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Abstract. This article deals with the emergence of a specific mating preference
pattern called homogamy in a population. Individuals are characterized by their
genotype at two haploid loci, and the population dynamics is modelled by a non-
linear birth-and-death process. The first locus codes for a phenotype, while the
second locus codes for homogamy defined with respect to the first locus: two indi-
viduals are more (resp. less) likely to reproduce with each other if they carry the
same (resp. a different) trait at the first locus. Initial resident individuals do not
feature homogamy, and we are interested in the probability and time of invasion
of a mutant presenting this characteristic under a large population assumption.
To this aim, we study the trajectory of the birth-and-death process during three
phases: growth of the mutant, coexistence of the two types, and extinction of the
resident. We couple the birth-and-death process with simpler processes, like mul-
tidimensional branching processes or dynamical systems, and study the latter ones
in order to control the trajectory and duration of each phase.

1. Introduction and motivation

Assortative mating is a mating pattern in which individuals with similar phe-
notypes reproduce more frequently than expected under uniform random mating.
Such a reproductive behaviour is widespread in natural populations and has an im-
portant role in the shape of their evolution (see for instance McLain and Boromisa,
1987; Herrero, 2003; Savolainen et al., 2006 or the review Jiang et al., 2013 on
assortative mating in animals). In particular assortative mating is expected to be
a driving force for speciation, which is the process by which several species arise
from a single one (Gregorius, 1992). Here we ask the question of assortative mating
emergence in a population: if one mutant starts mating preferentially with individ-
uals of the same type, while the other individuals still choose their mate uniformly
at random, can this mutant invade the population? A key feature to answer this
question is how the assortative mating mutation affects the total reproduction rate
of individuals. The existence of a preference for a given phenotype is often associ-
ated with a decay of reproductive success when mating with other phenotypes. As
a consequence, if the proportion of preferred individuals is low in the population,
the assortative mating mutation may be detrimental because it decreases the total
reproduction success. Consequently, we expect that an assortative mating mutant
will be able to invade only if its choosiness is compensated by an increased number
of potential mates or if the advantage given by the preference is high enough.

In this work we aim at quantifying the conditions on the trade-off between ad-
vantage and cost for assortative mating and on the phenotype composition of the
existing population needed for the mutation to invade the population. In order
to reach this goal, we build a stochastic individual-based population model with
varying size, which explores how the relationship between increase in the number
of mates and mating bias towards individuals of the same type affects the long time
number of individuals having mating preferences in the population.

The class of stochastic individual-based models with competition and varying
population size we are extending have been introduced in the 90’s in Bolker and
Pacala (1997); Dieckmann and Law (1996) and made rigorous in a probabilistic
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setting in the seminal paper Fournier and Méléard (2004). Initially restricted to
asexual populations, such models have evolved to incorporate the case of sexual
reproduction, in both haploid (Smadi, 2015; Leman, 2018) and diploid (Collet et al.,
2013; Coron, 2016; Neukirch and Bovier, 2017; Smadi et al., 2018) populations.
Taking into account varying population sizes and stochasticity is necessary if we
aim at better understanding phenomena involving small populations like invasion of
a mutant population (Champagnat, 2006) or population extinction time. Assuming
that individuals initially have no preference and choose their mate uniformly at
random, we suppose that a mutation arises in the population: individuals carrying
the mutation (denoted P ) have a higher (resp. smaller) reproductive success when
mating with individuals of the same (resp. different) phenotype than individuals
without the mutation. We study under which conditions on the parameters (birth
and death rates, competition, mutational effects, initial population state, ...) the
mutation P has a positive probability to invade the population, and how to identify
this probability. We also characterize the time needed for the mutation to get fixed
in the population when it happens. Finally, we provide the invasion dynamics as
well as the final population state, when the mutation gets fixed.

In order to obtain our results, we study the population process at two different
scales. When one sub-population is of small size the stochasticity of its size has a
major effect on the population long time behaviour, and we study its dynamics on
N := {0, 1, 2, ...}. This is for example the case of the mutant population when it
arises. When on the contrary all sub-populations sizes are large, we approximate
the stochastic process by a mean field limit which is a dynamical system.

Note that the study of the population process is more involved than in the previ-
ous references on similar questions (see for instance Champagnat, 2006; Champag-
nat and Méléard, 2011; Billiard and Smadi, 2017) because the initial state of the
population is not an hyperbolic equilibrium, since alleles A and a are initially neu-
tral. As a consequence, the fluctuations around the initial state may be substantial
and are strongly influenced by the presence of mutants, even in a small number. We
thus cannot use the classical large deviation theory (Dupuis and Ellis, 1997), and
we need to study the dynamics of the types altogether. Moreover, again unlike in
Champagnat (2006); Champagnat and Méléard (2011); Billiard and Smadi (2017)
but similarly as in Coron et al. (2018), the dynamical system arising as the limit of
the rescaled population after the invasion phase admits many (stable and unstable)
fixed points and we need to identify precisely the four dimensional zone reached by
the rescaled population process after the invasion phase in order to determine the
convergence point of the dynamical system.

2. Model and main results

We consider a population of individuals that reproduce sexually and compete
with each other for a common resource. Individuals are haploid and are char-
acterized by their genotype at two loci located on different chromosomes. Locus
1 presents two alleles, denoted by A and a, and codes for phenotypes. Locus 2
presents two alleles denoted by P and p, and codes for assortative mating, which
is defined relatively to the first locus (similar models were introduced in Biology,
see for example Gregorius, 1992). More precisely, we assume that all individuals
try to reproduce at the same rate. To this aim, they choose a mate, uniformly at
random among the other individuals of the population. Next, individuals carrying
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allele p reproduce indifferently with their chosen partner, while individuals carry-
ing allele P reproduce with a higher probability with individuals carrying the same
allele at locus 1. Note that reproduction is not completely symmetric: only the
genotype of the individual initiating the reproduction determines the presence or
not of assortative mating.

The genotype of each individual belongs to the set G := {AP,Ap, aP, ap} and
the state of the population is characterized at each time t by a vector in N4 giving
the respective numbers of individuals carrying each of these four genotypes. The
dynamics of this population is modeled by a multi-type birth-and-death process

(NK(t), t ≥ 0) := (NK
AP (t), NK

Ap(t), N
K
aP (t), NK

ap(t), t ≥ 0)

with values in N4, integrating competition, Mendelian reproduction and assortative
mating. More precisely, when the population is in state n = (nAP , nAp, naP , nap) ∈
N4 with size n = nAP + nAp + naP + nap, then the rate at which the population
looses an individual with genotype i ∈ G, is equal to

di(n) = ni

(
d+

c

K
n
)
. (2.1)

The parameters d ∈ R+, c > 0 and K > 0 respectively model the natural and
the competition death rates of individuals and a scaling parameter of the total
population size. This parameter quantifies the environment’s carrying capacity,
which is a measure of the maximal population size that the environment can sustain
for a long time. In the sequel we will be interested in the behaviour of the system
for large but finite K.

When the population is in state n, the rate bi(n) at which an individual with
genotype i ∈ G is born, is defined by

bAP (n) = b
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1
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(2.2)
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bap(n) = b

[
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1
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(
β1nap
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2
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(
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nAp

4
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+
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,

where
∆aP := naPnAp − nAPnap.

The parameter b(1 + β1) with b > 0 and β1 ≥ 0 is the rate at which any individual
(called first parent) reproduces, the second parent being chosen uniformly in the
population. Each reproduction leads to the birth of a new individual with proba-
bility 1/(1 + β1) when the first parent carries allele p, with probability 1 if the first
parent carries allele P and both parents carry the same allele at locus 1, and with
probability (1− β2)/(1 + β1) if the first parent carries allele P and the two parents
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carry different alleles at locus 1. The parameters β1 and β2 respectively quantify
benefits and penalties for homogamous individuals. Table B.1 in Appendix B sum-
marizes the different rates at which a pair of parents with given genotypes gives
birth to an offspring with a given genotype. This explains how the birth rates (2.2)
are obtained.

Throughout the paper, we will make the following assumptions on the parame-
ters:

(1) b > d
(2) β1 ≥ 0
(3) 0 ≤ β2 ≤ 1

The first assumption ensures that a population of individuals mating uniformly
at random is not doomed to a rapid extinction because of a natural death rate
larger than the birth rate under uniform random mating. The second (resp. third)
assumption means that choosy individuals have a higher (resp. smaller) probability
to give birth when mating with an individual with the same (resp. different) trait
(A or a).

We assume that at time 0, all individuals mate uniformly at random (no sexual
preference, all individuals carry allele p), and that the population size is close to
its long time equilibrium, (b − d)K/c (see page 475 for details). A mutant (or a
migrant) appears in the population, with genotype αP , where α ∈ A := {A, a}. The
goal of our main theorem (Theorem 2.2) is to study a step in Darwinian evolution,
that consists in the progressive invasion of the new allele P and loss of initial allele
p in the population. The proof of this theorem relies on the study of three phases
in the population dynamics trajectories (mutant survival or extinction, mean-field
phase, and resident allele extinction) that are respectively defined and studied in
Subsections 3.1, 3.2, 3.3. The statement of Theorem 2.2 requires the introduction
of several quantities that we define now.

Our first goal is to determine conditions under which the mutant population
has a positive probability to survive and invade the resident population. In order
to answer this question, we will compare the mutant population with a branching
process during the first times of the invasion. This comparison follows from the
following observation that will be proved in Proposition 3.1: as long as the mutant
population size is negligible with respect to the carrying capacity K, the dynamics
of the resident population will not be affected by the presence of the mutants and
will stay close to its initial state. In other words, the size and proportions of the
resident population will remain almost constant and the dynamics of the mutant
population will be close to the dynamics of the process N̄ = (N̄A, N̄a), which is a
bi-type branching process with the following transition rates:

(N̄A, N̄a)→ (N̄A + 1, N̄a) at rate β̄AAN̄A + β̄aAN̄a

(N̄A, N̄a)→ (N̄A, N̄a + 1) at rate β̄AaN̄A + β̄aaN̄a

(N̄A, N̄a)→ (N̄A − 1, N̄a) at rate bN̄A

(N̄A, N̄a)→ (N̄A, N̄a − 1) at rate bN̄a,

(2.3)

where for α ∈ A, ᾱ ∈ A \ {α},

β̄αα :=
b

2

(
1 + (β1 + 1)ρα −

β2

2
ρᾱ

)
, β̄αᾱ :=

b

2

(
1− β2

2

)
ρᾱ, (2.4)
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and

ρA := lim
K→∞

NK
Ap(0)

NK
p (0)

and ρa := 1− ρA = lim
K→∞

NK
ap(0)

NK
p (0)

(2.5)

are the initial proportions in the resident population. The rates of this branching
process have been obtained by considering the dynamics of (NK

AP , N
K
aP ) described

by (2.1) and (2.2) when (NK
Ap, N

K
ap) = (KρA

b−d
c ,K(1− ρA) b−dc ), NK = K b−d

c and
the second order terms in NK

AP and NK
aP are neglected. We denote the extinction

probabilities of the process N̄ by

qα := P(∃t <∞, N̄(t) = 0|N̄(0) = eα), (2.6)

α ∈ A, eA = (1, 0) and ea = (0, 1), meaning that the process starts with only one
individual of type A or a. Classical results of branching process theory (see Athreya
and Ney, 1972) ensure that these extinction probabilities correspond to the smallest
solution to the system of equations

uA(sA, sa) := b(1− sA) + β̄AA(s2
A − sA) + β̄Aa(sAsa − sA) = 0 (2.7)

ua(sA, sa) := b(1− sa) + β̄aa(s2
a − sa) + β̄aA(sAsa − sa) = 0.

Moreover, the branching process N̄ is supercritical (i.e. qA and qa are not equal to
one) if and only if its mean matrix

J :=

(
β̄AA − b β̄Aa
β̄aA β̄aa − b

)
(2.8)

has a positive eigenvalue, that is to say if and only if

β1 > β2 or ρA(1− ρA) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)
(2.9)

(see the proof of Proposition 3.6). We denote by λ the maximal eigenvalue of (2.8),
which is thus positive when (2.9) holds and which will be of interest to quantify
the time before invasion. Notice that J can be written as b times a matrix only
depending on (ρA, β1, β2). As a consequence, λ can be written λ = bλ̃(ρA, β1, β2).
We will use this notation in Theorem 2.2 to make appear the dependence on the
parameters, and use λ elsewhere for the sake of readability.

If the mutant population invades and its size reaches order K with K large, the
population dynamics enters a second phase during which it is well approximated (see
Proposition 2.1 for a rigorous statement) by a mean field process. More precisely,
if we define the rescaled process

(ZK(t), t ≥ 0) :=

(
NK
AP (t)

K
,
NK
Ap(t)

K
,
NK
aP (t)

K
,
NK
ap(t)

K
, t ≥ 0

)
,

then it will be close to the solution of the dynamical system

żi = bi(z)− (d+ cz)zi, i ∈ G, (2.10)

where z = zAP +zAp+zaP +zap is the total size of the population and the functions
(bi, i ∈ G) have been defined in Equation (2.2). This dynamical system has a unique
solution starting from any point of R4

+, as the vector field is locally Lipschitz, and
the solutions do not explode in finite time (Chicone, 2006). If we denote by

(z(z0)(t), t ≥ 0) = (zAP (t), zAp(t), zaP (t), zap(t), t ≥ 0)
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this unique solution starting from z(0) = z0 ∈ R4
+, we have the following result,

which derives from Theorem 2.1 p 456 in (Ethier and Kurtz, 1986).

Lemma 2.1. Let T ∈ R∗+. Assume that the sequence (ZK(0),K ≥ 1) converges in
probability to some deterministic vector z0 = (zAP (0), zAp(0), zaP (0), zap(0)) ∈ R4

+

when K goes to infinity. Then

lim
K→∞

sup
s≤T
||ZK(s)− z(z0)(s)||∞ = 0 in probability,

where || · ||∞ denotes the L∞-Norm in R4.

Notice that when there are only individuals of type p in the population (no sexual
preferences), the dynamical system (2.10) is{

żAp = zAp(b− d− c(zAp + zap))

żap = zap(b− d− c(zAp + zap)).

This system admits an infinity of equilibria:
• (zAp, zap) = (0, 0), which is unstable
• (zAp, zap) = (ρ(b − d)/c, (1 − ρ)(b − d)/c) for all ρ ∈ [0, 1], which are non

hyperbolic.
However, if we consider the equation giving the dynamics of the total population
size z = zAp + zap, we get

ż = z(b− d− cz).
Its solution, with a positive initial condition, converges to its unique stable equilib-
rium, (b− d)/c. That is why we will assume that the initial population size, before
the arrival of the mutant, is (b− d)K/c.

A fine study of the dynamics of the solutions to (2.10) with our particular initial
conditions, that is to say few individuals mating assortatively at the beginning and
a majority of A (or a) in both resident and mutant populations (see Section 3.2.2),
will allow us to show that the dynamical system converges to an equilibrium where
some of the variables zi, i ∈ G are equal to 0. When the population size of these
i becomes too small (of order smaller than K before rescaling), the mean fields
approximation stops being a good approximation, and we will again compare the
dynamics of the small population sizes with these of branching processes (now
subcritical). The birth and death rates of these branching processes will provide
the time to extinction of these small populations (see Section 3.3).

Combining all these steps, we are able to describe the invasion/extinction dy-
namics of the mutant population, which is the subject of the main result of this
paper, Theorem 2.2. Before stating it, we need to introduce some last notations: a
set of interest for the rescaled process ZK , for any µ > 0

Sµ :=

[
b(1 + β1)− d

c
− µ, b(1 + β1)− d

c
+ µ

]
× {0} × {0} × {0}, (2.11)

a stopping time describing the time at which ZK reaches this set,

TSµ := inf{t ≥ 0,ZK(t) ∈ Sµ}. (2.12)

as well as a stopping time which gives the first time when the rescaled P -mutant
population size reaches any threshold (from below or above): for any ε ≥ 0,

TPε := inf
{
t > 0, NK

P (t) = bεKc
}
, (2.13)
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where bxc is the integer part of x. Note that these stopping times depend on the
scaling parameter K. However, to avoid cumbersome notations, we drop the K
dependency.

Theorem 2.2. Assume that λ 6= 0,(
ZKAp(0), ZKap(0)

)
→

K→∞

(
ρA
b− d
c

, (1− ρA)
b− d
c

)
in probability with ρA > 1/2 and that for some α ∈ A(

NK
αP (0), NK

ᾱP (0)
)

= (1, 0).

Then there exists a Bernoulli random variable B with parameter 1 − qα such that
for any 0 < µ < (b(1 + β1)− d)/c:

lim
K→∞

(
TSµ ∧ TP0

lnK
,1{TSµ<TP0 }

)
= B ×

(
1

bλ̃(ρA, β1, β2)
+

2

bβ1
, 1

)
, (2.14)

where the convergence holds in probability.
Moreover,

1{TP0 <TSµ}

∣∣∣∣∣∣∣∣NK(TP0 )

K
− (0, ρA, 0, 1− ρA)

b− d
c

∣∣∣∣∣∣∣∣
1

−→
K→∞

0 in probability,

(2.15)
where ‖ · ‖1 stands for the L1−norm.

Notice that if condition (2.9) does not hold, qα = 1, and the convergence in (2.14)
is an almost sure convergence to (0, 0) meaning that the mutant population dies
out in a time smaller than lnK. In this case, the allelic proportions in the resident
population do not vary. Condition (2.9) gives two possible sufficient conditions for
the mutant population to invade with positive probability. The first one imposes
that the trade-off between the advantage for homogamous reproduction (β1) and
the loss for heterogamous reproduction (β2) has to be favourable enough. The
second condition requires a low level of initial allelic diversity at locus 1 (alleles
A and a). In particular, even if the advantage for homogamy is very low, very
asymmetrical initial conditions (ρA close to 0 or 1) will ensure the invasion of the
mutation with positive probability. As expected, these conditions are the same as
the conditions for the approximating branching process N̄ defined on page 473 to
be supercritical. In fact, as we will see later in the proof, the random variable B
will be the indicator of survival of a version of N̄ coupled with the mutant process.

Let us emphasize that our result ensures that when the mutant population in-
vades (whatever allele a or A the first mutant carries), then the final population is
monomorphic, and all individuals carry the allele a or A which was in the majority
in the resident p−population. Only the mutant invasion probability depends on the
allele carried by the first P individual.

We were not able to obtain an explicit formula in general for the extinction
probability qα of the assortative mating mutation, solutions of (2.7). However, in
the particular case when there are only A or a-individuals in the population before
the arrival of the mutant, we can derive the invasion probability (see the proof in
Section A.2).
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Proposition 2.3. Assume that there are only A individuals before the arrival of
the mutant (ρA = 1). In this case,

qA =
2

2 + β1

and

qa =
1

2− β2

6− β1β2 + 4β1 − β2

2 + β1
−

√(
6− β1β2 + 4β1 − β2

2 + β1

)2

− 4(2− β2)

 .

Results obtained with the help of the software Mathematica show a complex
dependency with respect to parameters. We performed numerical simulations of
the extinction probabilities (qA, qa) using Newton approximation scheme starting
from (0, 0). We computed the values of qA as a function of ρA for different values
of β1 and β2. Using the symmetry of our model, we have that qa(ρA) = qA(1−ρA).
We observe on Figure 2.1 that qA is a continuous function of ρA but that it is not
differentiable near criticality.
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Figure 2.1. Values of qA as a function of ρA for different values
of β1 and β2. On the left, β2 is fixed to 0.7 and β1 varies. On the
right β1 is fixed to 0.2 and β2 varies. In both cases b = 1.

Remark 2.4. We assumed that the initial population state is close to the equilibrium
state of the population when all individuals mate uniformly at random, because any
neighbourhood of such an equilibrium is reached within a finite time as soon as the
initial population size is of order K. We thus could relax this assumption and only
assume that the p-population size is of order K and NK

Ap(0) > NK
ap(0). This

would however require more complex notations.

The rest of the paper is devoted to the proof of Theorem 2.2. Notice that for
the sake of readability, we will not indicate anymore the dependency of the rescaled
process ZK on K and will instead write Z.

3. Proof of Theorem 2.2

3.1. Probability and time of the mutant invasion. The first step of the proof of
Theorem 2.2 consists in studying the population dynamics when a mutant of type
P appears in a well-established population of types ap and Ap. We would like to
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know under which conditions on the parameters the mutant population may invade
the resident population and what is the probability that the invasion happens.

We will show in particular that when the mutant appears and as long as the
mutant population size is negligible with respect to the carrying capacity K, its
dynamics is close to the dynamics of the process N̄, which has been introduced in
Section 1. Next, as long as the P -population size is small compared with K, that is,
as long as its dynamics is close to the one of N̄, we prove that the p-population size
and the proportion of A-individuals in the p-population will not vary considerably
from their initial values. This part of the proof is more technical in our setting than
in the previous references on similar questions (see for instance Champagnat, 2006;
Champagnat and Méléard, 2011; Billiard and Smadi, 2017) since the equilibria of
the resident population are non hyperbolic.

When there is no confusion, we will drop theK dependency to avoid cumbersome
notations. For example, we drop the K notation in the population sizes NK and
in all stopping times.

In order to state rigorously these results, let us recall definition (2.13) and intro-
duce two more stopping times. The first one gives the first time when the genetic
proportions in the p-population deviate considerably from their starting values: for
any ε > 0,

Uε := inf

{
t ≥ 0,

∣∣∣∣NAp(t)Np(t)
− NAp(0)

Np(0)

∣∣∣∣ > ε

}
. (3.1)

The second one concerns the total p-population size: for any ε > 0,

Rε := inf

{
t ≥ 0,

∣∣∣∣Np(t)K
− b− d

c

∣∣∣∣ > ε

}
. (3.2)

We recall that qα is the extinction probability of the process N̄ starting from eα
and that λ is the principal eigenvalue of the matrix J defined in (2.8), which can
be rewritten

J =
b

2

ρAβ1 − (1− ρA)
(
β2

2 + 1
)

(1− ρA)
(

1− β2

2

)
ρA

(
1− β2

2

)
(1− ρA)β1 − ρA

(
β2

2 + 1
) . (3.3)

The main result along the route of proving Theorem 2.2 can now be stated. It
ensures that the probability that a mutant P generates a P -population whose size
reaches the order K is close to 1 − qα (which is the survival probability of the
process N̄ starting from an α-individual and has been defined in (2.6)), whereas its
probability of extinction is close to qα. Moreover, the invasion or extinction of the
mutant population occurs before the resident population size deviates substantially
from its equilibrium, and the time of invasion is approximately log(K)/λ.

Proposition 3.1. Let α be in A and assume that the initial condition satisfies

NP (0) = NαP (0) = 1, lim
K→∞

Np(0)

K
=
b− d
c

and lim
K→∞

NAp(0)

Np(0)
= ρA,

and moreover that

λ 6= 0, (3.4)
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where λ is the principal eigenvalue of matrix (2.8). There exist a function η going
to 0 at 0 and a positive constant A0 such that for any ξ ∈ {1/2, 1},

lim sup
K→∞

∣∣∣∣P(TPεξ < TP0 ∧RA0ε ∧ Uε1/6 ,
∣∣∣∣ TPεξlnK

− 1

λ

∣∣∣∣ ≤ η(ε)
∣∣∣NP (0) = eα

)
− (1− qα)

∣∣∣∣ = oε(1),

and

lim sup
K→∞

∣∣P (TP0 < TPεξ ∧RA0ε ∧ Uε1/6
∣∣NP (0) = eα

)
− qα

∣∣ = oε(1), (3.5)

where by convention, oε(1) goes to 0 when ε goes to 0.

Remark 3.2. This proposition accounts for two opposite behaviours of the mutant
process. Indeed Assumption (3.4) ensures that either the process N̄ is supercritical
(λ > 0 under condition (2.9)) and qα ∈ (0, 1), or the process N̄ is subcritical and
qα = 1.

The end of this section will be devoted to the proof of Proposition 3.1, which
will be divided into three steps.

3.1.1. Control of the proportions in the resident population. We will first prove
that the proportions in the resident population do not vary substantially before the
mutant population goes extinct or invades. More precisely, we have the following
lemma.

Lemma 3.3. Suppose that the assumptions of Proposition 3.1 hold. For any A > 0,
there exists ε0 such that for any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim sup
K→∞

P
(
Uε1/6 < RAε ∧ TPεξ ∧ T

P
0

)
≤ C(A, ξ)ε1/12,

where C(A, ξ) is a positive constant.

Proof : The statement of Lemma 3.3 is a direct consequence of the following in-
equality:

lim sup
K→∞

P

 sup
t≤U

ε1/8
∧RAε∧TP

εξ
∧TP0

∣∣∣∣NAp(t)Np(t)
− NAp(0)

Np(0)

∣∣∣∣ > ε1/6

 ≤ Cε1/12. (3.6)

To prove (3.6), we decompose the process NAp/Np as the sum of a square integrable
martingale Mp and of a finite variation process Vp (see (3.10) and (3.11) for their
expressions). Using such a decomposition and introducing for the sake of readability
the notation

τε := Uε1/8 ∧RAε ∧ TPεξ ∧ T
P
0 , (3.7)
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we find that for ε small enough,

P
(

sup
t≤τε

∣∣∣∣NAp(t)Np(t)
− NAp(0)

Np(0)

∣∣∣∣ > ε1/6

)
≤ P

(
sup
t≤τε
|Mp(t)| >

ε1/6

2

)
+ P

(
sup
t≤τε
|Vp(t)| >

ε1/6

2

)
≤ 2

ε1/6
E [|Mp(τε)|] +

√
2

ε1/12
E

[√
sup
t≤τε
|Vp(t)|

]

≤ 2

ε1/6

(√
E
[
M2
p (τε)

]
+

√
E
[

sup
t≤τε
|Vp(t)|

])
,

(3.8)

where we applied Doob maximal, Markov, Cauchy-Schwarz and Jensen inequalities.
Hence, it remains to bound the two last expectations of (3.8). In the vein

of Fournier and Méléard (2004) we represent the population process in terms of
Poisson measures.

Let (Q(%)αp(ds, dθ), α ∈ A, % ∈ {b, d}) be four independent Poisson random
measures on R2

+ with intensity dsdθ representing respectively the birth and death
events of Ap and ap individuals. That is, for any α ∈ A, the p-population size
processes can be written

Nαp(t) = Nαp(0) +

∫ t

0

∫
R+

(
1{θ≤bαp(N(s−))}Q

(b)
αp(ds, dθ)

−1{θ≤dαp(N(s−))}Q
(d)
αp (ds, dθ)

)
(3.9)

where the quantities bαp and dαp have been defined in (2.1) and (2.2).
Let us also denote by Q̃(%)

αp (ds, dθ) := Q
(%)
αp (ds, dθ)−dsdθ the associated compen-

sated measure, for any % ∈ {b, d}, α ∈ A. From (3.9), we find, for t ≥ 0,

NAp(t)

Np(t)
=
NAp(0)

Np(0)
+Mp(t) + Vp(t),

with Mp and Vp such that:

Mp(t) =

∫ t

0

∫
R+

1{θ≤bAp(N(s−))}
Nap(s−)

Np(s−)(Np(s−) + 1)
Q̃

(b)
Ap(ds, dθ) (3.10)

−
∫ t

0

∫
R+

1{θ≤dAp(N(s−))}
Nap(s−)

Np(s−)(Np(s−)− 1)
Q̃

(d)
Ap(ds, dθ)

−
∫ t

0

∫
R+

1{θ≤bap(N(s−))}
NAp(s−)

Np(s−)(Np(s−) + 1)
Q̃(b)
ap (ds, dθ)

+

∫ t

0

∫
R+

1{θ≤dap(N(s−))}
NAp(s−)

Np(s−)(Np(s−)− 1)
Q̃(d)
ap (ds, dθ),
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and

Vp(t) =

∫ t

0

{
bAp(N(s))

Nap(s)

Np(s)(Np(s) + 1)
− dAp(N(s))

Nap(s)

Np(s)(Np(s)− 1)

− bap(N(s))
NAp(s)

Np(s)(Np(s) + 1)
+ dap(N(s))

NAp(s)

Np(s)(Np(s)− 1)

}
ds

=

∫ t

0

{
bAp(N(s))Nap(s)− bap(N(s))NAp(s)

} ds

Np(s)(Np(s) + 1)
. (3.11)

Using Equation (2.2), we obtain the existence of a finite constant C, independent
from K, such that

|bAp(N)Nap − bap(N)NAp| ≤ C
NPN

2
p

NP +Np
.

Hence,

sup
t≤τε
|Vp(t)| ≤ C

∫ τε

0

NP (s)

NP (s) +Np(s)
ds. (3.12)

This will help us to bound the last term of inequality (3.8). On the other hand,
to deal with the penultimate term in (3.8), we use the quadratic variation of the
martingale Mp which is 〈Mp〉τε and equals∫ τε

0

bAp(N(s))
N2
ap(s)

N2
p (s)(Np(s) + 1)2

ds+

∫ τε

0

dAp(N(s))
N2
ap(s)

N2
p (s)(Np(s)− 1)2

ds

+

∫ τε

0

bap(N(s))
N2
Ap(s)

N2
p (s)(Np(s) + 1)2

ds+

∫ τε

0

dap(N(s))
N2
Ap(s)

N2
p (s)(Np(s)− 1)2

ds

=

∫ τε

0

(
bAp(N(s))N2

ap(s) + bap(N(s))N2
Ap(s)

N2
p (s)(Np(s) + 1)2

+
dAp(N(s))N2

ap(s) + dap(N(s))N2
Ap(s)

N2
p (s)(Np(s)− 1)2

)
ds (3.13)

To handle the first term, let us remark that for s < τε, bAp(N(s)) and bap(N(s))

can be bounded from above by C̃Np(s) for a positive constant C̃, independent from
K. Therefore before time τε,

bAp(N)N2
ap + bap(N)N2

Ap

N2
p (Np + 1)2

≤ C̃

Np
.

For the second term we have
dAp(N)N2

ap + dap(N)N2
Ap

N2
p (Np − 1)2

≤ (d+ cN/K)NapNAp
Np(Np − 1)2

.

Since, for Np ≥ 2,
NapNAp

Np(Np − 1)2
≤ 4

Np
,

we obtain that, if C and K are sufficiently large,

〈Mp〉τε ≤
∫ τε

0

4

Np(s)

[
C̃ + d+

c

K
(NP (s) +Np(s))

]
ds

≤ C
∫ τε

0

1

Np(s)
ds ≤ C

∫ τε

0

NP (s)

Np(s)
ds.

(3.14)
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From (3.12) and (3.14), we get that there exists a finite C, independent from K,
such that√

E
[
M2
p (τε)

]
+

√
E
[

sup
t≤τε
|Vp(t)|

]
≤

√
C

K
E
[∫ τε

0

NP (s)ds

]
. (3.15)

In view of (3.8), the problem is thus reduced to show the following property:

lim sup
K→∞

ε−1/6

√
C

K
E
[∫ τε

0

NP (s)ds

]
≤ C ′ε1/12,

for a finite C ′, independent from K, or equivalently,

lim sup
K→∞

1

K
E
[∫ τε

0

NP (s)ds

]
≤ C ′ε1/2. (3.16)

To this aim, we will prove that there exist two real numbers γ1 and γ2, independent
from K, such that the function f on N4 defined by

f(N) := γ1NAP + γ2NaP , (3.17)

satisfies that there exists ε sufficiently small such that for any t ≤ τε (recall equation
(3.7)),

Lf(N(t)) ≥ NP (t). (3.18)

Here L is the infinitesimal generator of N. Indeed, if (3.18) holds, it will imply
that

E
[∫ τε

0

NP (s)ds

]
≤ E

[∫ τε

0

Lf(N(s))ds

]
= E [f(N(τε))− f(N(0))]

≤
(
max{γ1, γ2}εξK −min{γ1, γ2}

)
,

(3.19)

which is sufficient to obtain (3.16), whatever the signs of γ1 and γ2.
The last step of the proof consists in proving the existence of γ1 and γ2 satisfying

(3.17) and (3.18). Let us now apply the infinitesimal generator of N to the function
f defined in (3.17):

Lf(N(t)) = γ1 [bAP (N)− dAP (N)] + γ2 [baP (N)− daP (N)]

= NAP (t)
[
γ1

(
β

(P )
AA (t)− δ(t)

)
+ γ2β

(P )
Aa (t)

]
+NaP (t)

[
γ1β

(P )
aA (t) + γ2

(
β(P )
aa (t)− δ(t)

)]
,

(3.20)

where
δ(t) = d+ cN(t)/K (3.21)

and for α ∈ A,

β(P )
αα (t) =

b

2

(
2 + β1

2NαP (t) +Nαp(t)

NP (t) +Np(t)
− β2

2

4NᾱP (t) +Nᾱp(t)

NP (t) +Np(t)
− Nᾱp(t)

NP (t) +Np(t)

)
(3.22)

and

β
(P )
αᾱ (t) =

b

2

(
1− β2

2

)
Nᾱp(t)

NP (t) +Np(t)
. (3.23)
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Then we see that to obtain (3.18) it is enough to choose Γ = (γ1, γ2), independent
from K, such that ∀t ≤ τε

J (P )(t)ΓT :=

(
β

(P )
AA (t)− δ(t) β

(P )
Aa (t)

β
(P )
aA (t) β

(P )
aa (t)− δ(t)

)(
γ1

γ2

)
>

(
1
1

)
where the inequality is applied to each coordinate.

Note that J (P )(t) is not easy to study. We will thus approximate this matrix by
a simpler one as soon as t ≤ τε. More precisely, we will prove that there exists a
constant C such that for every t ≤ τε,

lim sup
K→∞

(
|J (P )(t)− J |

)
ij
≤ Cε1/8, i, j ∈ {1, 2} (3.24)

where the matrix J given in (2.8) is the mean matrix of the branching process
N̄ (defined in (2.3)) which approximates (NAP , NaP ) near the equilibrium of the
resident population.

First, as t ≤ τε ≤ TPεξK ∧RAε, we have∣∣∣∣b− d− cNP +Np
K

∣∣∣∣ ≤ c ∣∣∣∣b− dc − Np
K

∣∣∣∣+ c

∣∣∣∣NPK
∣∣∣∣ ≤ cAε+ cεξ. (3.25)

Secondly, we have that

∆%A(0) :=

∣∣∣∣NAp(0)

Np(0)
− ρA

∣∣∣∣ →
K→+∞

0,

by assumption. Then, using also that t ≤ Uε1/8 , we find that for ε small enough,∣∣∣∣2NAP +NAp
NP +Np

− ρA
∣∣∣∣

≤ 2NAP
NP +Np

+ ρA

∣∣∣∣ Np
NP +Np

− 1

∣∣∣∣+
Np

NP +Np

(∣∣∣∣NApNp
− NAp(0)

Np(0)

∣∣∣∣+ ∆%A(0)

)
≤ (2 + ρA)

NP
NP +Np

+ ε1/8 + ∆%A(0)

≤ 3
εξc

b− d− cAε
+ ε1/8 + ∆%A(0) ≤ C1ε

1/8 + ∆%A(0), (3.26)

where C1 is a finite constant and ξ ∈ {1/2, 1}. Similarly, we prove that, if C1 is
sufficiently large,

max

{∣∣∣∣4NaP +Nap
N

− (1− ρA)

∣∣∣∣ , ∣∣∣∣ Nap
NP +Np

− (1− ρA)

∣∣∣∣} ≤ C1ε
1/8 + ∆%A(0).

(3.27)
Using (3.25), (3.26) and (3.27), we can find a positive constant C2 such that∣∣∣β(P )

AA − δ − (β̄AP − b)
∣∣∣ ≤ ∣∣∣∣b− d− cNP +Np

K

∣∣∣∣+
bβ1

2

∣∣∣∣2NAP +NAp
NP +Np

− ρA
∣∣∣∣

+
β2

4

∣∣∣∣4NaP +Nap
NP +Np

− (1− ρA)

∣∣∣∣+
1

2

∣∣∣∣ Nap
NP +Np

− (1− ρA)

∣∣∣∣
≤ C2

(
ε1/8 + ∆%A(0)

)
,
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where we recall that δ has been defined in (3.21), and∣∣∣β(P )
Aa − β̄Aa

∣∣∣ ≤ b(2− β2)

4

∣∣∣∣ Nap
NP +Np

− (1− ρA)

∣∣∣∣ ≤ C2

(
ε1/8 + ∆%A(0)

)
.

The last terms in (3.20) can be bounded using similar computations, which yields
(3.24).

Let us finally choose (γ1, γ2). Recall the definition of J in (2.8). In particular,
the matrix J + bId has positive coefficients and we can apply Perron-Frobenius
Theorem: J + bId possesses a positive right eigenvector Γ̃ = (γ̃1, γ̃2) associated to
the positive principal eigenvalue λ+ b and thus (J + bId)Γ̃T = (λ+ b)Γ̃T , and

J Γ̃T = λΓ̃T .

Since both coordinates of Γ̃ are positive and λ 6= 0 , we can define Γ = 2Γ̃(λ(γ̃1 ∧
γ̃2))−1 = (γ1, γ2). It is solution to

JΓT = λΓT where λγi ≥ 2, ∀i ∈ {1, 2}.
Combining with (3.24), we deduce∣∣∣γ1

(
β

(P )
AA (t)− δ

)
+ γ2β

(P )
Aa (t)− λγ1

∣∣∣
=
∣∣∣γ1

[
β

(P )
AA (t)− δ − (β̄AA − b)

]
+ γ2

[
β

(P )
Aa (t)− β̄Aa

]∣∣∣
≤ (|γ1|+ |γ2|)C2

(
ε1/8 + ∆%A(0)

)
.

Finally, as λγ1 ≥ 2, if ε is sufficiently small and K is sufficiently large, for any
t ≤ τε,

γ1

(
β

(P )
AA (t)− δ(t)

)
+ γ2β

(P )
Aa (t) > 1,

which leads to (3.18) and ends the proof of Lemma 3.3 using similar computations
for the second term. �

3.1.2. Control of the resident population size. Lemma 3.3 ensures that the propor-
tions of types A and a in the p-population stay almost constant during the time
interval under consideration. We now prove that it is also the case for the total
p-population size.

Lemma 3.4. Under the assumptions of Proposition 3.1 there exist two finite con-
stants A0 and ε0, independent from K, such that for any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim sup
K→∞

P
(
RA0ε ≤ Uε1/6 ∧ TPεξ ∧ T

P
0

)
= 0.

Proof : Recall that Z = N/K. As long as t ≤ TP0 ∧ TPεξ , we couple the process
Zp, which describes the total p-population size dynamics, with two birth and death
processes, Z1

p and Z2
p such that

Z1
p(t) ≤ Zp(t) ≤ Z2

p(t), a.s. ∀t ≤ TP0 ∧ TPεξ .
To this aim, we use bounds on the birth and death rates of Zp. Once again,
everything depends onK, but for the sake of readability, we drop theK dependency.
The processes Z1

p and Z2
p may be chosen with the following birth and death rates

Z1
p : i

K → i+1
K at rate K

(
b iK − bε

ξ
)

i
K → i−1

K at rate K i
K

(
d+ cεξ + c iK

)
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and

Z2
p : i

K → i+1
K at rate K

(
b iK + bβ1

2 ε
ξ
)

i
K → i−1

K at rate K i
K

(
d+ c iK

)
,

with initial conditions Z1
p(0) = Z2

p(0) = Zp(0).
We will first prove that processes Z1

p and Z2
p stay close to the value ζ := (b−d)/c

for at least an exponential (in K) time with a probability close to one when K is
large. To this aim, we will study the following stopping times

Riη := inf
{
t ≥ 0, Zip 6∈ [ζ − η, ζ + η]

}
, (3.28)

for η > 0 and i ∈ {∅, 1, 2} (by convention Z∅p = Zp).
Let us first consider the process Z1

p . When K is large and according to Ethier
and Kurtz (1986, Chapter 11, Theorem 2.1 p. 456), the dynamics of Z1

p is close to
the dynamics of the unique solution to

d

dt
z = z(b− d− cεξ − cz)− bεξ. (3.29)

The differential equation (3.29) admits two positive equilibria:

ζ1,±(ε) :=
b− d− cεξ ±

√
(b− d− cεξ)2 − 4bεξc

2c
.

A direct analysis of the sign of z(b − d − cεξ − cz) − bεξ shows that for any fixed
ε > 0, any solution with initial condition on ]ζ1,−(ε),+∞[ converges to the stable
equilibrium ζ1,+(ε) when t goes to infinity. Let us verify that any initial conditions
considered belong to this interval when K is sufficiently large and ε sufficiently
small. Using

(
√
a+
√
b)(
√
a−
√
b) = a− b (3.30)

yields

ζ1,−(ε) =
bεξ

cζ1,+(ε)
≤ 2b

b− d
εξ ≤ 2εξ

for any ε sufficiently small such that ζ1,+(ε) ≥ (b − d)/2c. Thus, we can choose
A0 > 0 and ε0 > 0 such that for, for any ε ≤ ε0,

ζ1,−(ε) < ζ −A0ε and |ζ1,+(ε)− ζ| ≤ (A0 − 1)ε.

Since Z1
p(0) ∈ [ζ − A0ε, ζ + A0ε], we thus conclude that Z1

p approaches ζ1,+(ε),
which is close to ζ.

Now, using a reasoning similar to the one in the proof of Theorem 3(c) in Cham-
pagnat (2006) (see also Proposition 2 in Coron et al., 2018), we construct a family
(overK) of Markov jump processes Z̃1

p whose transition rates are positive, bounded,
Lipschitz and uniformly bounded away from 0, and for which the following estimate
holds (Chapter 5 of Freidlin and Wentzell, 1984): there exists V > 0 such that,

P(R1
A0ε > eKV ) = P(R̃1

A0ε > eKV ) →
K→+∞

1, (3.31)

where R̃1
η is defined similarly as R1

η but for the process Z̃1.
Using a similar reasoning for process Z2

p and if ε and V are small enough and
A0 is large enough, we have that

P(R2
A0ε > eKV ) →

K→+∞
1. (3.32)
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Finally, note firstly that RA0ε ≥ R1
A0ε
∧R2

A0ε
on the set {RA0ε ≤ TP0 ∧ TPεξ}. In

addition with (3.31) and (3.32), we deduce that

P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ) →
K→+∞

0.

Secondly, for ε small enough,

P(RA0ε ≤ TP0 ∧ TPεξ ∧ Uε1/6)

≤ P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ ∧ Uε1/6) + P(RA0ε ∧ TP0 ∧ TPεξ ∧ Uε1/6 ≥ e
KV )

≤ P(RA0ε ≤ eKV , RA0ε ≤ TP0 ∧ TPεξ) + e−KV E
[
RA0ε ∧ TPεξ ∧ T

P
0 ∧ Uε1/8

]
.

Thirdly, Equation (3.19) implies that there exists a constant C independent from
K such that for ε small enough,

E
[
RA0ε ∧ TPεξ ∧ T

P
0 ∧ Uε1/8

]
≤ E

[∫ U
ε1/8
∧RA0ε

∧TP
εξ
∧TP0

0

NP (s)ds

]
≤ C(εξK + 1).

The three last equations imply the statement of Lemma 3.4, which ends its proof.
�

3.1.3. Proof of Proposition 3.1. Lemmas 3.3 and 3.4 give us a control on the p-
population size and the proportions of A and a individuals in this population. It
will allow us to approximate the mutant population size by a bitype branching
process at the beginning of the invasion process. We will assume along the proof
that NP (0) = NαP (0) = 1, with α ∈ A, but we drop the conditioning notation
for the sake of readability. Combining Lemmas 3.3 and 3.4, we obtain that the
p-population size and the genotypic proportions in the p-population stay almost
constant as long as the P -mutant population size is small. More precisely, if (3.4)
is satisfied, there exist two constants A0 and ε0, independent from K, such that for
any ξ ∈ {1/2, 1} and ε ≤ ε0,

lim inf
K→∞

P
(
TPεξ ∧ T

P
0 < RA0ε ∧ Uε1/6

)
≥ 1− C(A0, ξ)ε

1/12, (3.33)

where C(A0, ξ) is a positive constant, independent from K. Hence, in what follows,
we study the process on the event

Σε =
{
TPεξ ∧ T

P
0 < RA0ε ∧ Uε1/6

}
,

which has a probability close to 1. On this event, the death or invasion of the
mutant population will occur before the p-population deviates substantially from
its initial composition. Thus, we can study the mutant population dynamics by
approximating the resident population dynamics with a constant dynamics. More
precisely, we couple the process (NAP , NaP ) on Σε with two multitype branching
processes N (ε,−) and N (ε,+) with values in N2, and independent from K, such that
almost surely, for any t ≤ TPεξ ∧ T

P
0 ∧RA0ε ∧ Uε1/6 and α ∈ A,

N (ε,−)
α (t) ≤ N̄α(t) ≤ N (ε,+)

α (t),

N
(ε,−)
αP (t) ≤ NαP (t) ≤ N (ε,+)

αP (t).
(3.34)

For ∗ ∈ {+,−}, the process N (ε,∗) may be chosen with the rates:

N (ε,∗) → N (ε,∗) + eα at rate β
(ε,∗)
Aα N

(ε,∗)
A + β

(ε,∗)
aα N

(ε,∗)
a

N (ε,∗) → N (ε,∗) − eα at rate δ
(ε,∗)
α N

(ε,∗)
α
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where

β(ε,+)
αα = b

(
1 +

β1

2

(
ρα + ε

1
6 +

2εξ

ζ −A0ε

)
−
(
β2

4
+

1

2

)(
ρᾱ − ε

1
6

) ζ −A0ε

ζ +A0ε+ εξ

)
β

(ε,+)
αᾱ =

b

2

(
1− β2

2

)
(ρᾱ + ε

1
6 ),

δ(ε,+)
α = b− cA0ε,

β(ε,−)
αα = b

(
1 +

β1

2

(ρα − ε
1
6 )(ζ −A0ε)

ζ +A0ε+ εξ
−
(
β2

4
+

1

2

)
(ρᾱ + ε

1
6 )− β2ε

ξ

ζ −A0ε

)

β
(ε,−)
αᾱ =

b

2

(
1− β2

2

)
(ρᾱ − ε

1
6 )(ζ −A0ε)

ζ +A0ε+ εξ

δ(ε,−)
α = b+ c

(
A0ε+ εξ

)
and ζ = (b − d)/c. Note that for (α, α′) ∈ A2 and ∗ ∈ {−,+}, the applications
ε 7→ β

(ε,∗)
αα′ and ε 7→ δ

(ε,∗)
α are continuous and converge respectively as ε → 0 to

β̄αα′ and b which are the birth and death rates of the process N̄ introduced in
(2.3). Moreover β(ε,+)

αα′ and δ
(ε,−)
α (resp. β

(ε,−)
αα′ and δ

(ε,+)
α ) are increasing (resp.

decreasing) when ε increases.
Let us denote for ∗ ∈ {−,+} and α ∈ A by q(ε,∗)

α the extinction probability of the
process N (ε,∗) with initial state eα. As the extinction probability of a supercritical
branching process is continuous (see Lemma A.4) with respect to the birth and
death rates of this process, increases with the death rate and decreases with the
birth rate, we find for α ∈ A that

0 ≤ q(ε,−)
α − q(ε,+)

α →
ε→0

0, (3.35)

and
q(ε,+)
α ≤ qα ≤ q(ε,−)

α ,

where we recall that qα has been defined by (2.6) for the process N̄. In other words,
for ∗ ∈ {−,+}, ∣∣∣q(ε,∗)

α − qα
∣∣∣ = oε(1). (3.36)

Since the coupling with N is only valid on Σε, we still need to prove that the
probabilities of extinction and invasion of the actual process N are also close to qα
and 1−qα respectively, when K is large. To this aim, let us introduce the following
stopping times, for ∗ ∈ {−,+},

∀x ∈ R+, T (ε,∗)
x := inf{t > 0, N (ε,∗)(t) = bKxc}. (3.37)

Recall that, on Σε, the coupling (3.34) is satisfied and thus

P
(
T

(ε,−)

εξ
< T

(ε,−)
0 , Σε

)
≤ P

(
TPεξ < TP0 , Σε

)
≤ P

(
T

(ε,+)

εξ
< T

(ε,+)
0 , Σε

)
. (3.38)

Indeed, if a process reaches the size εξK before extinction, it is also the case
for a larger process. However, Σε is independent from N(ε,−) and N(ε,+), thus
with (3.33),

lim inf
K→∞

P
(
T

(ε,−)

εξ
< T

(ε,−)
0 , Σε

)
= lim inf

K→∞
P
(
T

(ε,−)

εξ
< T

(ε,−)
0

)
P (Σε)

≥ (1− q(ε,−)
(α) )(1− C(A0, ξ)ε

1/12),
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and

lim sup
K→∞

P
(
T

(ε,+)

εξ
< T

(ε,+)
0 , Σε

)
≤ (1− q(ε,+)

(α) ),

Then with (3.38) and letting K go to infinity, we find

(1− q(ε,−)
(α) )(1− C(A0, ξ)ε

1/12)− (1− qα) ≤ lim inf
K→+∞

(
P
(
TPεξ < TP0 , Σε

)
− (1− qα)

)
≤ lim sup

K→+∞

(
P
(
TPεξ < TP0 , Σε

)
− (1− qα)

)
≤ q(α) − q

(ε,+)
(α) .

Finally, adding (3.33) and (3.36) we get

lim sup
K→∞

∣∣P(TPεξ < TP0 ∧RA0ε ∧ Uε1/6)− (1− qα)
∣∣

≤ lim sup
K→∞

∣∣P(TPεξ < TP0 , Σε)− (1− qα)
∣∣+ lim sup

K→∞
|P(Σε

c)| = oε(1).
(3.39)

Equation (3.5) is derived similarly.
It remains to prove that in the case of invasion (which happens with probability

1− qα), the time before reaching size Kεξ is of order logK/λ, where we recall that
λ is the maximal eigenvalue of the matrix J defined in (2.8), and that in the case
of invasion, λ is positive.

We denote by λ(ε,∗) the maximal eigenvalue of the mean matrix for the process
N (ε,∗). This eigenvalue is positive for ε small enough, and converges to λ when ε
converges to 0. In other words there exists a nonnegative function η going 0 at 0
such that, for any ε small enough,∣∣∣∣λ(ε,∗)

λ
− 1

∣∣∣∣ ≤ η(ε)

2
. (3.40)

Thus, let us fix ε small enough such that the previous inequality holds. Then from
the coupling (3.34), which is true on Σε,

P
(
T

(ε,−)

εξ
≤ T (ε,−)

0 ∧ lnK

λ
(1 + η(ε)), Σε

)
≤ P

(
TPεξ ≤ T

P
0 ∧

lnK

λ
(1 + η(ε)), Σε

)
.

(3.41)
Once again, with independence between Σε and N (ε,∗), using classical results on
bitype branching processes (see Theorem 2.1 of Georgii and Baake, 2003), and
(3.40), yields that for ε small enough (at least such that η(ε) < 1),

lim inf
K→∞

P
(
T

(ε,−)

εξ
≤ T (ε,−)

0 ∧ lnK

λ
(1 + η(ε)), Σε

)
= lim inf

K→∞
P
(
T

(ε,−)

εξ
≤ lnK

λ
(1 + η(ε))

)
P (Σε)

≥ lim inf
K→∞

P
(
T

(ε,−)

εξ
≤ lnK

λ(ε,−)

(
1− η(ε)

2

)
(1 + η(ε))

)
P (Σε)

≥ lim inf
K→∞

P
(
T

(ε,−)

εξ
≤ lnK

λ(ε,−)

(
1 +

η(ε)− η2(ε)

2

))
P (Σε)

≥
(

1− q(ε,−)
(α)

)(
1− C(A0, ξ)ε

1/12
)
.
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In addition with (3.41), we deduce that for any small κ > 0

lim inf
K→∞

P
(
TPεξ < TP0 ∧RA0ε ∧ Uε1/6 , TPεξ ≤

lnK

λ
(1 + η(ε))

)
≥ 1− qα − 3κ,

as soon as ε is small enough.
We can prove in a similar way, using the upper bound N(ε,+) of the coupling,

that

lim inf
K→∞

P
(
TPεξ < TP0 ∧RA0ε ∧ Uε1/6 , TPεξ ≥

lnK

λ
(1− η(ε))

)
≥ 1− qα − 3κ.

By (3.39), putting all pieces together, we conclude the proof of Proposition 3.1.

3.2. Mean-field phase. Once the mutant population size has reached an orderK, the
mean-field approximation (2.10) becomes a good approximation for the population
dynamics (cf Lemma 2.1). An important question however is the initial condition of
the dynamical system used as an approximation. Indeed, depending on the initial
state, the system (2.10) may converge to various equilibria (see Appendix A.1 for
a study of these equilibria). The initial state to be considered for the dynamical
system and the convergence to a stable equilibrium are the subjects of Sections 3.2.1
and 3.2.2, respectively.

3.2.1. Mutant A/a proportions. We have seen that when (2.9) is satisfied, then the
mutant population dynamics is close to that of the supercritical bitype branching
process N̄ defined in (2.3). For such a process we are able to control the long time
proportion of the different types of individuals. More precisely, Kesten-Stigum
theorem (see Georgii and Baake, 2003 for instance) ensures the following property,
if λ is positive:

(N̄A(t), N̄a(t))

N̄A(t) + N̄a(t)
→
t→∞

(πA, πa) almost surely

on the event of survival of N̄, where π is the positive left eigenvalue of J associated
to λ such that πA + πa = 1.

The next proposition states that with a probability close to one for largeK, if the
mutant population reaches the size εK, we may choose a time when the proportion
of type A individuals in the P -population belongs to [πA − δ, πA + δ], with δ > 0
small.

Proposition 3.5. Let C > 2 be such that

C

(
max{qA, qa}

C − 1

)1−1/C

< 1.

Assume that ρA > 1/2 and that (2.9) holds. Let δ > 0 be such that πA − δ > 1/2.
Then under the same assumptions as Proposition 3.1,

lim inf
K→∞

P
(
∃t ∈

[
TPε , T

P√
ε

]
,
εK

C
≤ NP (t) ≤

√
εK,

πA − δ <
NAP (t)

NP (t)
< πA + δ

∣∣∣ TP√ε < TP0 ∧RA0ε ∧ Uε1/6
)
≥ 1− oε(1).
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Proof : If

πA − δ <
NAP (TPε )

NP (TPε )
< πA + δ

there is nothing to show. Thus we assume that

NAP (TPε )

NP (TPε )
≤ πA − δ.

The symmetric case, when NAP (TPε )/NP (TPε ) ≥ πA+δ can be treated with similar
arguments. Then, we introduce the event

Σ̃ε := {TP√ε < TP0 ∧RA0ε ∧ Uε1/6}

on which all calculus will be done.
Our first aim is to prove that the time interval [TPε , T

P√
ε
] is large when ε is small

and that the mutant population size is not too small on this interval. Precisely, we
introduce, for any ε > 0, the stopping time

T
(ε)
ε/C := inf{t ≥ TPε , NP (t) ≤ εK/C},

where C is the constant introduced in Proposition 3.5, and we want to prove that
the stopping time TP√

ε
is larger than TPε +ln ln(1/ε) and smaller than T (ε)

ε/C . On the
one hand, we obtain from coupling (3.34), satisfied on Σ̃ε, and Lemma A.2, that

lim
K→∞

P
(
T

(ε)
ε/C < TP√ε|Σ̃ε

)
= 0. (3.42)

On the other hand, we obtain from Lemma A.3 that

lim
K→∞

P
(
TP√ε ≤ T

P
ε + ln ln 1/ε|Σ̃ε

)
≤
√
ε (ln 1/ε)

b(1+β1)
, (3.43)

since the process of the total size of P -individuals is always stochastically bounded
from above by a Yule process with birth rate b(1 + β1). Notice that Lemmas A.2
and A.3 can be applied here because, as we assumed (2.9), the mutant P invades
with a positive probability and the approximating process N̄ is supercritical.

With this in mind, we are now interested in the dynamics of the fraction of
A-individuals in the P -population. Our aim is to find a suitable lower bound to
NAP (t)/NP (t) to prove that this fraction cannot stay below πA − δ on the interval
[TPε , T

P√
ε
] with a probability close to 1. The fraction is a semi-martingale and can

be decomposed as

NAP (t)

NP (t)
=
NAP (TPε )

NP (TPε )
+MP (t) + VP (t),

for any t ≥ TPε , with MP a martingale and VP a finite variation process.
Let us start with the martingale part, MP . Its predictable quadratic variation

can be obtained as in (3.13) with P replacing p and by integrating between TPε and
t instead of 0 and TPε . It gives the bound

〈MP 〉t ≤ C0(t− TPε ) sup
TPε ≤s≤t

1

NP (s)− 1
,

where C0 is a finite constant. Hence

〈MP 〉(TPε +ln ln 1/ε)∧T (ε)

ε/C

≤ C0 ln ln 1/ε

εK/C − 1
(3.44)
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and

lim sup
K→∞

P

(
sup

TPε ≤t≤(TPε +ln ln 1/ε)

|MP (t)| ≥ ε
∣∣∣Σ̃ε)

≤ lim sup
K→∞

[
P

 sup
TPε ≤t≤(TPε +ln ln 1/ε)∧T (ε)

ε/C

|MP (t)| ≥ ε
∣∣∣Σ̃ε


+ P
(
T

(ε)
ε/C < TPε + ln ln 1/ε

∣∣∣Σ̃ε)]

≤ lim sup
K→∞

1

ε2
E
[
〈MP 〉TPε +ln ln 1/ε∧T (ε)

ε/C

∣∣∣Σ̃ε]+
√
ε (ln 1/ε)

b(1+β1)

=
√
ε (ln 1/ε)

b(1+β1)
,

(3.45)

using Doob’s martingale inequality to obtain the third line, and (3.42), (3.43) and
(3.44) for the last one. In particular, the martingale is larger than −ε with a
probability close to one.

It remains to deal with the finite variation process VP . Itô’s formula with jumps
gives the following formulation of VP :

VP (t) =

∫ t

TPε

P (s)

[
NAP (s)

NP (s)

]
NP (s)

NP (s) + 1
ds,

with

P (s)[X] :=
(
β

(P )
AA (N(s))X + β

(P )
aA (N(s))(1−X)

)
(1−X)

−
(
β(P )
aa (N(s))(1−X) + β

(P )
Aa (N(s))X

)
X,

and β(P )
AA and β(P )

Aa are defined by (3.22) and (3.23). Notice that, when ε is small, the
polynomial function P (s) is close, on the interval [0, 1], to the polynomial function

P [X] :=
(
β̄AAX + β̄aA(1−X)

)
(1−X)−

(
β̄aa(1−X) + β̄AaX

)
X

where the functions β̄i, i ∈ G are defined in (2.4). Since P [0] > 0, P [1] ≤ 0, the
degree of P is 2 and P ′′[0] = −b(ρA−ρa)(β1 +β2) < 0, the equation ẋ = P [x] has a
unique positive equilibrium in (0, 1]. Since (πA, 1−πA) is a left eigenvector of matrix
(2.8), a direct computation ensures that πA is a root of P and thus corresponds
to this equilibrium. Moreover, since ρA > 1/2 we obtain that P [1/2] > 0, and we
deduce that πA > 1/2 (therefore, δ is well defined) and that there exists a positive θ
such that for any x < πA−δ, P [x] > θ. Using the continuity of polynomial functions
with respect to their coefficients, we deduce the following property conditioning on
Σ̃ε and for ε small enough:

∀s ∈
[
TPε , T

P√
ε

]
,∀ x ∈ (0, πA − δ) , P (s) [x] ≥ θ

2
> 0. (3.46)

Let us introduce

τ
(ε)
A := inf

{
t ≥ TPε ,

NAP (t)

NP (t)
≥ πA − δ

}
.
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From (3.45) and (3.46), we thus obtain that, conditioning on Σ̃ε, for any t ∈
[TPε , (T

P
ε + ln ln 1/ε) ∧ τ (ε)

A ]

πA − δ ≥
NAP (t)

NP (t)
≥ θ

4

(
ln ln 1/ε ∧ (τ

(ε)
A − TPε )

)
− ε, (3.47)

with a probability higher than 1−
√
ε (ln 1/ε)

b(1+β1). Since θ
4 ln ln 1/ε−ε converges

to +∞ with ε, τ (ε)
A is smaller than TPε + ln ln 1/ε and so it is smaller than TP√

ε
with

a probability close to one (conditioning on Σ̃ε), as soon as ε is sufficiently small
and K is sufficiently large, according to (3.43).

Finally, notice that each step of the process NAP (t)/NP (t) is smaller than
(εK/C + 1)−1, hence it is smaller than δ as soon as K is sufficiently large. Thus,
after time τ (ε)

A , the process will enter the interval [πA − δ, πA + δ], if K is large
enough. This ends the proof of Proposition 3.5.

�

3.2.2. Convergence of the dynamical system. In this section, we will study the be-
haviour of the dynamical system (2.10) after the ’stochastic’ phase.

The following proposition states that the equilibrium without mutant is unstable
under condition (2.9), and Proposition 3.7 states the convergence of the solution to
(2.10) under suitable conditions.

Proposition 3.6. Assume that (2.9) holds. Then for every ρA ∈ [0, 1],

• the equilibrium (0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c) is unstable
• the branching process N̄ whose transition rates are given in (2.4) is super-
critical

On the opposite, if (2.9) does not hold, the largest eigenvalue of the Jacobian matrix
for (2.10) is 0. In any case, the equilibrium (0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c) is
non-hyperbolic.

Proof : We compute the Jacobian matrix of system (2.10) for the first equilibrium
(0, ρA(b− d)/c, 0, (1− ρA)(b− d)/c), and obtain when reordering lines and columns
(zAP , zaP , zAp, zap)(

J 0

∗ J̃

)
with J =

b

2

ρAβ1 − (1− ρA)
(
β2

2 + 1
)

−ρA
(
β2

2 − 1
)

−(1− ρA)
(
β2

2 − 1
)

(1− ρA)β1 − ρA
(
β2

2 + 1
)

and J̃ = −(b− d)

(
ρA ρA
ρa ρa

)
Therefore the eigenvalues of this matrix are the eigenvalues of the two sub-matrices
J and J̃ . The eigenvalues of J̃ are 0 and −(b− d) < 0.

Let us notice that the matrix J admits a positive eigenvalue if and only if either
Tr(J) > 0 or ∆(J) < 0 where Tr(J) = b

2

(
β1 −

(
β2

2 + 1
))

∆(J) = b2

4

(
ρA(1− ρA)(β1 + β2)(β1 + 2)− β1

2 (β2 + 2)
)
.
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We thus obtain that the equilibrium under consideration is unstable if one of the
following conditions is satisfied:

β1 >

(
β2

2
+ 1

)
or ρA(1− ρA) <

β1(β2 + 2)

2(β1 + β2)(β1 + 2)
.

But from a functional study, we can prove that the function β1 7→ β1(β2+2)/(2(β1+
β2)(β1+2)) is larger than 1/4 for any β1 ∈]β2, β2/2+1]. This concludes the proof for
the stability of the equilibrium point (0, ρA(b−d)/c, 0, (1−ρA)(b−d)/c). Concerning
the bitype branching process N̄, recall that J is also the mean matrix associated
to it. As a consequence, N̄ is supercritical if and only if the maximal eigenvalue of
J is positive, and the conditions are the same. �

Proposition 3.7. Let us consider an initial condition z0 such that zAp(0) > zap(0)
and zAP (0) > zaP (0). Let us furthermore assume that one of the following condi-
tions is satisfied:

β1 > β2 or
zA(0)za(0)

z(0)2
<

β1(β2 + 2)

2(β1 + β2)(β1 + 2)
. (3.48)

Then the solution z(z0) of the system (2.10) converges as t→∞ toward

(((1 + β1)b− d)/c, 0, 0, 0).

Proof : To prove the convergence we will consider the diversity at locus A/a using
the quantity

D :=
zAza
z2

and prove that this quantity converges to 0. The differential equation followed by
D is:

Ḋ =
b

z2

(
(zAP za + zAzaP )

(
D(β1 + 2β2)− β2

2

)
−Dβ1(zAP zA + zaP za)

)
=

b

z2

(
(zAP za + zAzaP )

β2

2
(4D − 1)−Dβ1(zAP − zaP )2

−Dβ1(zAP − zaP )(zAp − zap)
)

≤ −Dbβ1

z2
(zAP − zaP )(zAp − zap), (3.49)

since D is always less than 1/4. Let us introduce the function

Π(t) := (zAP (t)− zaP (t))(zAp(t)− zap(t)).

Under the assumption of Proposition 3.7, Π(0) > 0. We want to prove that Π(t) > 0
for all t > 0. We start by computing the derivative of this quantity :

dΠ

dt
= 2(b− d− cz)Π

+
b(zAp − zap)

z

[
β1(zAP (zAP +

zAp
2

)− zaP (zaP +
zap
2

)) + (zaP zAp − zAP zap)
]

+
b(zAP − zaP )

z

[
β1(zAp

zAP
2
− zap

zaP
2

)− (zaP zAp − zAP zap)
]
. (3.50)
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By reorganizing the terms, we find

dΠ

dt
=

(
2b− 2d+ bβ1

3zAP + 2zaP + zap
2z

− bzaP + zap
z

− 2cz

)
Π

+
bβ1

2z
[zAP (zAp − zap)2 + zap(zAP − zaP )2]

+
b

z
[zaP (zAp − zap)2 + zap(zAP − zaP )2]

≥ (b− 2d− 2cz) Π,

(3.51)

as long as Π(t) ≥ 0.
We thus need information on the dynamics of z to conclude. From (2.10), we

obtain
dz(t)

dt
= z(b− d− cz) + b

β1

z
(zAP zA + zaP za)− bβ2

z
(zAP za + zaP zA)

≤ z(t) (b(1 + β1)− d− cz(t)) .

In other words, for any t ≥ 0,

z(t) ≤ z(0) ∨ b(1 + β1)− d
c

.

Combining with (3.51) we deduce that as long as Π(t) ≥ 0,

dΠ(t)

dt
≥
(
b− 2d− 2c

(
z(0) ∨ b(1 + β1)− d

c

))
Π(t),

and thus
Π(t) ≥ Π(0)e−Ct > 0, ∀t ≥ 0. (3.52)

Combining this result with (3.49), we deduce that D is a positive and decreasing
quantity and converges to a nonnegative value where its derivative Ḋ vanishes. We
deduce from the fact that all three terms of the second line of (3.49) are negative
that limt→∞D(t)(zAP (t)− zaP (t))2 = 0.

From Proposition A.1, the possible limits are the points

(0, 0, 0, 0), χAP :=

(
(1 + β1)b− d

c
, 0, 0, 0

)
,(

b(1 + (β1 − β2)/2)− d
2c

, 0,
b(1 + (β1 − β2)/2)− d

2c
, 0

)
,

and the line (
0, π

b− d
c

, 0, (1− π)
b− d
c

)
with π ∈ [1/2, 1].

The other equilibria are excluded because Π > 0. The proof of Proposition A.1 (i)
ensures that no positive trajectory converges to the null point. Moreover, we proved
that D is decreasing. As it starts from D(0) = zA(0)(z(0) − zA(0))/z(0)2 < 1/4,
the set of possible limits is thus restricted to the point χAP or the line(

0, π
b− d
c

, 0, (1− π)
b− d
c

)
, π ∈ [zA(0)/z(0), 1]. (3.53)

As D is decreasing, the trajectory cannot oscillate close to the line of (3.53). Hence,
if it approaches the line in large time, it should converge to a point of this line.
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Assume that it converges to (0, π(b− d)/c, 0, (1− π)(b− d)/c). Note that, from
Assumption (3.48),

β1 > β2 or π(1− π) ≤ D(0) <
β1(β2 + 2)

2(β1 + β2)(β1 + 2)

meaning that the equilibrium (0, π(b− d)/c, 0, (1− π)(b− d)/c) is unstable. Hence,
from Perron-Frobenius Theorem and Proposition 3.6, there exists (γ1, γ2) left pos-
itive principal eigenvector of the matrix J (see the proof of Proposition 3.6) which
is positive and associated to a positive eigenvalue λ. Using similar computations,
we obtain that in the neighbourhood of (0, π(b− d)/c, 0, (1− π)(b− d)/c)

γ1żAP + γ2żaP ≥
λ

2
(γ1zAP + γ2zaP ).

Thus, as soon as zAP and zaP are not equal to 0 (which is the case as Π(t) > 0 for
all t > 0, see (3.52)), the quantity γ1zAP +γ2zaP will grow exponentially fast when
the trajectory is close to (0, π(b− d)/c, 0, (1− π)(b− d)/c), and therefore it cannot
converge to this state. �

3.3. Extinction. After the deterministic phase, the process is close to the state
((b(β1 + 1) − d)/c, 0, 0, 0). In this subsection, we are interested in estimating the
time before the extinction of all but AP -individuals in the population. We also
need to check that the AP -population size stays close to its equilibrium during this
extinction time. We recall here the definition of the set Sε and the stopping time
TSε in (2.11) and (2.12), respectively:

Sε :=

[
b(1 + β1)− d

c
− ε, b(1 + β1)− d

c
+ ε

]
× {0} × {0} × {0},

TSε := inf{t ≥ 0,ZK(t) ∈ Sε}.

Proposition 3.8. There exist two positive constants ε0 and C0 such that for any
ε ≤ ε0, if there exists η ∈]0, 1/2[ that satisfies∣∣∣∣ZAP (0)− b(1 + β1)− d

c

∣∣∣∣ ≤ ε and ηε/2 ≤ ZAp(0) + Zap(0) + ZaP (0) ≤ ε/2,

then
P
(∣∣∣∣ TSε

log(K)
− 2

bβ1

∣∣∣∣ ≤ C0ε

)
−→
K→∞

1.

Proof : This proof is very similar to the proof of Proposition 2 in Coron et al. (2018).
We thus only detail parts of the proof that are significantly different.

Following these ideas, we prove that as long as the sum ZAp+Zap+ZaP is small
(lower than ε), the process ZAP stays close to (b(1 + β1)− d)/c.

Then, we can bound the death and birth rates of ZAp, Zap and ZaP under the
previous approximation and compare the dynamics of these three processes with
the ones of (

NAp(t)
K

,
Nap(t)
K

,
NaP (t)

K
, t ≥ 0

)
,

where (NAp,Nap,NaP ) ∈ N3 is a three-type branching process with types Ap, ap
and aP and such that

• any Ap-individual gives birth to a Ap-individual at rate b(2 + β1)/2,
• any aP -individual gives birth to a aP -individual at rate b(1− β2),
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• any individual gives birth to a ap-individual at rate b(2− β2)/4,
• any individual dies at rate b(1 + β1).

The goal is thus to estimate the extinction time of such a sub-critical three-type
branching process. According to Athreya and Ney (1972) p. 202 and Theorem 3.1
in Heinzmann (2009),

P
(

(NAp(t),Nap(t),NaP (t)) = (0, 0, 0)
)

= (1− c1ert)ZAp(0)K(1− c2ert)Zap(0)K(1− c3ert)ZaP (0)K , (3.54)

where c1, c2 and c3 are three positive constants and r is the largest eigenvalue of

b

2

−β1 1− β2

2 0

0 −2β1 − 1− β2

2 0

0 1− β2

2 −2β1 − 2β2

 ,

which is r = −bβ1/2. From (3.54), we deduce that the extinction time is of order
(2/bβ1)lnK when K tends to +∞ by arguing as in step 2 in the proof of Proposi-
tion 2 in Coron et al. (2018). This concludes the proof. �

3.4. Proof of Theorem 2.2. The proof strongly relies on the coupling (3.34). More
precisely, we consider a trajectory of N̄ (defined in (2.3)) coupled with the mutant
process. The random variable B of Theorem 2.2 is then defined as

B := 1{T̄0=∞},

which equals 1 if the process N̄ survives and 0 otherwise. In particular, B is indeed
a Bernoulli random variable with parameter 1− qα where α ∈ A is the genotype of
the first mutant individual.

Let the function η be defined as in Proposition 3.1. The convergence in proba-
bility claimed in (2.14) is equivalent to

lim inf
K→∞

P
(∥∥∥∥(TSµ ∧ TP0lnK

,1{TSµ<TP0 }

)
−
(

1

λ
+

2

bβ1
, 1

)
B

∥∥∥∥
1

≤ 12η(ε)

)
≥ 1 + oε(1).

(3.55)
As ε is as small as we need, we can assume without loss of generality that 12η(ε) < 1.
In the sequel, we divide the probability into two terms according to the values of
B using that {B = 1} = {T̄0 = +∞}. We obtain

P
(∥∥∥∥(TSµ ∧ TP0lnK

,1{TSµ<TP0 }

)
−
(

1

λ
+

2

bβ1
, 1

)
B

∥∥∥∥
1

≤ 12η(ε)

)
= P

(∣∣∣∣ TSµlnK
−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ 12η(ε), TSµ < TP0 , T̄0 = +∞
)

+ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ 12η(ε), TP0 < TSµ , T̄0 < +∞
)

=: F(K, ε) + G(K, ε).

(3.56)

Let us first consider G(K, ε), which is simpler to deal with and which represents
the case of extinction of P -individuals. We introduce A0, C > 2, δ > 0 and z(0) as
in Propositions 3.1, 3.5 and 3.7. First of all, notice that

G(K, ε) ≥ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ 12η(ε), TP0 < TSµ , T̄0 < +∞, TP0 < TPε ∧RA0ε ∧ Uε1/6
)
.
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Then if ε is chosen small enough such that ε < ((b(1 + β1)− d)/c− µ) ∧ zp(0)/A0

and considering our initial conditions, we have

TPε ∧RA0ε ∧ Uε1/6 < TSµ a.s.

Hence{
TP0 < TSµ , T

P
0 < TPε ∧RA0ε ∧ Uε1/6

}
=
{
TP0 < TPε ∧RA0ε ∧ Uε1/6

}
a.s.

and

G(K, ε) ≥ P
(∣∣∣∣ TP0lnK

∣∣∣∣ ≤ 12η(ε), T̄0 < +∞, TP0 < TPε ∧RA0ε ∧ Uε1/6
)
. (3.57)

Moreover from (3.33) to (3.36), and reasoning as in (3.36) to (3.39), we obtain

lim sup
K→∞

P
({
T̄0 <∞

}
4
{
TP0 < TPε ∧RA0ε ∧ Uε1/6

})
= oε(1) (3.58)

and
lim sup
K→∞

P
({
T̄0 <∞

}
4
{
T

(ε,+)
0 <∞

})
= oε(1),

where for all sets A and B, P(A4B) = P(A ∪ B \ A ∩ B). In addition with (3.57)
and the coupling (3.34), we thus deduce

lim inf
K→∞

G(K, ε) ≥ lim inf
K→∞

P

(∣∣∣∣∣T (ε,+)
0

lnK

∣∣∣∣∣ ≤ 12η(ε), TP0 < TPε ∧RA0ε ∧ Uε1/6

)
+ oε(1)

≥ lim inf
K→∞

P

(∣∣∣∣∣T (ε,+)
0

lnK

∣∣∣∣∣ ≤ 12η(ε), T
(ε,+)
0 <∞

)
+ oε(1)

≥ lim inf
K→∞

P
(
T

(ε,+)
0 <∞

)
+ oε(1) = qα + oε(1).

(3.59)
This allows the case of extinction to be processed.

Let us now deal with F(K, ε), which represents the case of survival and invasion
of P -individuals. Firstly, reasoning as for (3.58) but with ξ = 1/2, we can get

lim sup
K→∞

P
({
T̄0 =∞

}
4
{
TP√ε < TP0 ∧RA0ε ∧ Uε1/6

})
= oε(1).

Hence

lim inf
K→∞

F(K, ε) =

lim inf
K→∞

P
(∣∣∣∣ TSµlnK

−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ 12η(ε), TSµ < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6

)
+ oε(1). (3.60)

We introduce two sets for any ε > 0, µ > 0,

K1
ε = [πA − δ, πA + δ]×

[ ε
C
, ε

1
2

]
×
[
ρA − ε

1
6 , ρA + ε

1
6

]
×
[
b−d
c
−A0ε,

b−d
c

+A0ε

]
,

K2
µ =

[
b(1 + β1)− d

c
− µ

2
,
b(1 + β1)− d

c
+
µ

2

]
×
[
0,
µ

2

]3
.

as well as the stopping times

T 1
ε = inf

{
t ≥ 0,

(
NAP (t)

NP (t)
,
NP (t)

K
,
NAp(t)

Np(t)
,
Np(t)

K

)
∈ K1

ε

}
,
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T 2
µ = inf

{
t ≥ T 1

ε , Z
K(t) ∈ K2

µ

}
.

Our aim is essentially to prove that the only path to Sµ is through K1
ε and K2

µ, as
presented in the introduction of the paper. Then, using the Markov property and
the previous propositions, we want to estimate TSµ , by dividing [0, TSµ ] into three
parts: [0, T 1

ε ], [T 1
ε , T

2
µ ] and [T 2

µ , TSµ ]. From (3.60),

lim inf
K→∞

F(K, ε)

≥ lim inf
K→∞

P
( ∣∣∣∣ TSµlnK

−
(

1

λ
+

2

bβ1

)∣∣∣∣ ≤ 12η(ε),

TSµ < TP0 , T
P√
ε < TP0 ∧RA0ε ∧ Uε1/6 , T 2

µ < TSµ

)
+ oε(1)

≥ lim inf
K→∞

P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ 4η(ε),

∣∣∣∣∣T 2
µ − T 1

ε

lnK

∣∣∣∣∣ ≤ 4η(ε),

∣∣∣∣∣TSµ − T 2
µ

lnK
− 2

bβ1

∣∣∣∣∣ ≤ 4η(ε),

TP√ε < TP0 ∧RA0ε ∧ Uε1/6 , T 2
µ < TSµ < TP0

)
+ oε(1).

Then, since for ε sufficiently small, RA0ε∧Uε1/6 ≤ TSµ a.s. and using the Markov
property at times T 2

µ and T 1
ε we obtain

lim inf
K→∞

F(K, ε)

≥ lim inf
K→∞

[
P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ 4η(ε), T 1
ε < TP0 , T

P√
ε < TP0 ∧RA0ε ∧ Uε1/6

)
× inf

z(0)∈K1
ε

P
( ∣∣∣∣∣ T 2

µ

lnK

∣∣∣∣∣ ≤ 4η(ε), T 2
µ < TP0

∣∣∣∣Z(0) = z(0)

)
× inf

z(0)∈K2
µ

P
( ∣∣∣∣ TSµlnK

− 2

bβ1

∣∣∣∣ ≤ 4η(ε), TSµ < TP0

∣∣∣∣Z(0) = z(0)

)]
+ oε(1).

(3.61)
To complete the proof it remains to show that the r.h.s of (3.61) is close to 1− qα
when K goes to ∞ and ε is small. Let us start with the first term. Our aim is to
prove that

lim inf
K→∞

P
( ∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ 4η(ε), T 1
ε < TP0 , T

P√
ε < TP0 ∧RA0ε∧Uε1/6

)
≥ 1−qα+oε(1).

(3.62)
To this aim, let us notice that the following series of inequalities holds:

P
(∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ 4η(ε), T 1
ε < TP0 , T

P√
ε < TP0 ∧RA0ε ∧ Uε1/6

)
≥ P

(∣∣∣∣∣ T 1
ε

lnK
−
TP√

ε

lnK

∣∣∣∣∣ ≤ 2η(ε),

∣∣∣∣∣ T
P√
ε

lnK
− 1

λ

∣∣∣∣∣ ≤ 2η(ε), T 1
ε < TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)

≥ P

(
TP√

ε

lnK
− TPε

lnK
≤ 2η(ε), TPε ≤ T 1

ε ≤ TP√ε,∣∣∣∣∣ T
P√
ε

lnK
− 1

λ

∣∣∣∣∣ ≤ 2η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
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Now, if A,B,C and D are events, we have

P(A ∩B ∩ C ∩D) = P(C ∩D)− P
(
(A ∩B)C ∩ C ∩D)

)
≥ P(C ∩D)− P

(
AC ∩D

)
− P

(
BC ∩D

)
.

Applying this to the previous series of inequalities yields

P
(∣∣∣∣ T 1

ε

lnK
− 1

λ

∣∣∣∣ ≤ 4η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6
)
≥

P

(∣∣∣∣∣ T
P√
ε

lnK
− 1

λ

∣∣∣∣∣ ≤ 2η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)

− P

(
TP√

ε

lnK
− TPε

lnK
≥ 2η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
− P

(
T 1
ε /∈

[
TPε , T

P√
ε

]
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
(3.63)

Proposition 3.1 implies that the first term in the right hand side of (3.63) satisfies

lim inf
K→∞

P

(∣∣∣∣∣ T
P√
ε

lnK
− 1

λ

∣∣∣∣∣ ≤ 2η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
≥ 1− qα − oε(1).

From Proposition 3.1, we deduce that the second term of the right hand side of
(3.63) satisfies

lim sup
K→∞

P

(
TP√

ε

lnK
− TPε

lnK
≥ 2η(ε), TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
= oε(1).

Finally Proposition 3.5 implies that the last term of the right hand side of (3.63)
satisfies:

lim sup
K→∞

P
(
T 1
ε /∈

[
TPε , T

P√
ε

]
, TP√ε < TP0 ∧RA0ε ∧ Uε1/6

)
= oε(1).

This leads to (3.62).
Then we deal with the second term of (3.61) by using Proposition 3.7. Using

the continuity of flows of the dynamical system (2.10) with respect to the initial
condition, the compactness of K1

ε and the convergence given by Proposition 3.7,
we get that there exist ε0, δ0 > 0 such that for all ε ≤ ε0, δ ≤ δ0, there exists a
tµ,δ,ε > 0 such that for all t ≥ tµ,δ,ε∥∥∥∥z(z0)(t)−

(
b(1 + β1)− d

c
, 0, 0, 0

)∥∥∥∥
∞
≤ µ

4
,

for every initial condition z0 = (z0
AP , z

0
aP , z

0
Ap, z

0
ap) such that, when we reorganize

the coordinates, the vector
(
z0
AP /z

0
P , z

0
P , z

0
Ap/z

0
p, z

0
p

)
belongs to K1

ε .
Now using Lemma 2.1, we get that for any µ > 0, and ε < ε0,

lim
K→∞

P
(
T 2
µ − T 1

ε ≤ tµ,δ,ε|Z(0) ∈ K1
ε

)
= 1.

In other words, the second term of (3.61) is close to 1 when K converges to ∞ and
ε is small.
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Finally, we deal with the third term of (3.61). Applying Proposition 3.8 we
obtain that there exists µ0 (defined by ε0 in Proposition 3.8) such that for µ < µ0

and ε small enough,

lim
K→∞

P

(∣∣∣∣ TSµlnK
− 2

bβ1

∣∣∣∣ ≤ 4η(ε)

∣∣∣∣∣Z(0) ∈ K2
µ

)
= 1. (3.64)

By combining (3.62), the convergence of the second term of (3.61) to 1 and (3.64),
we get

lim inf
K→∞

F(K, ε) ≥ 1− qα + oε(1).

In addition with (3.59) and (3.56), we deduce (3.55). Finally (2.15) derives from
(3.5) which ends the proof of Theorem 2.2.

Appendix A. Technical results

A.1. Equilibria of dynamical system (2.10). In this section, we study the existence
and the stability of some equilibria of the dynamical system (2.10). For the sake of
readability, we explicitly rewrite the dynamical system below

żAP = bzAP + b
z

[
β1zAP

(
zAP +

zAp
2

)
− β2

(
zAP

(
zaP +

zap
4

)
+ zAp

zaP
4

)]
+ b

2z (zaP zAp − zAP zap)− (d+ cz)zAP
żAp = bzAp + b

z

[
β1zAp

zAP
2 − β2

(
zAp

zaP
4 + zAP

zap
4

)]
− b

2z (zaP zAp − zAP zap)− (d+ cz)zAp
żaP = bzaP + b

z

[
β1zaP

(
zaP +

zap
2

)
− β2

(
zaP

(
zAP +

zAp
4

)
+ zap

zAP
4

)]
+ b

2z (zAP zap − zaP zAp)− (d+ cz)zaP
żap = bzap + b

z

[
β1zap

zaP
2 − β2

(
zap

zAP
4 + zaP

zAp
4

)]
− b

2z (zAP zap − zaP zAp)− (d+ cz)zap
(A.1)

where z = zAP + zAp + zaP + zap is the total size of the population.

Proposition A.1. The dynamical system (A.1) admits the following equilibria,
with at least a null coordinate:

(i): The state (0, 0, 0, 0), which is unstable.
(ii): Any state where only allele p remains at locus 2,(

0, ρ
b− d
c

, 0, (1− ρ)
b− d
c

)
, ρ ∈ [0, 1].

The stability of these equilibria has been studied in Proposition 3.6.
(iii): The three following states for which only allele P remains at locus 2

χAP =

(
(1 + β1)b− d

c
, 0, 0, 0

)
, χaP =

(
0, 0,

(1 + β1)b− d
c

, 0

)
and (

b(1 + (β1 − β2)/2)− d
2c

, 0,
b(1 + (β1 − β2)/2)− d

2c
, 0

)
.

The first two equilibria are stable, whereas the last one is unstable.

Proof : (i): The state (0, 0, 0, 0) is an equilibrium, from Equation (A.1). To
prove that it is unstable, let us consider ε > 0 and assume that the initial
condition z0 satisfies z(0) = ||z0||1 ≤ ε. We denote by tε = inf{t ≥ 0, z(t) >
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ε} which would be infinite if z lies in the basin of attraction of (0, 0, 0, 0).
From (A.1), we find

żA − ża = (b− d− cz) (zA − za) +
bβ1

z
(zAP zA − zaP za).

Thus, we obtain that ∀t ≤ tε,
żA − ża ≥ (zA − za)(b− d− cε)− bβ1ε.

Let φ be the unique solution to the linear differential equation

φ̇ = φ(b− d− cε)− bβ1ε.

Then

φ(t) = (φ(0)− ε(b− d− cε)−1)e(b−d−cε)t + bβ1ε(b− d− cε)−1.

Using classical results on differential inequalities we deduce that if (zA −
za)(0) = φ(0) then for all t ≤ tε, z(t) ≥ (zA − za)(t) ≥ φ(t). Since for ε
small enough φ(t) → ∞ as t → ∞, we deduce that tε is finite. In other
words, (0, 0, 0, 0) is unstable.

(ii): Let us assume that zAP = zaP = 0. Then, (A.1) can be reduced to{
żAp = (b− d− cz)zAp
żap = (b− d− cz)zap.

Therefore, the set of points (0, zAp, 0, (b−d)/c−zAp) with zAp ∈ [0, (b−d)/c]
corresponds to the set of non null equilibria such that zAP = zaP = 0.

(iii): Let us assume that zAp = zap = 0. Then from (A.1),

żAP = 0 = zAP

(
(b− d− cz) +

bβ1

z
zAP −

bβ2

z
zaP

)
, (A.2)

and

żaP = 0 = zaP

(
(b− d− cz) +

bβ1

z
zaP −

bβ2

z
zAP

)
. (A.3)

If zAP = 0, then zaP = ((1 +β1)b−d)/c, and similarly when exchanging
A and a. For these equilibria, the eigenvalues of the Jacobian matrix are:(

−bβ1

2
,−b(β1 + β2),− b

4
(2 + 4β1 + β2),−b(1 + β1) + d

)
.

Since b > d, these eigenvalues are negative and these equilibria are therefore
stable.

If zAP > 0 and zaP > 0 then by dividing (A.2) by zAP and (A.3) by zaP
and making the difference between both expressions, we get:

b

z
(β1 + β2) (zAP − zaP ) = 0.

Then

zAP = zaP =
b(1 + (β1 − β2)/2)− d

2c
from (A.2).

The eigenvalues of the Jacobian matrix in this equilibrium are:(
b

2
(β1 + β2),

b

4
(β2 − β1),− b

4
(2 + β1 − 2β2),− b

2
(2 + β1 − β2) + d

)
.

The first eigenvalue is positive, therefore this equilibrium is unstable.
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We finally show that there is no other equilibrium with at least a null coordinate.
To this aim, we first consider the case where za = 0. Then

żA = (b− d− cz)zA +
bβ1

z
zAP zA = 0,

and zA = 0 (which is the trivial equilibrium (i)) or b−d−cz+bβ1zAP /z = 0. In the
second case, from the equation satisfied by zAP , we deduce that bβ1zAP zAp/(2z) =
0. Hence either zAP = 0 or zaP = 0 (which corresponds to Equilibrium (ii)).
Similar equilibria are retrieved by assuming zA = 0.

Finally consider the case where zap = 0. Then from the equation satisfied by zap
given in (A.1),

żap = 0 =
b

2z
zaP zAp(1−

β2

2
).

Therefore zaP = 0 (then za = 0 which corresponds to the case that has just been
considered) or zAp = 0 (which corresponds to Equilibrium (iii)). Similar arguments
can be made assuming zAp = 0 or zaP = 0 or zAP = 0.

�

A.2. Proof of Proposition 2.3. In the particular case where ρA = 1, the transition
rates of the bitype branching process N̄ are equal to

β̄AA =
b

2
(2 + β1), β̄aa = β̄aA =

b

2

(
1− β2

2

)
and β̄Aa = 0,

and the system (2.7) giving the extinction probabilities of the branching process N̄
takes the simpler form:

uA(sA, sa) = b(1− sA) +
b

2
(2 + β1)(s2

A − sA)

ua(sA, sa) = b(1− sa) +
b

2

(
1− β2

2

)
(s2
a − sa) +

b

2

(
1− β2

2

)
(sAsa − sa).

Recall that the extinction probabilities we are looking for are the smallest solution
to uα(sA, sa) = 0, α ∈ A. We easily obtain from the first, linear, equation an
expression of qA. Then replacing it with its expression in the second equation gives
that qa is the root of a second order polynomial function. This gives the result.

A.3. Probabilistic technical results.

Lemma A.2. Let (N̄A, N̄a) be a two-type branching process. We recall that, for
α ∈ A, qα is the extinction probability of the process when the initial individual is
of type α

qα = P
(
∃t > 0, N̄A(t) + N̄a(t) = 0

∣∣∣(N̄A(0), N̄a(0)) = eα

)
< 1,

where we denote by (eA, ea) the canonical basis of R2. Let C > 2 satisfying

C

(
max{qA, qa}

C − 1

)1−1/C

< 1. (A.4)

Then
lim
k→∞

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
= 0,

where the stopping time Sl is defined for any l ∈ N by

Sl := inf{t ≥ 0, N̄A(t) + N̄a(t) = l}.
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Proof : Let us first remark that it is possible to choose such a constant C > 2 since
the map x 7→ x(max(qA, qa)/(x−1))1−1/x is continuous and goes to max(qA, qa) < 1
as x→∞.
There are initially k individuals and we want to bound the probability that the
population size reaches bk/Cc. If this happens at a finite time, then it means that,
at least, k − bk/Cc individuals alive at time 0 have a finite line of descent. But
we know that each individual has a finite line of descent with a probability smaller
than q := max(qA, qa). Then using the branching property, the probability that
exactly i initial individuals out of k have a finite line of descent is smaller than(
k
i

)
qi(1− q)k−i. Hence

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
≤

k∑
i=k−bk/Cc

(
k

i

)
qi(1− q)k−i.

Since i 7→ qi and i 7→
(
k
i

)
are decreasing functions as soon as i ≥ k/2 , we deduce

that for C > 2 and k large

P
(
Sbk/Cc <∞|N̄A(0) + N̄a(0) = k

)
≤
(

k

k − bk/Cc

)
qk−bk/Cc

k∑
i=k−bk/Cc

(1− q)k−i

≤ 1

q

k!

(bk/Cc)!(k − bk/Cc)!
qk−bk/Cc.

Moreover, using Stirling’s formula we get
k!

(bk/Cc)!(k − bk/Cc)!
qk−bk/Cc

∼
k→∞

√
kkkqk−bk/Cc√

2πbk/Cc(k − bk/Cc)bk/Ccbk/Cc(k − bk/Cc)k−bk/Cc

∼
k→∞

√
C

2πk(1− 1/C)

(
kq

k − bk/Cc

)k (
k − bk/Cc
bk/Ccq

)bk/Cc
→
k→∞

0,

under assumption (A.4). This ends the proof. �

Lemma A.3. Let us consider a one dimensional pure birth process X with birth
rate b. Denote for k > 0 by τk the hitting time of bkc by the process X. Then there
exists a finite C such that

lim sup
K→∞

P
(
τ√εK < τεK + ln ln 1/ε

)
≤ C
√
ε(ln 1/ε)b.

Proof : Using the Markov property of the process, we find

P
(
τ√εK < τεK + ln ln 1/ε

)
= P

(
τ√εK < ln ln 1/ε

∣∣∣X(0) = bεKc
)

= P
(
X(τ√εK)e−bτ

√
εK > b

√
εKc(ln 1/ε)−b

∣∣∣X(0) = bεKc
)
.

Now using Markov Inequality and the fact that conditioning on {X(0) = bεKc},
X(t)e−bt is a martingale with expectation bεKc, we obtain

P
(
τ√εK < τεK + ln ln 1/ε

)
≤ bεKc
b
√
εKc(ln 1/ε)−b

∼
√
ε(ln 1/ε)b, for K →∞.

This concludes the proof. �
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Lemma A.4. Let us consider a family of two-type branching processes (N̄ε
A, N̄

ε
a , ε ∈

R) whose transition rates are given by

(N̄ε
A, N̄

ε
a)→ (N̄ε

A + 1, N̄ε
a) at rate bεAAN̄

ε
A + bεaAN̄

ε
a ,

(N̄ε
A, N̄

ε
a)→ (N̄ε

A, N̄
ε
a + 1) at rate bεAaN̄

ε
A + bεaaN̄

ε
a ,

(N̄ε
A, N̄

ε
a)→ (N̄ε

A − 1, N̄ε
a) at rate dεN̄ε

A,

(N̄ε
A, N̄

ε
a)→ (N̄ε

A, N̄
ε
a − 1) at rate dεN̄ε

a ,

and let us denote by qε = (qεA, q
ε
a) the extinction probabilities of the process N̄ε with

initial state an individual of type A or a.
(i) Let us assume that the functions ε 7→ bεi > 0 for i ∈ A2 (resp ε 7→ dε > 0) are
of class Ck for k ≥ 0 in ε = 0 and that the process (N̄0

A, N̄
0
a ) is supercritical. Then

the application ε 7→ qε is of class Ck in ε = 0.
(ii) Let us assume furthermore that the functions ε 7→ bεi > 0 for i ∈ A2 (resp
ε 7→ dε > 0) are non decreasing (resp. non increasing), and consider ε1 ≤ ε2 then
the extinction probabilities qi = (qεiA , q

εi
a ) (i ∈ {1, 2}) of the two branching processes

(N̄εi
A , N̄

εi
a ) satisfy

q1 ≤ q2,

where the inequality applies to both coordinates.

Proof : (i) The proof relies on Theorem 6.2 of Alili and Rugh (2008) that considers
multi-type discrete time branching processes. The process (N̄ε

A, N̄
ε
a , ε ∈ R) is a

continuous time multi-type linear birth-and-death process in which for all α1, α2 ∈
A0, individuals with genotype α1 die at rate dε and produce an offspring with
genotype α2 at rate bεα1,α2

. For all α1, α2 ∈ A0, the random variable Nα1,α2
giving

the number of offsprings of type α2 of a given individual of type α1 satisfies

P(Nα1,α2
= k) =

(
bεα1α2

bεα1A
+ bεα1a + dε

)k
dε

bεα1A
+ bεα1a + dε

which is assumed to be Ck in ε at 0. Let us consider the discrete time stochastic
process with values in N2 giving the number of individuals of each type at each
generation, whose extinction probability is equal to qε. Then for any (sA, sa) ∈
[0, 1)2,

E(s
Nα,A
A sNα,aa ) =

dε

bεαA + bεαa + dε − bεαAs1 − bεαas2
.

To apply Theorem 6.2 of Alili and Rugh (2008), we therefore need to find s =
(sA, sa) ∈ [0, 1)2 such that

E(s
Nα,A
A sNα,aa ) < sα for all α ∈ A.

This condition is sufficient to check Assumption 6.1 of Alili and Rugh (2008) (in
which α is now denoted (s1, s2)) because we use here the particular framework of
constant environment. Therefore, by taking

s̃α =
E(s

Nα,A
A s

Nα,a
a ) + sα
2

,

we get
E(s

Nα,A
A sNα,aa ) < s̃α < sα for all α ∈ A2
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which is exactly Assumption 6.1 of Alili and Rugh (2008). For any (s1, s2) ∈ [0, 1)2,
let

φ(s1, s2) = (s1(b11 +b12 +d−s1b11−s2b12)−d, s2(b21 +b22 +d−s1b21−s2b22)−d).

We have φ(1, 1) = (0, 0) and we seek (s1, s2) ∈ [0, 1)2 such that φ(s1, s2) > (0, 0)
where the inequality applies to both coordinates. This is possible if the jabobian
matrix of the application φ in (1, 1) which is equal to

(
d− b11 −b12

−b21 d− b22

)

has a negative eigenvalue and this condition is equivalent to the supercriticality of
the process (N̄0

A, N̄
0
a ).

(ii) The proof relies on a coupling argument. Let us construct the two processes
using the same Poisson point measures. Then we have that almost surely

N̄1
A ≥ N̄2

A and N̄1
a ≥ N̄2

a .

Therefore, for every t ≥ 0,

P(N̄1(t) = 0) ≤ P(N̄2(t) = 0),

which gives the result, by letting t→∞.
�

Appendix B. Table for birth rates

In the Table B.1 we present the birth rates and the possible offspring of every
couples in the population. When a P individual is involved, we differentiate whether
it is the choosing parent (1st parent) or the chosen one (2nd parent). Let us briefly
recall how the table is constructed.

For the possible offspring, we assume Mendelian reproduction meaning that for
each gene independently an allele is chosen at random among the two alleles of the
parent. As an example, in a mating AP × Ap the offspring will necessary receive
allele A and then choose with equal probability between p and P , and we note in the
third column 1/2AP and 1/2Ap. For the birth rate of the same couple, since the
choosing parent carries allele P , mating occurs with a preference at rate b(1 + β1)
since both parent carry allele A.
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1st parent 2nd parent Descendant Rate
Ap Ap Ap b

nApnAp
n

ap ap ap b
napnap

n

ap Ap 1
2
ap b

napnAp
n

1
2
Ap b

napnAp
n

Ap ap 1
2
ap b

napnAp
n

1
2
Ap b

napnAp
n

AP AP AP b(1 + β1)
nAPnAP

n

aP aP aP b(1 + β1)
naPnaP

n

aP AP 1
2
aP b(1− β2)

naPnAP
n

1
2
AP b(1− β2)

naPnAP
n

AP aP 1
2
aP b(1− β2)

naPnAP
n

1
2
AP b(1− β2)

naPnAP
n

AP Ap 1
2
AP b(1 + β1)

nAPnAp
n

1
2
Ap b(1 + β1)

nAPnAp
n

Ap AP 1
2
AP b

nAPnAp
n

1
2
Ap b

nAPnAp
n

aP ap 1
2
aP b(1 + β1)

naPnap
n

1
2
ap b(1 + β1)

naPnap
n

ap aP 1
2
aP b

naPnap
n

1
2
ap b

naPnap
n

AP ap 1
4
AP b(1− β2)

nAPnap
n

1
4
Ap b(1− β2)

nAPnap
n

1
4
aP b(1− β2)

nAPnap
n

1
4
ap b(1− β2)

nAPnap
n

ap AP 1
4
AP b

nAPnap
n

1
4
Ap b

nAPnap
n

1
4
aP b

nAPnap
n

1
4
ap b

nAPnap
n

aP Ap 1
4
AP b(1− β2)

naPnAp
n

1
4
Ap b(1− β2)

naPnAp
n

1
4
aP b(1− β2)

naPnAp
n

1
4
ap b(1− β2)

naPnAp
n

Ap aP 1
4
AP b

naPnAp
n

1
4
Ap b

naPnAp
n

1
4
aP b

naPnAp
n

1
4
ap b

naPnAp
n

Table B.1. This table gives the rates at which two parents with
given genotypes give birth to an offspring with given genotype,
for all possible values of these genotypes. By convention, the first
parent is assumed to be responsible for homogamy, when carrying
allele P .
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