1(a) shows a contour plot of the
norm ||ê|| ≡ [ê2x+ê2y+ê2z]

1/2 for the fiber parameters given in the caption, corresponding to our representative PCF-NW
design that we shall use throughout the paper. Due to the invariance of the PCF cladding under the C6v symmetry
group, the waveguide does not exhibit any birefringence, and it has a fundamental mode that is degenerate in the two
orthogonal polarization states. The crucial point of our formalism is that one can describe the full ω-variations of ê
through the Taylor series

êω(r⊥) =
∑

j≥0

1

j!
f
(j)
ω0

(r⊥)

(

∆ω

ω0

)j

(1)

where ∆ω ≡ ω − ω0 is the frequency detuning from an arbitrary reference frequency ω0, and the quantity f
(j)
ω0

≡
[

ωj
0∂

j
êω(r⊥)/∂ω

j
]

ω=ω0

is proportional to the j-th frequency derivative of the mode profile. From now on, letters

jhpv will be used for derivative indices. Following Ref. [3], one can rigorously prove that the equation governing the
nonlinear light propagation of one of the two polarization states of the fundamental mode of the PCF-NW is given by

i∂zQ+ D̂(i∂t)Q+
∑

jhpv

γjhpvĜj(i∂t)φ
hpv = 0. (2)

In Eq. (2), Q(z, t) is the electric field envelope, D̂(i∂t) ≡ β(ω0+i∂t)−β(ω0) is the dispersion operator that encodes all
information on the fiber GVD around ω0 [12], β is the ω-dependent propagation constant of the fundamental mode,

and Ĝj(i∂t) ≡ [1 + (i/ω0)∂t] [(i/ω0)∂t]
j
is an operator that naturally contains the dynamics of the shock term at the

zero-th order of the Taylor expansion (j = 0). The convoluted nonlinear fields used in Eq. (2) are defined as:

φhpv(z, t) ≡

[

(i∂t)
hQ

]

{R⊗ ([(i∂t)
pQ] [(−i∂t)

vQ∗])}

ωh+p+v
0

, (3)
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where symbol ⊗ is used to denote a time-convolution: A ⊗ B ≡
∫ +∞

−∞
A(t − t′)B(t′)dt′=B ⊗ A. In Eq. (3), R(t) ≡

(1− θ)δ(t)+ θh(t) is the nonlinear response function of the core, which is made of a tellurite glass following the design
of Fig. 1(a), and includes the instantaneous Kerr [proportional to the Dirac delta δ(t)] and the non-instantaneous
Raman [proportional to h(t)] responses exhibited by the core material, θ being the relative importance between the
two. In this Letter, from the experimental Raman gain of tellurite glass (solid blue line in Fig. 1(b), taken from Ref.
[8]) we can extract a fit of h(ω) [dotted red line in Fig. 1(b)] that we thus use in the numerical simulations. The
r⊥ dependence of R(t) can be safely neglected, since most of the energy is located in the core material, which is also
much more nonlinear than the surrounding silica cladding. Note that in expression (3), φ000 = Q

∫

R(t− t′)|Q(t′)|2dt′

gives the conventional, zero-th order convolution that is used in the GNLSE [13].

wavelength [ m]m wavelength [ m]m

G
V

D
 [

p
s/

k
m

/n
m

]

g 0
[1

/W
/m

]

(a)

r=
/

g
1

0
0

0
g

0
0

0
0

(b)

g
1

[1
/W

/m
]

FIG. 2: (Color online) Linear and nonlinear data for the PCF-NW design of Fig. 1(a). (a) Blue solid and red dashed lines
indicate respectively γ0 and γ1 versus wavelength. (b) Blue dots indicate the GVD of the waveguide, with zeros-GVD points
located at λ ≃ 0.84 µm and λ ≃ 2.4 µm. Red solid line indicates parameter r = γ1000/γ0000, that appears in Eq. (6).

The last ingredient in Eq. (2) contains the generalized nonlinear coefficients γjhpv, defined as

γjhpv(ω0) ≡
ω0

16c

∫

dr⊥χ
(3)
xxxx(r⊥)

{

[f
∗(j)
ω0

· f
(h)
ω0

][f
(p)
ω0

· f
∗(v)
ω0

] + [f
∗(j)
ω0

· f
(p)
ω0

][f
(h)
ω0

· f
∗(v)
ω0

] + [f
∗(j)
ω0

· f
∗(v)
ω0

][f
(h)
ω0

· f
(p)
ω0

]
}

j!h!p!v!
, (4)

where χ
(3)
xxxx(r⊥) is the third-order susceptibility, which is a function of the transverse coordinates in the waveguide of

Fig. 1(a). Definition (4) is a generalization of the nonlinear coefficient commonly used in fiber optics [12], and takes
into account the full vector nature of the field profile as well as its frequency variations. Such variations are at the
very core of the new geometrical nonlinearities described here, since the Taylor series of Eq. (1) implies the existence
of an infinite number of additional nonlinear terms that depend on progressively higher-order time derivatives of the
envelope. The quantities γjhpv satisfy general symmetry relations that drastically reduce the number of independent
nonlinear coefficients for each order of the derivative [3, 14]: γjhpv = γvhpj = γjphv = γvphj , γjhhh = γhjhh,
γjhhj = γhjjh. In Eqs. (1) and (3), each field derivative is associated with a factor ω−1

0 , which ensures convergence.

Thus the physically meaningful nonlinear coefficients can be defined as γ̃jhpv ≡ γjhpv(ω0t0)
−(j+h+p+v), where t0 is

the input pulse duration.
From the expression in Eq. (4) one can define the zero-th order nonlinear coefficient of the waveguide γ0 ≡ γ0000 =

γ̃0000, corresponding to the conventional definition used in nonlinear fiber optics [12]. To first order in the Taylor
expansion in Eq. (2) one can define the coefficient γ1 ≡ γ̃1000 = γ̃0100 = γ̃0010 = γ̃0001 = γ1000/(ω0t0), associated
with nonlinear convoluted fields φhpv that contain only one time derivative of the envelope. Fig. 2(a) shows plots of
γ0 and γ1 versus reference wavelength for the fiber design of Fig. 1(a). The fiber GVD is shown in Fig. 2(b) with
blue dots. It is clear from this figure the well-known fact that γ0 decreases monotonically for longer wavelengths [15].
However, it is interesting to note that the geometrical nonlinear coefficient γ1 initially increases, but then reaches a
maximum near the infrared zero-GVD point of the fiber (located at λ ≃ 2.4 µm), and then tends to zero for even
longer wavelengths. The close vicinity of max(γ1) to the anomalous GVD of the fiber is an atypical feature, that
we have found only in a few very specific designs, including the one presented in Fig. 1(a). The ‘normal’ situation,
which is also true for circular PhNs surrounded by homogeneous media (such as, for instance, tapered fibers), is that
max(γ1) is located well within the region of normal GVD [3].
We now show that the onset of geometrical nonlinearities leads to a strong suppression of the SSFS. In order to do

this, we compare two direct numerical simulations, the first one obtained by truncating the Taylor expansion of Eq.
(2) to the zero-th order (1 nonlinear convolution, corresponding to the conventional GNLSE) [Fig. 3(a)], the second
one obtained by truncating the same sum to the second order (15 nonlinear convolutions in total), which thus takes
into account the dominant terms of the geometrical nonlinearities [Fig. 3(b)]. It is easily seen by comparing Fig. 3(a)
with Fig. 3(b) that the net effect of the additional nonlinearities is to reduce considerably the SSFS in the fiber. Thus
a unique interplay between the geometrical nonlinearities and the SSFS takes place in properly designed PCF-NWs.
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FIG. 3: (Color online) (a) Evolution of a t0 = 150 fs pulse in the waveguide of Fig. 1(a) according to Eq. (2) truncated at
the 0-th order, i.e. by using the conventional GNLSE. Second order dispersion length is LD2 ≃ 6 cm. (b) Same as (a) but
truncating Eq. (2) at the 2-nd order. The suppression of SSFS in the latter case is evident. Vertical white lines indicate the
two zero-GVD wavlengths. (c,d,e) z-evolution of pulse duration τ [t0 = τ (0) = 30 fs], chirp C and soliton frequency shift Ω
according to Eqs. (5-7), for a N = 7 soliton, pump wavelength λ = 1.4 µm. Blue solid (red dashed) line refer to the case r = 0
(r = 0.2) in Eqs. (5-7).

It is possible to qualitatively understand the reason of the above SSFS suppression mechanism by using the so-called
moment method [12, 16]. One assumes that after formation, each solitonic pulse does not change its functional shape,

given by Q(t) = [Pt0/τ ]
1/2sech ([t− T ]/τ) e−iΩ(t−T )−iC(t−T )2/(2τ2), where T is the temporal delay of the solitonic

pulse, Ω is its frequency detuning from the reference frequency ω0, τ is the soliton pulse width, C is the pulse
chirp, β2 = (∂2β/∂ω)ω=ω0

< 0 is the second-order (anomalous) dispersion coefficient, P ≡ N2P0 is the peak power,

P0 ≡ |β2|(t
2
0γ0)

−1 is the fundamental (N = 1) soliton power, N is the soliton order and TR ≡
∫ +∞

−∞
R(t)dt is the first

moment of the Raman response. One can prove that the z-evolution of τ , C and Ω is then given by the following
closed set of equations:

dτ

dz
= β2

C

τ
, (5)

dC

dz
=

4|β2|N
2

π2t0τ

[(

1−
t0
τ

)

+
Ω

ω0
(1 + 4r)

]

(6)

dΩ

dz
= −

8TRN
2|β2|

15t0

1

τ3
, (7)

with the initial conditions τ(0) = t0, C(0) = Ω(0) = 0. Higher-order terms in the dispersion and small terms
proportional to C2 have also been neglected for sake of clarity. Geometrical nonlinearities are parameterized by the
coefficient r ≡ γ1000/γ0000, the only one that appears in Eq. (6), shown in Fig. 2(b). Note that the condition r > 1/4
is necessary for the new nonlinearity to dominate the shock term in Eq. (6). Equations (5-7) are written under the
simplifying assumption that the GVD does not change during the soliton evolution, and that the pulse duration is
longer than 100 fs, so that one can use a well-known approximate expression for the Raman term [12]. The term on
the right-hand side of Eq. (7), proportional to TR, is responsible for the constant SSFS along the fiber [7, 16]. The
rate of this shift is very sensitive to the actual pulse width, since it is determined by τ−3, and it is always directed
towards negative detunings, i.e. towards the red part of the spectrum. However, due to the action of the right-hand
side of Eq. (6), the soliton acquires a small chirp even if its initial chirp vanishes. The slope of this chirp is initially
negative, due to the initial condition τ(0) = t0, which makes the term proportional to Ω/ω0 dominant. Thus C < 0
in the initial stage of propagation, which in turn leads to a pulse broadening due to Eq. (5), for which β2C > 0.
Finally, such broadening leads to a sharp suppression of the SSFS given by Eq. (7), due to the τ−3 dependence of
its right-hand side. This mechanism qualitatively explains the overall suppression of the SSFS due to the geometrical
nonlinearity on soliton propagation observed in the direct numerical simulations of Eq. (2). The long term behavior
of the propagation can only be understood by numerically solving Eqs. (5-7). In Figs. 3(c-e) we show the z-evolution
of the quantities τ , C and Ω for parameters given in the caption. C undergoes several deep oscillations, and its sign
is mostly negative throughout the whole propagation [Fig. 3(d)]. The pulse duration τ undergoes similar oscillations
(with a smaller magnitude), but overall it constantly grows [Fig. 3(c)]. Ω, however, is not too sensitive to such
oscillations, due to the fact that its derivative never changes sign in Eq. (7) [Fig. 3(e)].
In conclusion, we have shown the emergence of a new type of nonlinearity in tellurite PhN embedded in a PCF

cladding, which strongly depends on the geometrical parameters of the PCF design and the specific dispersion of
the core material. Apart from its value as a new fundamental entity in nonlinear fiber optics, the existence of such
nonlinearity shows that there is still much unexpected physics to unveil in complex PCF geometries.
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