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ABSTRACT

Identification of damage in its early stage can have a great
contribution in decreasing the maintenance costs and pro-
longing the life of valuable structures. Although conventional
damage detection techniques have a mature background, their
widespread application in industrial practice is still missing.
In recent years the application of Machine Learning (ML) al-
gorithms have been more and more exploited in structural
health monitoring systems (SHM). Because of the superior
capabilities of ML approaches in recognizing and classify-
ing available patterns in a dataset, they have demonstrated a
significant improvement in traditional damage identification
algorithms. This review study focuses on the use of ma-
chine learning (ML) approaches in Ultrasonic Guided Wave
(UGW)-based SHM, in which a structure is continually mon-
itored using permanent sensors. Accordingly, multiple steps
required for performing damage detection through UGWs are
stated. Moreover, it is outlined that the employment of ML
techniques for UGW-based damage detection can be sub-
tended into two main phases: (1) extracting features from the
data set, and reducing the dimension of the data space, (2)
processing the patterns for revealing patterns, and classifica-
tion of instances. With this regard, the most frequent tech-
niques for the realization of those two phases are elaborated.
This study shows the great potential of ML algorithms to as-
sist and enhance UGW-based damage detection algorithms.

1. INTRODUCTION

During the past decades a number of large structures, that our
modern society is highly dependent on, have been built and
manufactured covering a range of application fields – from
civil engineering to aerospace and automotive industries. It
is obvious that devising a strategy for prolonging the lifetime
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of those structures yields a massive save of natural as well as
economic resources. This initiates the necessity of having a
reliable approach for assessing the health condition of those
structures.

Structural Health Monitoring (SHM), as a remedy for the de-
scribed issue, has gained profound attention during the last
two decades. The terminology of SHM describes the process
of designing a paradigm, whose outcome is the determina-
tion of the health state of the structure. This process usually
involves (1) the observation of the structure, (2) extraction of
features that are sensitive to the damage, and at last (3) devel-
oping appropriate approaches for the final decision making
about the presence of any damage, its location, and its sever-
ity. There are multiple choices for each of these steps, which
also define the category of the conceived SHM scheme. For
instance, the observation of a structure can be carried out by
means of different sensory technologies such as accelerome-
ters, laser Doppler vibrometers (LDVs), piezoelectric trans-
ducers, etc. The nature of the observation, and the diagno-
sis signal, bring the discussion to a well-known category of
the SHM techniques, namely, UGW-based methods. In this
family of methods, the diagnosis signal is usually a guided
wave that is propagated through the structure. The interaction
of the propagated wave and the damage in a structure intro-
duces some sort of fingerprints in the captured signals. With
the help of proper signal processing methods, those finger-
prints can be accentuated as features. A detailed discussion
on different types of techniques for performing a UGW-based
SHM can be found in (Giurgiutiu, 2007) and (Zhongqing SU,
2009). The characteristics extracted from processing of the
raw signals can then be put into decision-making algorithms
to determine if the structure is damaged. The latter step can
be performed by using physical models (Barthorpe, Hughes,
& Gardner, 2021) of the structure, or statistical data-driven
models mainly based on ML techniques (Farrar & Worden,
2012). It is important to emphasize that model-driven proce-
dures need manual work from professionals with an in-depth
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understanding of the complicated system’s physical, mechan-
ical, electrical, data flow, or other relevant components. As a
result, experienced specialists are often limited and costly re-
sources, and they are also prone to human mistakes. The most
significant disadvantage is that human-centric modeling takes
a long time.

The hierarchy of the damage detection paradigm stated by
(Rytter, 1993), outlines the prognosis of the damage in four
steps, namely, (Level 1) Detection, (Level 2) Localization,
(Level 3) Assessment, and (Level 4) Prediction. It was ar-
gued by (Worden & Manson, 2006), that the ML can offer a
robust and reliable framework to address levels 1 to 3 of these
steps. However, in the previous decade, the applicability of
ML in damage detection was not fully feasible. This was due
to a lack of data from the structures, which should be pro-
vided into the ML algorithms. However, during the past 10
years, we are observing the era of ”big data”. Accordingly,
in the field of SHM, due to embedded sensory technologies
with structures, more and more data can be available. Also,
the maturity of machine learning technologies, as well as
advancements in IT infrastructure and requisite technology,
make applying machine learning approaches into SHM more
feasible. ML algorithms give mathematical tools for linking
the system’s input, which is the measured signal, and the out-
put, which is the structure’s health state. In a closer look,
the entire scheme can be outlined as obtaining the diagnosis
signals, extracting and selecting features, and classifying the
instances of the problem based on the defined classes.

In recent years, several review studies have been performed
to provide a state-of-the-art of ML application in SHM. For
instance, (Gordan, Razak, Ismail, & Ghaedi, 2017) carried
out a review of the data mining methods in damage detection,
where they have considered several classifications and regres-
sion methods such as Artificial Neural Network (ANN), Sup-
port Vector Machine (SVM), Bayesian analysis (Adeli, Rosić,
Matthies, Reinstädler, & Dinkler, 2020a, 2020b), etc. More-
over, the drawbacks and limitations of the reviewed meth-
ods are also discussed. In another recent review article per-
formed by (Avci et al., 2021), the application of machine
learning algorithms in vibration-based SHM is investigated.
This comprehensive work has reviewed articles exclusively
with application in civil structures. Furthermore, review ar-
ticles presented in (Flah, Nunez, Chaabene, & Nehdi, 2020;
Martinez-Luengo, Kolios, & Wang, 2016; Mishra, 2020; Toh
& Park, 2020) have considered also the application of ML in
vibration-based SHM. Yet, the void of performing a review
study on the application of ML techniques in UGW-based
SHM can be observed. To this end, the current study out-
lines the state-of-the-art in the field of UGW-based damage
detection by the utilization of ML techniques.

Based on the reviewed studies, an overview of performing
UGW-based damage detection on an arbitrary type of struc-

ture by means of ML algorithms can be described by Figure
1. The flowchart depicted in this figure shows that the input
to this system is a set of UGW signals, which at the first step
required to be pre-processed. According to the reviewed ar-
ticles, two useful techniques to perform this task are listed.
In the next station, according to the nature of the problem,
it is needed to generate features and afterward apply the di-
mension reduction, or the other way round. The options for
performing this step are listed as well in the corresponding
boxes at the mentioned stages. Subsequently, the obtained
features from the previous step should be fed into a classifi-
cation algorithm for the determination of the health state of
the structure. In a similar way, other multi-class classification
algorithms can be employed to localize damage on the struc-
ture. Alternative to classification algorithms, it is possible to
employ clustering algorithms where no labeled data is avail-
able, and a so-called unsupervised learning task should be
performed. The current paper is structured based on the main
steps represented in Figure 1; accordingly, section 2 elabo-
rates the scheme of conventional UGW-based damage detec-
tion algorithms by expressing their building blocks. The main
part of the current study is represented in section 3, where
two main aspects of performing ML algorithms, namely, fea-
ture extraction and pattern recognition are discussed. In this
section, the most frequent algorithms concerning those two
main aspects are selected. After a brief explanation about
each of the methods, the associated studies, in which those
techniques have been implemented are presented. Lastly, in
section 5, the main findings of the study are described, and an
outline for future works is stated.

1.1. Search methodology and selection criteria

ML can be designated as one of the most rapidly expanding
research fields nowadays. Its emerging expansion affects all
fields, not avoiding also SHM and NDE. Therefore, selection
of the reviewed field and its narrowing in order to address
specific classes of interest for a predestinated readership plays
an important role. In order to carefully select a reviewed field
of interest a thorough analysis was performed, that can be
summarized as follows.

• The search in the framework of this study was performed
based on the entries in referent data bases that are ac-
knowledged in the scientific community and are set as a
standard for evaluating the impact of publications. Sci-
ence Direct, ASCE library, Web of Science, Scopus,
SAGE Publication, and Wiley Online Library databases
are utilized to search for the reviewed articles in the cur-
rent study.

• The search was performed based on the following
keywords: ”Machine learning”, ”Damage detection”,
”Structural health monitoring”, ”Guided wave”, ”Arti-
ficial intelligence”, ”Deep learning”, and ”Ultrasonic
guided wave damage detection”.
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Figure 1. An overview for performing UGW-based damage detection along with implementation of machine learning algo-
rithms.

• After a first broader selection based on keywords and
thorough consideration of the abstracts and the method-
ologies applied in the papers, in the next step the field
designated for the survey was further narrowed by ex-
cluding those papers which have employed the data from
images, vibration signal, acoustic emission, and other
sources, rather than UGW signals, resulting in the ref-
erences reported in this work.

Although a thorough search has been performed with the aim
to observe most of the published papers in line with the scope
of this investigation, another even more important goal of
this study is to find out the most unique works with versa-
tile employment of ML methods. To this end, each selected
article is studied carefully to obtain the key points with re-
gard to employed feature extraction, dimension reduction,
and pattern processing techniques. This approach attempts
to present a well-documented guideline for future works on
the implementation of ML in UGW-based damage detection
techniques.

2. UGW-BASED DAMAGE DETECTION

The use of UGWs for SHM has been thoroughly discussed in
several review papers (Mitra & Gopalakrishnan, 2016; Z. Su,
Ye, & Lu, 2006; Raghavan & Cesnik, 2007; J. L. Rose, 2002;

Chimenti, 1997; J. Rose, 2000; Lee & Staszewski, 2003).
The current study does not aim to go deeply into the dif-
ferent classes of UGW-based methods and their principles.
However, this section tries to elaborate the matter briefly, so
that the readers can comprehend the next sections without the
need of reviewing other publications. UGW-based methods
for SHM have been implemented and developed widely in
the last two decades. The evolution of this category of meth-
ods has been originated from the conventional Nondestruc-
tive Inspection (NDI) and Nondestructive Testing (NDT). In
an SHM approach for utilization of UGWs, no large and ex-
pensive ultrasonic transducers are required and mostly piezo-
electric sensors are employed for actuation/sensing of waves.
Five main advantages of UGW-based methods are (1) cheap
and normally lightweight transducers, which can be easily
mounted on the structure, (2) the capability of scanning a
large area even with a limited number of transducers, (3) due
to high-frequency content of the excitation signal, even small
damages in the structure can be detected, (4) low-frequency
vibrations, which are largely caused by the environment, do
not interfere with the UGWs and may be effectively sepa-
rated during signal processing step, and (5) due to utilization
of the transient part of the signal for this method, the effect
of structural damping is not prominent (Mitra & Gopalakrish-
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nan, 2016).

Lamb wave, named after a British applied mathematician Ho-
race Lamb (Lamb, 1917), is one of the most utilized types of
waves in UGW-based methods. They are guided between the
upper and the lower or the inner and the outer surfaces of
a plate or cylindrical shell, respectively. Therefore, they are
the most qualified candidate to be employed in thin-walled
structures. There are two basic types of Lamb waves, namely
symmetric and antisymmetric. Each of these wave types
can possess several modes. Accordingly, their propagation
is multi-modal and dispersive. The principle, which enables
the UGWs to reveal the damage, is the change of the proper-
ties of the structure at a local and global scale after the pres-
ence of any abnormality in the structure. These abnormalities
can be induced in a structure due to a crack, corrosion, de-
lamination, or other possible factors. These imperfections are
prone to be seen in the dynamical responses of a structure.
The aim of the UGW-based methods is to capture these intro-
duced changes in the dynamical response of the structure and
to interpret their physical relevance. Particularly, there exists
valuable information in the scattered waves by the damage,
which is a result of the interaction between Lamb waves and
structural damage. Three essential steps can be named, that
make the detection of damage using UGWs possible:

1. Activation of the favored UGW by employing the appro-
priate transducers, and capturing the scattered wave by
means of a configuration of sensors;

2. Processing the captured signals to evoke and assess their
characteristic;

3. Definition of damage indices by establishing a correla-
tion between the extracted features and physical or data-
driven models.

Point (1) can have an experimental or numerical realization.
The necessity to have a reliable model for the structure to
describe the propagation of the wave or to prepare a robust
and reliable experimental setup plays a substantial role in
the accuracy of the implementation of the next steps. Due
to the focus of the current study on the implementation of
ML methods in UGW-based SHM, this point is not explained
in the current work and further information can be found in
(Zhongqing SU, 2009). However, points (2) and (3) have
more importance in this context and require elaboration on
them. The flowchart for performing a classical damage detec-
tion task is presented in Figure 2. According to this flowchart,
selection and deployment of the sensors’ network is the first
step. Afterward, through pre-processing, and feature extrac-
tion steps, the required data for revealing the patterns are pro-
vided. In the data fusion step, the information for making the
ultimate decision about the presence of the damage is com-
bined. This information has two sources. First, the damage
detection database which concerns prior measurement on a
pristine structure, as well as other damage scenarios. The

Network of sensors

Signal pre-processing

Feature extraction

Pattern Processing

Data fusion

Outcome of algorithm
(damaged / healthy?)

Engineering
knowledge

Damage detection
database

Figure 2. Flowchart of performing damage detection by
means of UGW signals

second source is the engineering knowledge that originates
from the available physical models for the structure.

2.1. Processing of UGW signals

There is a high correlation between the accuracy of a chosen
damage detection algorithm and the processing of the signal.
Different damage detection algorithms need specific process-
ing approaches. A common categorization of the signal pro-
cessing methods can be carried out based on the domain, in
which the processing is performed. This approach divides
the signal processing methods into three categories: 1) time
domain, 2) frequency-domain, and 3) joint time-frequency-
domain analyses. These three main realms of categories are
elaborated in this section. However, a thorough study on the
signal processing methods, which are beneficial for the dam-
age detection algorithms can be found in (W. J. Staszewski &
Worden, 2003; W. Staszewski, 2002).

2.1.1. Time domain methods

By considering this point that a Lamb wave is recorded as a
time-series, several time-domain-based characteristics can be
obtained from it. One of the frequent methods to extract the
energy distribution of a lamb wave is the Hilbert transform.
The Hilbert transform is defined as (Pandey, 1996):

H t
1

⇡

f ⌧

t ⌧
d⌧ (1)

where H t is the Hilbert transform of the signal f t . Based
on H t and f t a so-called analytic signal FA t can be
constructed:

FA t f t iH t e t .e
i� t (2)

here e t and � t denote the module and instantaneous
frequency of FA t . Furthermore, the envelope of e t

shows the distribution of the energy in time domain.
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(W. J. Staszewski & Worden, 2003; Coverley & Staszewski,
2003; Michaels, 2008; Michaels & Michaels, 2007a; Kon-
stantinidis, Drinkwater, & Wilcox, 2006; Sattarifar &
Nestorović, 2021) can give examples for the application of
Hilbert transform in a damage detection context. Correla-
tion analysis is another algorithm, which can provide a good
comparison between two states: healthy and damaged. For
instance, (Z. Su, Wang, Chen, Ye, & Wang, 2006) has used
the auto-correlation algorithm to provide the information re-
quired for the assessment of a carbon fiber/epoxy woven
plate’s delamination. There are several other criteria that can
be defined in the time-domain such as Root Mean Square
(RMS), standard deviation, Time-of-Flight (ToF) of the sig-
nal, etc. All of these parameters assist different damage de-
tection methods to reveal the presence of the damage. The
detail of these characteristics and their examples can be found
in (Z. Su & Ye, 2009; Mitra & Gopalakrishnan, 2016).

2.1.2. Frequency domain methods

Frequency-domain methods can reveal certain characteristics
of the signal which are not prominent in the time-domain. In
order to transfer the recorded time-series into the frequency-
domain Fourier transform is often used. However, it should
be noted that due to the discrete nature of the captured
time-series, discrete Fourier transform (DFT) is required to
be employed. By using DFT, a signal can be expressed
in frequency-domain, and information such as its frequency
content can be demonstrated. The mathematical formulation
for DFT of a discrete function x n is shown in equation (3).

Xk

N

n 1

xne
2⇡i
N kn

k 1, 2, ..., N , (3)

where Xk is the transformed value of the time-domain func-
tion into the frequency-domain and N is the number of sam-
ples of the time-series.

Using frequency-domain methods enables several possibili-
ties. For instance, through this transformation digital signal
filters can be applied to the signal. This filtering process often
helps to isolate the band of interest for damage identification
from the original signal (Michaels, Lee, Croxford, & Wilcox,
2013; Sattarifar & Nestorović, 2019). Furthermore, spectral
analysis can be performed to obtain a damage index. With
this regard, (Kedra & Rucka, 2017) considered the use of
power spectral moment as a quantitative indicator for com-
paring the UGW signals measured in healthy and damaged
states of a structure. The employment of transfer functions
is another option for working with transformed data in the
frequency-domain. Recently (Tan et al., 2022) has employed
the transfer function technique for damage detection in car-
bon fiber-reinforced polymer (CFRP) plates.

2.1.3. Joint time-frequency domain methods

This family of methods by combining the analysis per-
formed in time and frequency-domain avoids losing the im-
portant information carried by the original signal. Short-time
Fourier transform (STFT), Wigner-Ville distribution (WVD)
and wavelet transform (WT) are the three main algorithms
that are employed in a joint time-frequency domain. The
outcome of these algorithms reflects the information regard-
ing the frequency content of a signal and the time of its oc-
currence simultaneously in a plot. Among these three algo-
rithms, WT has captured most of the attention in the SHM
community, due to its applications in de-noising and filter-
ing (Chen et al., 2013), as well as detection of ToF (Perelli,
Marchi, Marzani, & Speciale, 2014). Further explanation on
the WTs can be found in section 3.1.2; in addition, a detailed
mathematical description of WTs can be obtained in (Chui,
1997) as well.

2.2. Damage Index

All of the analyses explained in section 2.1 should serve the
problem of damage detection. The final purpose of signal pro-
cessing methods is to reveal the changes which can be present
between two states of a structure, i.e damaged and healthy.
Observing and quantifying these changes require the defini-
tion of features which should be extracted from the signal.
Similar to the processing methods that are explained in time,
frequency, and joint time-frequency-domain, damage indices
(DIs) or sensitive features to damage can be defined as well
in these three domains.

Peak-to-peak amplitude (Betz, Staszewski, Thursby, & Cul-
shaw, 2006), signal variance, ToF (Betz et al., 2006; Sattar-
ifar & Nestorović, 2019; Sharif-Khodaei & Aliabadi, 2014),
wave energy (Michaels & Michaels, 2007b) are the main fea-
tures which can be defined in a time-domain based method.
ToF has shown itself to be one of the most employed fea-
tures among all of the mentioned characteristics of the sig-
nal. The use of DIs based on the statistical indicators is
also exploited by many researchers. In a work performed by
(Sattarifar & Nestorović, 2021), the statistical indicators such
as mean, max, kurtosis, skewness, root mean square, etc. are
used to generate scalar features from a time-series. The defi-
nition of features in frequency-domain is also in a close cor-
relation with the processing methods defined in this domain.
Accordingly, the most applicable features are: spectral den-
sity, FFT coefficients, and Figure-of-Merit (FoM) (Tracy &
Chang, 1998). Similarly, DIs can be defined in a joint time-
frequency-domain analysis based on WT coefficients. Com-
parison of measured signals from a healthy structure and a
damaged one can also contribute to generation of new fea-
tures. Several DIs based on the cross correlation between
the signals from the intact and damaged models are imple-
mented in a study by (Mechbal & Rebillat, 2017) to show
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to what extent a structure is damaged. Further DIs can be
defined by taking into the account the path between the trans-
ducers (Olisa, Khan, & Starr, 2021). Moreover, (Xu, Yuan,
Chen, & Ren, 2019) has employed other DIs such as spa-
tial phase difference, spectrum loss, differential curve energy,
normalized correlation moment, etc. based on the compari-
son between the signals obtained from the damage state and
the intact state.

In recent years, other novel damage indices also have
been proposed by many scholars. For instance, (Cantero-
Chinchilla et al., 2021) introduced an index that by using
fuzzy logic basics, measures the time-of-flight mismatch of
sequential ultrasonic guided-wave data. Also, there are other
indices that can be generated according to ML principles
(K. Wang et al., 2021), which can also be considered as fea-
tures. More explanation of them is available in section 3.1.

2.3. Assortment of UGW-based damage identification al-
gorithms

After obtaining and extracting the proper features out of the
signals, it is time to aggregate and interpret these features.
There are multiple algorithms that can facilitate this job. In
this section, the most common ways of their classification are
presented. Moreover, for selected categories, examples are
provided.

Based on the characteristic of information that damage detec-
tion algorithms can provide to the user, they can be catego-
rized at three levels:

1. Identification: at this stage only the presence of the
damage in the structure can be diagnosed;

2. Localization: at this level the spatial coordinate of the
present damage in the structure can be predicted;

3. Quantification: at this level not only the location of the
damage but also the severity of it can be detected.

Dependence of a damage detection method on the baseline
data (data from the healthy state) provides another option for
categorizing them:

1. Baseline dependent
2. Baseline independent

In a baseline-dependent method, an array of transducers is
employed at two states (healthy and damaged) of the struc-
ture to detect the damage. One of the most implemented
techniques in this category of methods is regarded as the
probability-based imaging algorithms, where the generated
image reflects the probability of the presence of the damage
at specific locations on the structure (Figure 3). The cre-
ation of such images is based on multiple time-domain fea-
tures such as ToF, and amplitude of a specific wave mode.
Lamb wave tomography which is regularly employed in con-

Figure 3. An example of the generated contour plot in de-
lay and sum imaging technique (simulation and analysis per-
formed by authors)

ventional ultrasonic testing is one of the most classical ex-
amples of this family of methods (McKeon & Hinders, 1999;
Jansen, Hutchins, & Mottram, 1994). A comparative study of
several tomographic algorithms can be also found in (Zhao,
Royer, Owens, & Rose, 2011). Alternatively, a correlation-
based imaging technique has been presented in (Quaegebeur,
Ostiguy, & Masson, 2014). The principle of this technique re-
lies on the correlation of the measured signals with dictionary
signals. There are research that have considered Bayesian
methods to perform the damage detection. For instance,
(Cantero-Chinchilla, Chiachı́o, Chiachı́o, Chronopoulos, &
Jones, 2019) were able to reconstruct the damage localiza-
tion within a metallic plate without having to assume a spe-
cific a priori time-frequency transform model. This was done
by predicting ToF and using it as an input to the Bayesian
inverse problem of damage localization. The application of
Bayesian inference problem to identify damage is also inves-
tigated in (W.-J. Yan, Chronopoulos, Papadimitriou, Cantero-
Chinchilla, & Zhu, 2020).

Although baseline-dependent techniques are popular and
well-known, nevertheless they possess their limitations. First
of all, the availability of the pristine signal cannot always be
guaranteed. For instance, an aging structure can exhibit dif-
ferent behavior in comparison to the healthy state, although
there is no damage present. Moreover, environmental and
conditional changes can also lead to a deviation in the cap-
tured signals from a healthy state. Both of these cases result
in the generation of a false alarm. Baseline-free methods are
developed to address these limitations. One of the first im-
plementations of such techniques dates back to the concept
of time reversibility in general acoustics (Fink et al., 2000).
Based on this motivation, time-reversal methods based on
Lamb waves for detection of damages in an aluminum plate
were also proposed in (C. H. Wang, Rose, & Chang, 2004).
Moreover, another comprehensive study has been performed
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Figure 4. The flowchart for performing damage detection
based on ML

by (Poddar, Kumar, Mitra, & Mujumdar, 2011), in which the
effect of different parameters such as transducer size, fre-
quency, and pulse frequency bandwidth on the quality of a
reconstructed input signal has been investigated.

3. EMERGENCE OF MACHINE LEARNING IN UGW-
BASED DAMAGE DETECTION

ML techniques have proven themselves to be beneficial for
modeling complex linear and nonlinear phenomena in the
presence of uncertainty. Furthermore, due to the immense po-
tential of ML methods to generate data-driven models, their
implementation in damage detection algorithms is getting
more and more attention. The goal of the current study is not
to mention the different categories of ML methods and their
definition and limitation. Rather, it is intended to illustrate the
required steps to carry out UGW-based damage identification
by using ML algorithms. Based on this fact, the next sections
of this work are organized based on the depicted flowchart in
Figure 4. According to this figure, which is inspired by the
waterfall model (Bedworth & O'Brien, 2000), the implemen-
tation of ML in a damage detection task should be followed
in three main steps.

In the first step, the data acquisition for the problem should be
performed. Due to the intention of the current study to con-
fine itself to UGW-based damage detection methods, Lamb
waves or other UGWs should be solely utilized as the diag-
nosis signal. Furthermore, the propagated waves measured
at several locations of the structure are the acquired signals.
Nevertheless, it should be noted that the way the UGW sig-
nals are excited and recorded has many possibilities that can
be found in many sources such as (Mitra & Gopalakrishnan,
2016) and (Z. Su & Ye, 2009). The data acquisition step
shown Figure 4 corresponds to the ”sensing” step in the wa-
terfall diagram presented in (Bedworth & O'Brien, 2000).

Afterward, the acquired data needs to be processed to prepare
as an input for the chosen ML technique. The pre-processing
step can be divided into three main phases, namely, signal

processing, feature extraction/selection, and dimension re-
duction. Different possibilities for processing of a signal are
already discussed in section 2.1. However, the elaboration of
algorithms concerning feature extraction/selection as well as
the dimension reduction will be presented in the correspond-
ing section. Accordingly, studies relevant to the mentioned
algorithms will be demonstrated.

The last step of the Figure 4 concerns the selection of the
proper ML technique. Accordingly, in section 3.2, the dis-
cussion about selection of the pattern processing algorithms
will be brought up. Moreover, by referring to the associated
publications, the implementation of different ML techniques
in UGW-based damage detection will be reviewed.

3.1. Feature extraction / selection and dimension reduc-
tion

As it is outlined in Figure 4, the type of data that is used in
a UGW-based damage detection is mostly time series. This
type of data requires special treatments which are introduced
in section 2.1. Ultimately, the processed UGW signals re-
quire to be employed as the input of the pattern processing
schemes. However, one of the difficulties in using time-
domain signals is the magnitude and quantity of data that is
frequently collected through sensor networks or many sen-
sors. In order to address this issue, those features that rep-
resent the maximum dynamic (variance) of the data should
be extracted. Moreover, in the case of damage detection us-
ing UGWs, it is often the case that the input space is shaped
by time series containing a high number of samples. Hence,
before applying feature extraction techniques, the dimension
of the input space needs to be reduced. To this end, multiple
techniques concerning extracting features from the raw data
and addressing the curse of dimensionality are devised. The
analysis of the selected papers for the current investigation
reveals that there are three families of algorithms, which are
mainly employed as feature extraction and dimension reduc-
tion techniques. These techniques are Principal Component
Analysis (PCA), Wavelet Transform (WT), and Autoregres-
sive models (AR). Accordingly, the mentioned methods are
elaborated and associated researches, in which the mentioned
techniques have been implemented, are described.

3.1.1. Principal component analysis (linear/nonlinear)

Principal component analysis (PCA) is a well-known multi-
variate analysis that is capable of reducing the size of a com-
plex data set (Jolliffe, 2002). Furthermore, by decreasing the
dimension of the input data (for instance, in the context of
UGW-based damage detection algorithms, time series with
a high number of samples), the hidden trends of the signal
can be revealed. The unveiling of these underlying patterns
helps the learning algorithms to be trained faster and more ef-
ficiently. Applying PCA to a signal re-expresses the original
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data set in a new space, in which the most prominent dynam-
ics of the signal are retained. Therefore, PCA analysis can
be employed to generate proper features for a chosen classi-
fication algorithm. Moreover, it can be used as a dimension
reduction tool. In order to be able to apply PCA on a set of
data, particular steps should be followed (Mujica, Rodellar,
Fernández, & Güemes, 2010):

1. The recorded signals should be arranged in a matrix S.
The matrix S has a dimension of n m, where n rep-
resents number of performed experiments and m is the
product of number of samples in each experiment times
the number of measurement points (sensors).

2. Calculating the covariance of matrix S:

Cs
1

n 1
ST S. (4)

3. Obtaining the eigenvalues and the eigenvectors of the co-
variance matrix:

CsṼ Ṽ⇤ (5)

where the diagonal components of ⇤ represents the
eigenvalues of Cs, and columns of Ṽ are the eigenvec-
tors of covariance matrix.

4. The most prominent features of the data are described
by those eigenvectors whose corresponding eigenvalues
have the highest amount. Hence, columns of Ṽ should be
sorted by descending order according to the associated
eigenvalues. By selecting a reduced number of compo-
nents (d n) from the sorted Ṽ, a new matrix V can be
formed. Matrix V is called the PCA model of the original
data set.

5. As a geometrical interpretation the original signal can be
projected toward the direction of the principle compo-
nents as:

T SV (6)

where T demonstrates the score matrix.

There have been numerous deployments of PCA in the field
of UGW-based damage identification. (D. A. Tibaduiza, Mu-
jica, Rodellar, & Güemes, 2016) employed PCA to define
patterns associated with the healthy and damaged states. In
order to have a quantitative comparison between those two
states, Q-statisitic and Hotelling’s T 2-statisitic have been
utilized. The formulation of these two indices can be ob-
tained from (Yue & Qin, 2001) and (Mujica et al., 2010). In
this work, several structures, such as aircraft turbine blades
and aircraft skin panels have been equipped with lead zir-
conate titanate (PZT) transducers. Several actuation phases,
each from a specific bounded PZT on the structure have been
considered. Based on the collected data from each actuation
phase, a PCA model has been generated for each of the states,
i.e damaged and healthy. Accordingly, the generated PCA
models serve as a classifier, where the outputs of it are the
score matrices and damage indices. (Murta, Vieira, Santos,

& de Moura, 2018) proposed a technique based on PCA for
the detection of welding defects in a plate. The required data
for PCA are obtained through a numerical simulation of ultra-
sound wave propagation. The welding imperfection has been
modeled as a discontinuity in the numerical simulation. The
outcome of each simulation is an A-scan signal that can be
fed into the PCA. Similarly to (D. A. Tibaduiza et al., 2016),
here PCA has been used as a classifier as well. The imple-
mentation of PCA for this problem is based on the technique
adopted in (Vieira, de Moura, & Gonçalves, 2010). The work
performed by (Arcos Jiménez, Gómez Muñoz, & Garcı́a
Márquez, 2019) concerned the detection of dirt and mud on
the blade of a wind turbine. The authors have utilized PCA
to extract features and to reduce the dimension of the data
set. Furthermore, for the generation of guided waves Macro
Fiber Composites (MFC) transducers have been deployed.
The generated features by PCA are then fed into multiple
classifiers. (Miorelli, Kulakovskyi, Mesnil, & D’Almeida,
2019) considered the use of PCA for dimension reduction of
the data set generated by a guided wave imaging algorithm.
The aim of this study is to identify damage in an aluminum
panel. The PCA has been applied to a 600 600 pixel image.
This synthetic data set is obtained from CIVA SHM forward
solver (Mesnil, Imperiale, Demaldent, Baronian, & Chapuis,
2018), and the post-processing of the signals is based on Ex-
citelet algorithm (Quaegebeur, Masson, Langlois-Demers, &
Micheau, 2011). (Ghrib, Rébillat, Vermot des Roches, &
Mechbal, 2019) proposed a nonlinear model-based feature for
increasing the performance of the classification. These non-
linear features are computed based on Hammerstein (Bakir,
Rebillat, & Mechbal, 2015) models, which itself these mod-
els are identified with an exponential sine sweep signal. PCA
is utilized in this work to examine if the reduction of input
data dimension helps the classifier to work more robustly.
The preliminary signals in this work are generated via nu-
merical simulations as well as performing experiments on a
composite aeronautic plate. In the work presented by (Sen
et al., 2019), the health monitoring problem of the pipes was
regarded. The required data for their work has been acquired
from experimental works. In the experiments, the responses
of guided waves are captured based on a pitch-catch configu-
ration. PCA is used in this study to decrease the dimension of
the samples. The captured samples in this work have a size of
2500, which through the utilization of PCA is reduced to 150
principal components. Furthermore, it is shown that the use
of the first two principal components has described the most
prominent trends of the data. Therefore, they can be used
as features yielding to the classification of the health state
of the pipe. In a study carried out by (Sbarufatti, Manson,
& Worden, 2014), PCA is utilized for the reduction of input
space. Their study concerned damage detection in an alu-
minum plate. Moreover, PZT transducers have been mounted
on the plate to generate and record the propagated guided
wave. In this study, 516 damage cases have been considered.
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Figure 5. The architecture of a NLPCA network (Kramer,
1991)

Moreover, for each damage scenario, 30 damage indices are
defined that are originated from the 30 available paths de-
fined by the configuration of transducers. Hence, the input
space has a dimension of 30 516. The utilization of PCA
in this study has reduced this dimension into 15 516. This
dimension reduction has been performed due to the fact, that
the first 15 principal components of the data set in this study
represent 95% of the total variance. Here the dimension re-
duction through PCA has resulted in eliminating half of the
paths. This reduction can be an obvious effect of the recipro-
cating nature of the signals between two sensor points. But,
still due to the simplicity of PCA algorithm, its use can be jus-
tified. An overview of the analyzed references in this section
is shown in Table 1. This table represents the number of data
points before applying PCA to them as well as the retained
number of PCA components. Further, the achieved variance
in each study also is listed in Table 1. It should be noted that
those references containing this information are just consid-
ered for this table.

Nonlinear principal component analysis (NLPCA) is outlined
as a nonlinear generalization of the conventional PCA. The
idea behind this technique is to consider curves instead of
lines for finding the most important dynamics of the data.
The conventional nonlinear PCA was proposed by (Kramer,
1991), and is based on a multi-layer perceptron (MLP) with
an auto-associative topology. The identity mapping is done
by employment of a square error. This mapping is per-
formed through a connection of inputs and output in the auto-
associative architecture. The network architecture is shown
in Figure 5. In the presented network layout five layers can
be seen. Three of them are hidden layers, and two of the lay-
ers are the input and the output layers. The decision about
the number of nodes is associated with the complexity of the
nonlinear function that can be generated. There should be a
compromise between the accuracy and the over-fitting prob-
lem in choosing the number of nodes. It is recommended by
(Kramer, 1991) to constraint the number of nodes in the net-
work layout, proportional to the number of data set. Unlike

PCA, mapping into feature space in a NLPCA approach can
be generalized to let arbitrary nonlinear functions to be em-
ployed. The mapping in a NLPCA scheme is performed by
equation (7):

T̂ ĤXj (7)

where Ĥ is a nonlinear vector containing N individual non-
linear functions: Ĥ Ĥ1, Ĥ2, ..., ĤN . Furthermore, T̂ and
Xj are analogous to S and V in equation (6). The inverse
transformation which corresponds to the de-mapping step in
Figure 5 can be obtained by equation (6):

X̃j K̂T̂ (8)

where the nonlinear function K̂ K̂1, K̂2, ..., K̂N is re-
sponsible for the transformation.

As an extension to the conventional NLPCA, (Scholz &
Vigário, 2002) developed hierarchical-NLPCA (h-NLPCA).
The proposed technique is based on a hierarchical type of
learning. In a h-NLPCA scheme output (X̃) is forced to be
equal to the input (X). This aim is fulfilled through mini-
mization of the Squared Reconstruction Error (SRE) stated
by the equation (9)

SRE
1

jn

J

j 1

N

n 1

Xj,n X̃j,n

2
1 (9)

Unlike the NLPCA, in an h-NLPCA implementation compo-
nents of the input space are ordered hierarchically, i.e the first
n components contain the maximum variance of the data. Se-
lection of h-NLPCA over conventional PCA can be justified
in problems, where different features have a nonlinear cor-
relation with respect to each other. However, the reviewed
studies do not show any particular advantage of h-NLPCA
over PCA, in the context of UGW-based damage detection.

There have been multiple implementations of h-NLPCA in
the context of UGW-based damage detection. (D. Tibaduiza
et al., 2018) have investigated the damage identification based
on UGW data collected from a carbon fiber-reinforced poly-
mer (CFRP) sandwich and composite plate. The acquisition
of the data is carried out through PZT transducers. The ar-
rangement of the data is similar to a prior work performed in
(D. A. Tibaduiza et al., 2016). In this study ((D. Tibaduiza
et al., 2018)) h-NLPCA is applied to the data from the input
space at each actuation phase. Afterward, nonlinear compo-
nents can be obtained, that are deployed for the training of
multiple classification algorithms. This study has just consid-
ered the first thirty components yielded from the h-NLPCA
technique. The implementation of h-NLPCA in this study
has contributed significantly to decreasing the dimensions of
the input space, so that the dimension of the raw data has been
reduced to 150 30 from an original value of 150 180000.
(Jiménez et al., 2019) compared the use of linear and nonlin-
ear features for a classification problem with an objective of
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Table 1. An overview of the utilized PCA configurations and performances in the selected articles

Scholars No. of data points No. of PCA components achieved
variance

(D. A. Tibaduiza et al., 2016) 140 2 80%

(Murta et al., 2018) 108 12 71%

(Miorelli et al., 2019) 500 4 —

(Ghrib et al., 2019) 1820 3 94%

(Sen et al., 2019) 2500 150 —

(Sbarufatti et al., 2014) 516 15 95%

(D. Tibaduiza, Torres-Arredondo, Vi-
tola, Anaya, & Pozo, 2018)

60000 30 —

(Jiménez, Garcı́a Márquez, Moraleda,
& Gómez Muñoz, 2019)

— 5 —

(Sattarifar & Nestorović, 2021) 240 2 —

determination of ice on the wind turbine blades. MFC trans-
ducers are employed in a pitch-catch configuration for the
purpose of wave generation and sensing on the structure. Fur-
thermore, a six-cycle Hanning-windowed signal at four dif-
ferent center frequencies (20 kHz, 30 kHz, 50 kHz, 100 kHz)
is used as the excitation signal of the structure. This study
has considered h-NLPCA, and PCA as the nonlinear and lin-
ear feature extraction techniques, respectively. The chosen
architecture for the h-NLPCA is a network consisting of 12
hidden nodes in the mapping and de-mapping layers. Fur-
thermore, five nodes have been considered for the bottleneck
layer. The precision of different classification algorithms by
using the linear features extracted from PCA, and nonlinear
features obtained from h-NLPCA, does not show any signifi-
cant difference in this study.

3.1.2. Continuous / Discrete wavelet transform

Continuous Wavelet Transform (CWT) and Discrete Wavelet
Transform (DWT) have been employed widely as signal pro-
cessing and pre-processing tools in the SHM community
(Z. Su & Ye, 2009). As it is mentioned in previous sections,
these two methods belong to the joint time-frequency-domain
methods. The comprehension of CWT and DWT applications
in feature extraction of UGWs requires a preliminary under-
standing of these two methods, as well as their formulation.
Therefore, in this section, a brief theoretical background of
both techniques is presented, and subsequently, the required
steps for their implementation are expressed.

CWT was initially proposed by (Daubechies, 1990) and
(Newland, 1994) to address limitations concerned with us-

ing a short-time Fourier transform (STFT). By means of the
STFT technique, the spectrogram of a nonstationary signal
can be obtained. However, there are limitations with regard
to controlling the resolution of frequency of the time and fre-
quency in the obtained spectrogram, as well as the inability
to inverse the time-frequency map. Using the Wavelet Trans-
form (WT) addresses both of the issues. A wavelet by defi-
nition is a waveform with an average amplitude of zero and a
limited duration. By applying a WT on a signal, the original
signal is expressed using two parameters, namely, scale and
a translational value, indicated by a and b, respectively. Prin-
cipally, WT is a windowing technique, whose window size is
variable.

In the CWT implementation, a dynamic signal f t is win-
dowed by an orthogonal wavelet function  t , yielding the
converted quadratic form as (Z. Su & Ye, 2009):

W a, b
1

a
f t . 

t b

a
.dt (10)

where W a, b denotes the CWT coefficients. This param-
eter can also be interpreted as a series of band-pass filters,
whose central frequencies and bandwidths are dependent on
the scale and  t . Furthermore,  t represents the com-
plex conjugate of  t in equation (10). The output of this
formula depicts the energy spectrum of the original dynamic
signal f t . Hence, the total energy of the signal can be ex-
pressed as (Z. Su & Ye, 2009):

E

b 0 a 0
W a, b

2
.da.db (11)
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Figure 6. A four-level DWT-based signal decomposition

DWT algorithm enables the decomposition of a dynamic sig-
nal into associated sub-bands of it; those are the bands with
higher and lower frequencies with certain cut-off frequencies.
Apart from the application of DWT in feature extracting, it
can be as well beneficial for de-noising the signal. By ap-
plying the DWT on a signal, based on the favored level of
the hierarchy, it is separated into approximations and details.
The former notion (approximations, Ai) represents the low-
frequency components of the signal, whereas the latter one
(details, Di) describes the high-frequency content. An ex-
ample based on a four-level hierarchy of DWT algorithm is
depicted in Figure 6

The utilization of CWT and DWT as a feature extrac-
tion technique has been embodied in multiple investigations.
(Atashipour, Mirdamadi, Hemasian-Etefagh, Amirfattahi, &
Ziaei-Rad, 2012) proposed the deployment of CWT for ex-
tracting the ToF of the Lamb waves. In particular, a CWT-
based Scale-Averaged wavelet Power (SAP) is employed,
whose maximum corresponds to the arrival time of the wave
packet. The SAP metric for a discrete signal f n with N
samples is defined as:

SAP n
1

M

M

i 1

W ai, n
2 (12)

where M is the largest scale of the CWT. Furthermore, by
using the envelope of the SAP, the input vector of the ANN
is formed. In a similar way, (G. Yan, 2013) employed the
CWT technique to capture the ToF of the incidents waves.
However, in this study, a Bayesian approach for the localiza-
tion of the damage is followed. In a research performed by
(Liew & Veidt, 2009), using the DWT for extracting features
from the measured UGWs is investigated. Due to the phase
discrepancy of UGWs, and a large number of the sampling
points in the time domain, it is often impractical for pattern
recognition methods to use such signals directly as the input.
This study has addressed both of these issues by the deploy-
ment of DWT. The obtained wavelet coefficients from each
level of the signal decomposition are fed into the ANN as the
input of the system. Furthermore, it is shown that through
the use of DWT, the computational time of the network has
been reduced. The implementation of DWT was realized in
this study by selecting an 8th order Daubechies wavelet. In
another work carried out by (D. Tibaduiza et al., 2018), it
is shown in a similar study to (Liew & Veidt, 2009), how the

DWT can be used to extract features from recorded UGWs. In
this study, the decomposed signals calculated by applying the
DWT on them are directly used as the input for several clas-
sification algorithms. Likewise, (Virupakshappa & Oruklu,
2019) employed DWT to decompose the captured signal
into approximations and details. Due to the distinguishable
signal-to-noise ratio in the low pass components of the de-
composition (Ai components), they are selected as the input
feature for multiple unsupervised ML algorithms. (Ewald,
Groves, & Benedictus, 2019) proposed a novel method by
incorporating the CWT and Convolutional Neural Network
(CNN). In this study, through applying the CWT on the dy-
namic signals the wavelet coefficients matrix (WCM) is de-
termined. The excitation signal selected to be propagated
through the plate is a 5-cycled Hanning-windowed toneb-
urst. Due to the similarity of the described excitation signal
to Morlet wavelet, this type of wavelet is used for the CWT
analysis. Subsequent to obtaining the WCM through CWT,
it is fed into the devised CNN. Afterwards, by training the
CNN, the neural weights are obtained.

3.1.3. Autoregressive and nonlinear autoregressive with
exogenous models

Autoregressive (AR) models are another well-known tech-
nique that enables feature extraction from a time series. An
AR model articulates the current output of a system as a linear
combination of the past outputs. In other words, the variable
is regressed on itself. equation (13) defines the formulation
of an AR model:

Y t c

p

j 1

cjy t j  t (13)

where p denotes the order of the model and illustrates the de-
pendency of the current measurement on the p previous mea-
surements. Y t denotes the captured time series, and  is
white noise. Moreover, cj are the AR coefficients and c can
be defined as:

c 1
p

j 1

cj µ (14)

where µ is the mean of the input signal.

Estimation of the AR model coefficients is mostly performed
by the Yule-Walker method (Box, 2008). These coefficients
serve as the extracted feature from a time series based on an
AR model. Furthermore, multiple techniques can aid the se-
lection of model order. Akaike’s information criterion is com-
monly employed for this purpose (Farrar & Worden, 2012).
More precisely, this issue has been investigated for an SHM
case study in (Figueiredo, Figueiras, Park, Farrar, & Worden,
2010).

The nonlinear implementation of an AR model is usually ex-
pressed as Nonlinear Autoregressive models with Exogenous
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(NARX). NARX models have found their first applications
in system identification of nonlinear dynamic systems. This
technique is initially proposed by (Leontaritis & Billings,
1985). A NARX model is capable of predicting the output
of the system from its input by means of a nonlinear func-
tion. A NARX model with polynomial terms up to an order
of three can be expressed as:

y t

M

i1 1

y t i1 ✓i1

M

i1 1

M

i2 i1

y t i1 y t i2 ✓i1i2

M

i1 1

...

M

il il 1

y t i2 ...y t i2 ✓i1...il

(15)

where y t and y t i1 represent the original and delayed
data samples, respectively. The exact polynomial terms for an
example with 4 samples are described in (X. Zhang, Zou, He,
& Sun, 2016). Furthermore, the feature vector is composed
of the NARX coefficients (✓). The mathematical formulation
that yields the ✓ coefficients is presented in (Jiménez et al.,
2019).

The employment of AR and NARX have been observed in
several studies. (Jiménez, Gómez Muñoz, & Garcı́a Márquez,
2018) have proposed the use of AR for feature extraction
from the guided waves. The aim of classification in this work
concerns with identification of delamination in wind turbine
blades. In this study, the AR coefficients are obtained based
on Levison-Durbin algorithm (Castiglioni, 2005). The re-
search carried out by (Arcos Jiménez, Zhang, Gómez Muñoz,
& Garcı́a Márquez, 2020) concerns the use of nonlinear fea-
tures and their comparison with linear ones. AR and NARX
have been selected to provide nonlinear features. It has been
shown in this study that the selection of NARX over AR has
a significant positive effect on the outcome of the damage
detection problem. The high number of generated features
through the NARX method is one of its drawbacks. To tackle
this issue, neighborhood component analysis has been em-
ployed to select the most prominent features and reduce the
dimension of the input space. Furthermore, similar studies
presented in (Arcos Jiménez et al., 2019) and (Jiménez et al.,
2019) have considered the NARX and AR as a feature extrac-
tion tool for UGW-based damage detection.

3.2. Pattern processing

The damage detection problem outlines itself as a task, in
which the state of the structure should be classified. In con-
ventional UGW-based methods, by defining some sort of
Damage Indices (DIs), specific thresholds are set, so that the
user can be aware of the probable damaged state of the struc-
ture. The definition of the DIs as well as the threshold from
which the structure can be considered as damaged, are often
case-oriented tasks, and there is no possibility of generaliza-

(a) (b)

margin

Figure 7. (a) Arbitrary decision boundaries (b) Decision
boundary obtained by SVM

tion by following conventional algorithms. However, in an
ML-based damage detection scheme, it is the machine itself
that recognizes the patterns and classifies the structure with
regard to its health condition. Evidently, the perception of the
trends in the data should be facilitated through multiple clas-
sifications and clustering techniques, which are elaborated in
sections 3.2.1, 3.2.2 and 3.2.3. The selection of the methods
to be explained in this section is justified due to the frequency
of the occurrence in the reviewed articles. The details for
the share of each single pattern processing method in the re-
viewed articles are outlined in section 4.

3.2.1. Support vector machine

SVM is an effective and powerful ML technique, which is
capable of linear and nonlinear classification, regression as
well as outlier detection. This algorithm is initially proposed
by (Vapnik, 1995). The fundamental idea behind the SVM
algorithm can be well outlined through Figure 7. The two
classes represented in Figure 7 can be separated with the
dashed lines. These dashed lines are perfectly classifying the
two classes. However, these classifiers will have poor perfor-
mance with regard to new instances that are close to the deci-
sion boundaries. In contrast, the decision boundary depicted
by the solid line in Figure 7(b) represents the classification by
SVM. The latter decision boundary guarantees a rich perfor-
mance even for new instances since it stays as far as possible
to the closest training instance (Géron, 2019). Therefore, it
can be stated that the goal of an SVM classifier is to deter-
mine such a decision boundary (hyperplane), which can clas-
sify the given data in the optimal form. In order to express
the mentioned optimization problem mathematically, the fol-
lowing equation should be outlined.

Let D be the input space of the problem, which contains both
classes:

D xi, yi , xi < and yi 1 or 1 (16)

here xi and yi represent the data and the class vector, respec-
tively. Assuming the values of yi to be 1 or 1. Then, the
decision boundary of the described data set can be obtained
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by equation (17).
y Wx b 1 (17)

where W describes a vector normal to the hyperplane, and b

represents the offset from the origin. W is obtained by uti-
lization of quadratic programming and b can be determined
by having the values for x, y, and W . The Lagrange mul-
tiplier ↵ is used in the quadratic programming, and for the
optimization as well, with the condition of maximizing the
↵. Furthermore, in the SVM algorithm two other parameters,
namely, C and ⇠, which account for soft margin optimization,
respectively should be regarded. The optimization equation
and its constraints are represented in equation (18) and 19,
respectively.

argminW,⇠,b
1

2
W

2
C

N

i 1

⇠i (18)

0 ↵ C, ⇠ 0 (19)

The decision boundary obtained by equation (18) is able to
classify a linear separable input space. However, in the case
of a nonlinear relation between input and output, a Gaussian
kernel function is required to be deployed. The kernel func-
tion determines a linear function by mapping the input space
into a higher-dimensional space. The selection of the ker-
nel type and its parameters plays an important role in the ac-
curacy of the classification. As examples, linear, quadratic,
polynomial, multilayer perceptron, and Gaussian Radial Ba-
sis Kernel Functions (GRBF) can be named. A detailed dis-
cussion on the mapping process of kernel functions can be
found in (Cristianini & Shawe-Taylor, 2000).

Due to SVM’s great capability in learning and classifying
unique patterns, numerous studies have employed this tech-
nique for damage detection. One of the earliest works con-
cerning the deployment of SVM in UGW-based damage de-
tection is performed by (Dackermann, Skinner, & Li, 2014).
In this study, by using UGW and SVM, a novel technique
for the in-situ health assessment of timber utility poles is pro-
posed. The selected features to be fed into the SVM are ob-
tained from coefficients of the AR model. The devised tech-
nique in this study yielded an accuracy of 95.7 3.1% for
the prediction of the health state. (Agarwal & Mitra, 2014)
used SVM for detection of damage in a metallic plate. This
study proposed the utilization of the matching pursuit tech-
nique to prepare the input vector for the SVM. It is shown that
the SVM outperforms ANN, and has a robust performance in
the presence of the noise. The trained classifier based on the
SVM technique showed an accuracy of 95% in detecting the
damage. Furthermore, apart from damage detection, the au-
thors have devised a technique to localize the damage on the
structure. In an investigation carried out by (Virupakshappa
& Oruklu, 2015), the SVM classifier is deployed for detection
of a flaw in a steel block. The A-scan data is utilized in this
study as the preliminary form of the input vector. However,

a novel technique is proposed to decompose the signal into
sub-band frequencies, and the latter feature is fed ultimately
to the SVM classifier. The research performed by (Eybpoosh,
Berges, & Noh, 2017) concerns the utilization of the SVM
technique for damage detection in pipelines. In this work, a
pitch-catch data acquisition scheme is used for collecting the
required data of the classifiers. Furthermore, a novel feature
extraction algorithm is devised to obtain a sparse vector of
coefficients from the energy of the arrival signals. This study
employs the SVM not directly for identifying the damage in
the pipeline, but to reveal the capability of the proposed fea-
ture in dividing the data into two classes. Due to the neces-
sity of having a nonlinear decision boundary for classifying
the instances, GRBF is used as the kernel function. It is also
demonstrated in this research that the implemented method
has an acceptable performance even under varying environ-
mental and operational conditions. Additionally, this paper
has analyzed the feasibility of a real-time configuration for
detecting damage. (Dib et al., 2018) proposed a one-class im-
plementation of SVM as an unsupervised classifier to deter-
mine the damage caused by an impact on a metallic plate. The
required data for this work is obtained through an analytical
model as well as experimental results. Furthermore, a voting
system is developed based on an ensemble of classifiers. The
proposed method has the advantage of requiring only a lim-
ited number of baseline signals since each classifier is trained
based on a different segment of the signal. The application
of SVM as a nonlinear classifier for detection of ice as well
as mud on the wind turbine blades is demonstrated in stud-
ies performed in (Jiménez et al., 2019) and (Arcos Jiménez
et al., 2020), respectively. The implementation of SVM as a
classic classifier has been challenged in a study carried out
by (Melville, Alguri, Deemer, & Harley, 2018). Their in-
vestigation has demonstrated that using a more sophisticated
ML technique (Deep Learning) yields a higher accuracy in
comparison to the SVM. Apart from the mentioned works,
the deployment of SVM as a classifier for detection of dam-
age in a UGW-based damage detection scheme has been con-
sidered in (Ghrib et al., 2019), (D. Tibaduiza et al., 2018),
(Mardanshahi, Nasir, Kazemirad, & Shokrieh, 2020), and (Li,
Gu, Hu, & She, 2019) as well.

3.2.2. Artificial neural network

In this section of the paper, one of the oldest learning tech-
niques is discussed. Artificial Neural Networks (ANNs) can
be argued to be the origin of the ML discipline. The raise
of the ANN began with the leading work on the structure of
neurons in the 1910s (Ramón y Cajal, 1910). However, the
initial ANN algorithm has been introduced by the work car-
ried out by (McCulloch & Pitts, 1943), in which a simplified
mathematical model for the way that animal brains works is
proposed. Despite the early attention that the ANN algorithm
gained, it was only during the last two decades, that a massive
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Figure 8. McCulloch-Pitts neuron, representing a simple ar-
chitecture performing the ”AND” logical computation
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Figure 9. Computation of weighted sum and applying a step
function on it in a Threshold Logic Unit (TLU) neuron

wave of interest was flooded toward this ML technique.

The building block of nearly each ANN is the artificial neu-
ron. By receiving a set of inputs, these neurons generate a
single output. One of the early models for the neurons, which
is called McCulloch-Pitts (MCP), considers the neurons to
have binary inputs and outputs. The structure of an MCP neu-
ron consists of two blocks, namely, summation and activation.
Figure 8 depicts a network of binary neurons performing the
logical ”AND” operation, where both the A and B neurons
should be activated in order to activate the neuron C.

It should be noted that the described MCP neurons did not
end up with a network implementation. The pioneering ini-
tial study on the networks of artificial neurons was performed
by (Rosenblatt, 1958). He proposed the perceptron architec-
ture, which is based on an artificial neuron called Threshold
Logic Unit (TLU). In opposite to the binary neurons, the input
and the output of the TLU neurons are real numbers. Further-
more, each input connection of a TLU is associated with a
weight (Géron, 2019). Afterwards, a step function is applied
to the summed weighted inputs, and the output is generated
(Figure 9). Common step-functions utilized in the perceptron
are Heaviside and sign functions.

After a rigorous investigation carried out by (Minsky, 1969),
it was revealed that the described architecture has limitations
regarding the complexity of the problem. Furthermore, it was
concluded that using a threshold prevents finding a learning
rule. Hence, the hard thresholds were substituted with contin-
uous functions such as Sigmoid or hyperbolic tangent func-
tions.

Generalization of the described perceptron architectures
yields to the Multilayer Perceptron (MLP). A complete dis-
cussion on the matter can be found in (Haykin, 1994) and
(Bishop, 1995). In a feedforward MLP architecture, values
of the input pass through the input layer and hidden layers.
Ultimately, the result of the network becomes known at the
output layer. Similar to the TLU neurons, in this architec-
ture, at each node of the hidden layers a weighted sum is per-
formed, and the result is passed through the next layer. Estab-
lishing the proper values for the weights of the signal is the
training phase of the network (Farrar & Worden, 2012). With
the described introduction on the origin and principles of the
method, the discussion will be followed by the application
of ANN in the context of SHM and particularly, UGW-based
damage detection.

ANNs can aid in multiple fashions to resolve the problem
arising in performing damage detection. For instance, ANN
can be beneficial in reconstructing signals from the noisy
input, regression problems (finding associated output for a
given input), classification of the input data, etc. The most
desired application among mentioned examples would be the
classification, which assists in determining the damaged state
of a structure.

One of the early implementations of ANN in the context of
SHM and UGW-based damage detection dates back to a study
performed by (Z. Su & Ye, 2004) in the year 2004. A novel
technique named as Intelligent Signal Processing and Pattern
Recognition (ISPPR) was developed in this study, to extract
features and identify damage in a composite plate. The data
acquisition is carried out by using 8 PZT transducers on the
plate. The ISPPR algorithm extracts features by perform-
ing several steps on the raw measured signals. First, by us-
ing DWT, signals were decomposed to several sub-band fre-
quencies. This step helps to extract components of the sig-
nal which are in correlation with the actual excitation func-
tion. Afterwards, CWT is applied to the selected sub-band
from DWT analysis, so that the energy of the signal can be
allocated over time-scale space. Furthermore, the digitized
features are fed into a multilayer feedforward ANN to be
used as the training data. Accordingly, the trained ANN net-
work can obtain the location of the damage on the structure.
(Dworakowski, Ambrozinski, Packo, Dragan, & Stepinski,
2014) took advantage of ANN to devise a classifier for the
assessment of the structural condition. Four damage indices
were defined based on the time-domain signals and are con-
sidered as the input of the ANN. The selected ANN consists
of two hidden layers, plus one input, and one output layer.
The output of the network is a linear neuron returning num-
bers between 0 and 1, representing the state of the structure
to be healthy until fully damaged, respectively. The struc-
ture used in this study is an aircraft panel, and for generating
the data set, artificial damages are introduced. The developed
method in a study performed by (Seno, Sharif Khodaei, &
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Aliabadi, 2019) suggests the utilization of ANN for feature
extraction and classification. The followed goal in this study
concerns localizing the impact image in a composite plate.
The inconsistency of the input feature, which occurs due to
variation in size of the damage or environmental conditions,
is an important issue which reduces the accuracy of the imple-
mented ML technique. A novel technique is proposed in this
study to tackle this problem. To this end, special treatments
for pre-processing of the time signals and extraction of the
time of arrivals (ToAs) are considered. Ultimately, the ToAs
are used as the input of the ANN. One hidden layer is con-
sidered for the network, and the output consists of two neu-
rons returning the X,Y coordinate of the impact damage.
(Hesser, Kocur, & Markert, 2020) proposed the use of ANN
for active source localization in an aluminum plate. The inter-
nal damages and imperfections are mostly responsible for the
presence of the active sources in the wavefield. The required
data for training the ANN network is collected by means of
experimental and numerical studies. The outcome of the clas-
sification through ANN showed an acceptable performance
with regard to source localization. Apart from the mentioned
articles, further references can be obtained in Table. 2. Due
to similarity in the way ANN is employed in those studies, it
is omitted to mention them explicitly.

3.2.3. Deep learning

Despite the great potential of ANN for tackling complex clas-
sification problems, it has limitations regarding the number of
layers to be selected. This hinders the training of a deep net-
work, for instance, for problems concerning input data with
high-resolution pictures. The described issue is possible to
be addressed through the deployment of deep neural network
(DNN) algorithms. However, the possibility of utilizing deep
layers was not alone responsible for the emergence of the
DNN techniques in recent years; rather, it was the increase
of computational power and the amount of the training data,
that resulted in the flourishing of this technique. Neverthe-
less, by selecting a DNN technique, multiple issues regarding
the training of the network can arise. Vanishing/exploding
gradients, the lack of adequate amount of data for a large
network, slow training, and overfitting are examples of the
problems one could face by implementing a DNN. A detailed
discussion on addressing these issues can be found in (Géron,
2019). There are several DNN techniques such as Convolu-
tional Neural Network (CNN), autoencoders, Wavelet Neural
Network (WNN), and Long Short-Term Memory-Neural Net-
works (LSTM–NN) which have been used in recent years in
the context of the UGW-based damage detection. Due to the
diversity of the methods, each algorithm is briefly explained
by mentioning the associated examples.

In a CNN, the input layer and rest of the associated convo-
lutional layers can be represented in 2D. Unlike the con-
ventional ANNs, in CNN, the neurons of the first layer do

not connect to all of the neurons from the input layer, but
to the pixels of the input in their receptive field. The size
of this receptive field is called ”stride”. A similar proce-
dure called ”Max Pooling” can be performed on the input
data for reducing computational effort and memory usage. By
max-pooling a layer, each neuron is connected to the neu-
rons of the previous layer in the receptive field (defined by the
stride). However, the maximum value of the selected pixels
in the stride is transferred to the next layer. Moreover, analo-
gous to the weights that were applied in a conventional ANN,
in a CNN the set of weights are called filters or convolution
kernels. Each convolutional layer has multiple filters, which
results in obtaining one feature map per filter (Géron, 2019).
Convolution layers, Pooling layers, fully-connected layers,
and an output layer are common components of a CNN. Dif-
ferent CNN architectures are obtained from different combi-
nations of those layers. The fully-connected layer is a stan-
dard neural layer that isn’t convolutional and the output layer
is the point where the output of the network is determined. In
a binary classification, the output layer includes only one neu-
ron that indicates whether or not the passed training sample
corresponds to a given class, with a ”one” indicating ”true”
and a ”zero” indicating ”false”. A thorough theoretical dis-
cussion on the definition of these layers and their mathemati-
cal formulation can be obtained in (Goodfellow, 2016).

One of the first applications of deep learning in UGW-based
damage detection was proposed in a research carried out by
(Melville et al., 2018). In this study a deep learning algorithm
is used, to assess the full wavefield data collected from laser
Doppler vibrometer and PZT transducers. The obtained data
sets are recorded from four different metallic plates, with dif-
ferent thicknesses and material properties. Each full wave-
field yields 100 100 signals, bringing the total number
of signals obtained for one plate to be 10000. Each of the
recorded signals has a length of 3000 samples. Hence, each
wavefield matrix has a dimension of 100000 3000, where
nearly 88% of it is used as the training data and the rest as
the testing signals. The utilized network in this study con-
sists of 4 hidden layers, from which two are convolutional
and two fully-connected. The employed convolutional layer
in (Melville et al., 2018) has a window size of 10 1, a stride
length of 1 1, 16 feature maps, and the max-pooling layer
of the network has a stride size of 10 1. It is shown in this
study that through the implementation of the described net-
work a maximum accuracy of 100% can be reached for the
classification of damaged plates from the healthy ones. Fur-
ther details regarding the employed architecture of the net-
work in this study can be found in (Krizhevsky, Sutskever, &
Hinton, 2012).

(Virkkunen, Koskinen, Jessen-Juhler, & Rinta-Aho, 2019)
developed an algorithm for detecting flaws of a welded steel
pipe by using deep learning and particularly CNN. The ar-
chitecture of the employed CNN is based on the VGG16 net-
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(a) (b) (c)
Figure 10. (a) Frequency of the feature extraction methods in the selected articles for the current review paper, (b) Frequency of
the pattern recognition/clustering methods in UGW-based damage detection based on the reviewed articles in the current study,
(c) Contribution of the supervised and unsupervised method in UGW-based damage detection based on the reviewed articles in
the current study

work proposed in (X. Zhang et al., 2016). The results of this
study show the reliability of deep learning in damage detec-
tion in comparison to human performance. The VGG-16 ar-
chitecture is used in the work carried out by (Liu & Zhang,
2020) as well. The aim of this study is to detect the crack
in a thin metallic plate by using deep learning. The input
of the CNN is the pre-processed UGWs measured with PZT
transducers. For pre-processing of the data, STFT is applied
to the raw UGW signals. Furthermore, SoftMax with cross-
entropy is employed as the cost function of the network. A
similar deployment of the CNN in the context of UGW-based
SHM can be found in (Ewald et al., 2019) as well. In an-
other investigation performed by (Liao, Ou, & Xu, 2020) by
incorporating a CNN into the ultrasonic imaging approach
sub-wavelength super-resolution defect images are generated.
The considered case study in this research is the damage de-
tection in anisotropic composite aircraft laminated structures.
One of the main goals of this work is to provide an compu-
tationally efficient scheme that enables its online implemen-
tation. (Tabian, Fu, & Khodaei, 2019) introduced a CNN-
based metamodel for detecting, localizing, and characteriz-
ing impacts on complex composite structures. As an input
for the metamodel, this work utilised ultrasonic waves gen-
erated by external impact events to generate 2-dimensional
(2D) images. The accuracy of detection was evaluated on a
composite fuselage panel and found to be more than 94%.
Furthermore, the scalability of this metamodeling technique
was investigated by training CNN metamodels with data from
a stiffened panel piece and evaluating their performance on
other portions of equivalent shape. Another piece of work
by (Xu et al., 2019) involves the diagnosis of a fatigue crack
utilizing damage indices (DIs) received from various guided
waves exciting-acquisition channels. In addition, they cre-
ated a CNN and trained it to extract high-level features from
a variety of DIs, then utilized the feature fusion to evaluate
cracks. The proposed method is validated by conducting fa-
tigue tests on a typical kind of airplane structure. (C. Su et

al., 2019) presented a method based on UGW and CNN for
concurrently localizing and assessing damage in composite
plates. The sensor array in their technique records UGWs re-
action signals as training data. The damage detection model
is built using the spectrum comprising damage characteris-
tics and related damage modes as input and output of a CNN,
respectively.

The study performed by (Marino, Virupakshappa, & Oruklu,
2019) considers an ensemble of deep learning techniques to
propose a novel classifier for UGW-based SHM. The de-
signed network reckons two LSTM-NNs for time analysis
(downsampling and denoising) of the signal, a WNN for pre-
diction of properties and function estimation, and a CNN for
feature extraction. More information on the LSTM-NN and
WNN algorithms can be found in (Hochreiter & Schmidhu-
ber, 1997) and (Antonis K. Alexandridis, 2014), respectively.

(C. Su et al., 2020) suggested the utilization of stack autoen-
coder (SAE) and CNN algorithms for damage identification
and localization in a composite plate. The Lamb wave is used
as the diagnostic signal to be propagated in the plate. Further-
more, FFT is applied to the time-domain signals to obtain the
required features for the SAE. This study concluded that both
the SAE and CNN algorithms yield the same accuracy for
recognition of the damage. Nevertheless, it is shown that us-
ing SAE results in nearly 13% reduction of the training time.
Details on the type of the architecture and the required steps
to train the network can be also found in (Pathirage et al.,
2018).

The implementation of CNNs in UGW-based SHM has been
further investigated recently. (Mariani, Rendu, Urbani, &
Sbarufatti, 2021) employed a casual dilated CNN to find
faults in UGW-inspected plates. They demonstrated how
their technique mitigates the issue of feature engineering,
which should be undertaken by human operators. (Zargar &
Yuan, 2021) presented a hybrid CNN-recurrent neural net-
work (RNN) to handle the spatiotemporal information ex-
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traction challenge in an impact damage detection problem.
They verified their suggested approach by generating simu-
lated wavefields using a five-bay stiffened aluminum panel fi-
nite element analysis (FEA). The use of a WT for generating
a 2D image, which later should be utilized as an input for the
CNN, was considered in a study carried out by (Azuara, Ruiz,
& Barrera, 2021). They successfully predicted the distance of
a damage to the transmitters using their proposed algorithm.

The assessment of papers reveals a significant trend toward
employing deep learning-based classification algorithms for
UGW-based SHM using 2D-CNNs, with an image (2D ar-
ray) serving as the input of the network. However, it is ob-
vious that the raw signals acquired by a UGW-based tech-
nique, are by definition 1-dimensional (1D) arrays. To that
goal, the signals must be transformed into a 2D array us-
ing techniques such as time-frequency analysis introduced in
section 2.1.3 or reshaping 1D arrays into 2D ones. Further-
more, the usage of 2D-CNNs necessitates substantial com-
puting resources, rendering it unsuitable for real-time SHM
applications with stand-alone processing units that demand
low-power/low-memory devices. To alleviate the aforemen-
tioned drawbacks, 1D-CNNs have recently been used to per-
form UGW-based damage detection. In a paper presented by
(Kiranyaz et al., 2021), a comprehensive evaluation of 1D-
CNNs and its use in defect detection can be found.

Following scholars have considered the use of 1D-CNNs for
UGW-based SHM. In a research performed by (Rai & Mitra,
2021) a 1D-CNN architecture capable of operating directly
on raw time-domain UGWs recorded from a thin metallic
plate is described. The 1D-CNN architecture presented in
this work consists of two parallel 1D-CNN layers, that can
learn higher order damage-related features and improve the
classification performance. Further, (Cui, Azuara, di Scalea,
& Barrera, 2021) implemented a 1D-CNN algorithm for dam-
age detection and localization in stiffened composite panels.
In another study performed by (Rautela, Senthilnath, Moll, &
Gopalakrishnan, 2021) UGWs were used to detect and locate
damage on a composite panel. They presented a physical-
informed machine learning approach in which domain infor-
mation and expert supervision are used to aid the learning
process of a 1D-CNN architecture.

3.2.4. Other classification and clustering techniques

Apart from the elaborated methods in previous sections, there
have been several other algorithms, that have aided the UGW-
based damage detection. According to the analysis performed
in Figure 10(b), k-nearest neighbors (k-NN) and k-means
have attracted the most attention after SVM, ANN, and DNN
techniques. For instance, (Virupakshappa & Oruklu, 2019)
considered the flaw detection by using three different unsu-
pervised ML algorithms, namely, k-means, Gaussian mixture
modeling, and mean-shift clustering. These techniques are
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Figure 11. Number of occurrences of the pattern recog-
nition/clustering methods in UGW-based damage detection
with respect to different years based on the reviewed articles
in the current study

implemented to find the centroids of the input data, which
should divide the data set into two classes of flawed and not-
flawed. This paper shows how clustering methods may be uti-
lized to categorize the flaw vs. no-flaw classification scenario.
In this study, through the proposed technique an accuracy of
over 90% was achieved. (Murta et al., 2018) considered as
well the use of k-means for clustering the data to classify a
welding defect. An example of the implementation of k-NN
as a classifier can be found in the work performed by (Vitola,
Pozo, Tibaduiza, & Anaya, 2017). In this article, six different
schemes of k-NN, such as fine k-NN, cosine k-NN, weighted
k-NN, etc. have been regarded. Furthermore, the precision
of each K-NN scheme is described by using confusion matri-
ces. This study showed that through the utilization of k-NN
technique three different configurations of damages can be
classified with an average true positive rate (TPR) of 84%.
Other examples for implementation of k-means can also be
found in 2.

4. OVERVIEW AND SUMMARY OF THE METHODS

This section attempts to provide an overview over the previ-
ous sections. For this purpose, several figures concerning the
frequency of the occurrence of different algorithms and tech-
niques reviewed in the current study are represented. Further,
studies concerned with the utilization of a specific method
with regard to feature extraction, and pattern processing are
summarized in Table 2 and Table 3. The information pre-
sented in this section should assess wrapping up the current
study as well as providing voids for future works.
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Table 2. A summary of the employed pattern recognition methods and their associated examples in the reviewed papers

Scholars Name of
the ML
algorithm

Compared
algo-
rithm(s)

case study Input data type and
source

ML per-
formance
index

(Dackermann
et al., 2014)

SVM — Timber util-
ity poles

Time-domain stress wave
signals (in situ data)

Accuracy

(Agarwal &
Mitra, 2014)

SVM ANN Plate with a
notch

Lamb wave velocity sig-
nals (simulation)

Accuracy, 
(: a single
value metric
to com-
pare two
confusion
matrices)

(Virupakshappa
& Oruklu,
2015)

SVM — Steel block Subband-filtered wave-
forms from A-scan
(simulation)

Accuracy,
confusion
matrix

(Eybpoosh
et al., 2017)

SVM k-means Steel and
Aluminum
Pipelines

Guided waves generated
by PZT transducers (ex-
periment)

Accuracy,
FPR, FNR

(Dib et al.,
2018)

SVM — Glass fiber
composite
plate

Guided waves (Analyt-
ical model and experi-
ment)

Accuracy

(Jiménez et
al., 2019),
(Arcos
Jiménez et
al., 2020)

SVM DT, discrim-
inant analy-
sis (DA), k-
NN, ensem-
ble classifi-
cation

wind turbine
blade

Ultrasonic signals (ex-
periment)

Precision

(Ghrib et al.,
2019)

SVM — Cantilever
beam and
composite
plate

Exponential sine sweep
signal (simulation and
experiment)

Accuracy

(D. Tibaduiza
et al., 2018)

SVM k-NN, DT carbon fiber
reinforced
polymer
(CFRP)
sandwich
structure,
CFRP Plate

Ultrasonic signals (ex-
periment)

Accuracy,
confusion
matrix

(Mardanshahi
et al., 2020)

SVM ANN Laminated
composite

Ultrasonic signals (ex-
periment)

Accuracy,
confusion
matrix

(Li et al.,
2019)

SVM ANN Stator bar Ultrasonic signals (simu-
lation and experiment)

Accuracy

(Z. Zhang,
Pan, Wang,
& Lin,
2020)

SVM — Aluminum
beam

Ultrasonic signals (simu-
lation)

Accuracy,
confusion
matrix

(Hoshyar,
Samali,
Liyanap-
athirana,
Houshyar,
& Yu, 2019)

SVM k-NN,
ensemble
classifica-
tion

Concrete
beam

Ultrasonic signals mea-
sured under a three-point
and four-point bending
test (experiment)

Accuracy
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Table 2. (continued)

Scholars Name of
the ML
algorithm

Compared
algo-
rithm(s)

case study Input data type and
source

ML per-
formance
index

(Z. Su & Ye,
2004)

ANN — Composite
plate

Ultrasonic signals (simu-
lation and experiment)

Mean
squared
error (MSE)

(Garg, Ma-
hapatra,
Suresh,
Gopalakr-
ishnan, &
Omkar,
2004)

ANN — Composite
plate

Ultrasonic signals (simu-
lation)

MSE

(Atashipour
et al., 2012)

ANN — Thick steel
beam

Ultrasonic signals (simu-
lation and experiment)

MSE

(Sbarufatti
et al., 2014)

ANN — Aluminum
skin

Ultrasonic signals (simu-
lation and experiment)

MSE

(Dworakowski
et al., 2014)

ANN — Aircraft
wing panel

Ultrasonic signals (simu-
lation and experiment)

Confusion
matrix

(Seno et al.,
2019)

ANN — Composite
plate

Ultrasonic signals (simu-
lation and experiment)

Precision

(Xiao, Gao,
Tian, Gang
Cai, &
qing Wang,
2020)

ANN — Thin-walled
tubes

Ultrasonic signals (ex-
periment)

—

(Hesser et
al., 2020)

ANN — Aluminum
plate

Ultrasonic signals (ex-
periment)

MSE

(Qian et al.,
2020)

ANN — Composite
plate

Ultrasonic signals (ex-
periment)

MSE

(Hesser et
al., 2020)

ANN — Aluminum
plate

Ultrasonic signals (ex-
periment)

MSE

(Qian et al.,
2020)

ANN — Composite
plate

Ultrasonic signals (ex-
periment)

MSE

(Melville et
al., 2018)

CNN — Aluminum
plate

Ultrasonic signals (simu-
lation and experiment)

Accuracy

(Virkkunen
et al., 2019)

CNN — Welded Pipe Ultrasonic signals + data
augmentation (experi-
ment)

Accuracy

(Marino et
al., 2019)

Long
short-term
memory
NN (LSTM-
NN)

Wavelet
Neural Net-
work

— Ultrasonic signals (simu-
lation and experiment)

Accuracy

(C. Su et al.,
2020)

Stack au-
toencoder

CNN, ANN,
SVM, Naı̈ve
Bayesian
classifier

Composite
plate

Ultrasonic signals (simu-
lation and experiment)

Accuracy
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Table 2. (continued)

Scholars Name of
the ML
algorithm

Compared
algo-
rithm(s)

case study Input data type and
source

ML per-
formance
index

(Ewald et
al., 2019)

CNN Several
CNN archi-
tectures

Aluminum
plate

Ultrasonic signals (simu-
lation and experiment)

Accuracy

(Liu &
Zhang,
2020)

CNN ANN Aluminum
plate

Ultrasonic signals (simu-
lation and experiment)

Accuracy

(Pathirage et
al., 2018)

Sparse au-
toencoder

Two other
autoencoder
architec-
tures

Steel frame
and concrete
bridge

eigenfrequencies of the
structure (simulation and
experiment)

MSE

(S. Zhang,
Li, & Ye,
2021)

1-D CNN — Aluminum
plate

Ultrasonic signals (simu-
lation and experiment)

Accuracy

(Dabetwar,
Ekwaro-
Osire, &
Dias, 2020)

CNN — CFRP plate Ultrasonic signals + X-
ray images (NASA Prog-
nostics Data Repository
for CFRP)

Precision,
Recall,
F1-score,
Confusion
matrix

(Liao et al.,
2020)

CNN — Airplane
laminated
L-joint

Ultrasonic signals (simu-
lation and experiment)

MSE

(Z. Wang &
Cha, 2020)

Autoencoder
integrated
with one-
class SVM

— 12-story
building
model and
steel bridge

acceleration of structure
(simulation and experi-
ment)

Accuracy,
MSE

(Tabian et
al., 2019)

CNN — Composite
fuselage
panel

UGW generated by ex-
ternal impact events and
recorded by piezoelectric
sensors

Accuracy

(Xu et al.,
2019)

CNN — Aircraft
structure

Several DIs Accuracy

(C. Su et al.,
2019)

CNN — Composite
plates

UGWs generated and
recorded by piezoelectric
sensors

Error rate

(Mariani et
al., 2021)

Causal di-
lated CNN

— Steel plate UGWs generated and
recorded by piezoelectric
sensors across a 50°
range of temperature

Accuracy,
loss

(Zargar &
Yuan, 2021)

CNN-RNN — Five-bay
stiffened
aluminum
plate

Numerical simulation
and wavefield captured
by a high-speed camera

Accuracy

(Azuara et
al., 2021)

CNN — Composite
plate

2D images obtained as
the WT of the acquired
experimental signals

Accuracy,
confusion
matrix
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In section 3.1, it was mentioned that according to the re-
viewed papers for extracting features and reducing the dimen-
sion of the input space, there are three families of methods,
that have been mainly used in the literature. Figure 10(a)
shows the share of each of those methods in the analyzed
publications. According to this figure, PCA and h-NLPCA
methods have been employed in 41% of the works. The sec-
ond most implemented category of algorithms for generating
features is the CWT/DWT-based methods. AR/NARX mod-
els with a share of 23% belong to the third most employed
techniques. Furthermore, Table 3 outlines corresponding ref-
erences for each of the mentioned feature extraction or di-
mension reduction algorithms.

Figure 10(b) provides the statistic regarding the popularity of
the pattern processing algorithms in the reviewed papers. Ac-
cording to this figure, SVM, ANN, and DNN are employed
in nearly 75% of the selected references. Moreover, Figure
10(c) depicts that more than 80% of the implemented ML
methods belong to the family of supervised learning algo-
rithms. Analyzing the occurrence of the pattern processing
methods with respect to years (Figure 11) also supports the
fact that the mentioned three ML techniques have a great con-
tribution to the reviewed papers. Additionally, Figure 11 out-
lines the rising of a new wave concerning the application of
ML methods in UGW-based damage detection. This point
articulates once more the necessity of performing the current
study.

Table 2 presents a comprehensive summary of the references.
These research items are categorized based on the ML tech-
niques utilized in them. This table also provides the name
of other ML algorithms that are used in associated papers.
Based on the fact that the main emphasis of each paper is on
which ML method, it is decided to consider that technique as
the main one and the others as the compared algorithms. Fur-
ther, the presented case study in each of the papers is shown.
As it is mentioned at the beginning of the current work, this
study has attempted to narrow the scope of the reviewed ar-
ticle based on the input signals that have been used in them.
Accordingly, Table 2 also describes the type of input utilized
in each study. Moreover, it is specified if the data came from
an analytical model, a numerical simulation, the authors’ own
experimental setup, or an external database. Also, it is shown
which performance indices for assessing the ML algorithms
are considered. The definition of those indices are available
in most of the ML textbooks such as (Goodfellow, 2016) or
(Géron, 2019).

As shown in Table 2 and also Figure 10, neural network-based
methods (ANN, CNN, ...) are major techniques for UGW-
based damage detection. This trend is more dominant in re-
cent years as it is depicted in Figure 10. Another intriguing
point observed in Table 2 is the lack of variety in performed
case studies. As can be seen, most of the studies have consid-

ered a thin-plate to inspect for damages. Although this is an
obvious outcome of the selected niche (UGW-based SHM)
in the current work; nevertheless, more complicated struc-
tures such as curved plates, plates with other welded parts,
etc. should be regarded for the direction of future works.

5. CONCLUSION

The importance of early damage detection has brought the
UGW-based family of methods to the center of the SHM com-
munity’s attention. Numerous studies have been carried out,
in which novel techniques for the identification of damage
by utilizing UGWs have been proposed. In the past decade,
ML techniques have shown great effectiveness in evolving the
conventional SHM techniques to a new level. In this study,
by reviewing a broad range of articles, the significance of the
ML techniques in the context of UGW-based SHM was pre-
sented. The current review paper showed to what extent the
ML algorithms could be beneficial for the conventional SHM
methods. It was shown that the employment of ML could ex-
press the damage detection in two main steps, namely, feature
extraction, and pattern processing. According to the reviewed
articles, it was concluded that PCA/h-NLPCA, CWT/DWT,
AR/NARX are the main methods that have been used for fea-
ture extraction and dimension reduction. With regard to pat-
tern processing techniques, it was shown that the supervised
learning algorithms with a share of 79% have been mostly
used. The unsupervised techniques or clustering algorithms
have been mostly implemented through the use of K-means
method. Clustering of instances can assist novelty detection.
Furthermore, it was concluded that ML techniques based on
SVM, ANN, and DNN are the most employed techniques,
in the context of UGW-based damage detection. The cur-
rent study showed that methods based on deep learning were
less frequent than their conventional ML rivals. However, it
was observed that during recent years, the application of deep
learning techniques is getting more attention. The following
points can be recognized as challenges and areas that require
more investigations based on the analyzed studies for this re-
view paper:

• Regardless of whether ML approaches are incorporated
in SHM or traditional UGW-based damage detection al-
gorithms are used, the resilience and durability of sen-
sors, cables, and connections under operating conditions
are still issues that require more studies.

• Localization and quantification still remain difficult tasks
due to the unavailability of a range of various damage sit-
uations from a genuine structure. Future research should
concentrate on determining the required data, that repre-
sent various damage types and locations from operational
infrastructure.

• Multiple structural damage identification is not investi-
gated thoroughly in many articles so far and requires ad-
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Table 2. (continued)

Scholars Name of
the ML
algorithm

Compared
algo-
rithm(s)

case study Input data type and
source

ML per-
formance
index

(Rai & Mi-
tra, 2021)

1D-CNN — Aluminum
plate

Signals generated by
numerical simulation as
well experiment

Accuracy,
confusion
matrix

(Cui et al.,
2021)

1D-CNN — Stiffened
compos-
ite with a
stinger

UGWs generated and
recorded by piezoelectric
sensors

Accuracy,
recall,
F1-score,
precision

(Alguri,
Melville,
& Harley,
2018),
(Alguri,
Melville,
Deemer,
& Harley,
2018)

k-means Dictionary
learning

Aluminum
and steel
plate

Chirp signal sweeping
from 1kHz to 150 kHz
– (simulation and exper-
iment)

—

(Virupakshappa
& Oruklu,
2019)

k-means Gaussian
mixture
modeling
and mean
shift cluster-
ing

— A-scan Accuracy

(Murta et
al., 2018)

k-means k-NN Welded
plate

Ultrasonic signals (simu-
lation)

Confusion
matrix

(Vitola et
al., 2017)

k-NN — Aluminum
beam, Alu-
minum, and
composite
plates

Ultrasonic signals (ex-
periment)

Confusion
matrix

(Arcos
Jiménez et
al., 2019)

k-NN DT, SVM,
DA

Wind tur-
bine blade

Ultrasonic signals (ex-
periment)

Recall, F1-
score

ditional work.

• There has been already a number of in-service real-time
damage detection schemes presented in reviewed pa-
pers. However, minimizing the computational effort of
the model to enable its online implementation is still a
challenge, which should be addressed in future works.

• Unsupervised methods only have a minority of the share
in the reviewed articles. Hence, their potential for nov-
elty detection still should be exploited.

• Deep learning algorithms have shown considerable
power in generalizing the SHM techniques. However,
still not too many studies have considered their potential
in the context of UGW-based damage detection.

• Using a combination of the data from a real-life structure,
and the numerical models require further investigation.

This helps for having extensive datasets, that can aid in
much more reliability of ML techniques.

• Despite the rising number of ML applications in UGW-
based damage detection, they are mostly concerned with
more established ML algorithms. However, utilization
of peculiar ML techniques such as reinforcement learn-
ing, or transformers is still not popular in the SHM com-
munity. It is beyond doubt that the employment of such
novel ML techniques can advance the fronts of the dam-
age detection algorithms.
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Table 3. Summary of the employed feature extraction meth-
ods in reviewed papers

Name of
the feature
extraction
method

Reference examples

Principle
Component
Analysis
(PCA) and
hierarchical-
nonlinear PCA
(h-NLPCA)

(D. A. Tibaduiza et al., 2016),
(Murta et al., 2018), (Arcos
Jiménez et al., 2019), (Miorelli et
al., 2019), (Ghrib et al., 2019),
(Sen et al., 2019), (Sbarufatti
et al., 2014), (D. Tibaduiza
et al., 2018), (Jiménez et al.,
2019),(Sattarifar & Nestorović,
2021)

Continuous
/ Discrete
wavelet
transform
(CWT/DWT)

(Atashipour et al., 2012), (G. Yan,
2013), (Liew & Veidt, 2009),
(D. Tibaduiza et al., 2018),
(Virupakshappa & Oruklu, 2019),
(Ewald et al., 2019), (Z. Zhang et
al., 2020), (Hoshyar et al., 2019)

Linear and
nonlinear au-
toregressive
models

(Jiménez et al., 2018), (Arcos
Jiménez et al., 2020), (Arcos
Jiménez et al., 2019), (Jiménez
et al., 2019), (Dackermann et al.,
2014),
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Sattarifar, A., & Nestorović, T. (2021, 09). Feature Gen-
eration and Selection for Identification of Damage
in Thin-Walled Structures Based on a Statistical Ap-
proach. In (Vols. ASME 2021 Conference on Smart
Materials, Adaptive Structures and Intelligent Sys-
tems). (V001T08A003) doi: 10.1115/SMASIS2021-
67538

Sbarufatti, C., Manson, G., & Worden, K. (2014, sep). A
numerically-enhanced machine learning approach to
damage diagnosis using a lamb wave sensing network.
Journal of Sound and Vibration, 333(19), 4499-4525.

doi: 10.1016/j.jsv.2014.04.059
Scholz, M., & Vigário, R. (2002). Nonlinear pca: a new

hierarchical approach. In Esann.
Sen, D., Aghazadeh, A., Mousavi, A., Nagarajaiah, S.,

Baraniuk, R., & Dabak, A. (2019). Data-driven
semi-supervised and supervised learning algorithms
for health monitoring of pipes. Mechanical Sys-
tems and Signal Processing, 131, 524–537. doi:
10.1016/j.ymssp.2019.06.003

Seno, A. H., Sharif Khodaei, Z., & Aliabadi, M. H.
(2019). Passive sensing method for impact local-
isation in composite plates under simulated envi-
ronmental and operational conditions. Mechanical
Systems and Signal Processing, 129, 20–36. doi:
10.1016/j.ymssp.2019.04.023

Sharif-Khodaei, Z., & Aliabadi, M. H. (2014, may). Assess-
ment of delay-and-sum algorithms for damage detec-
tion in aluminium and composite plates. Smart Materi-
als and Structures, 23(7), 075007. doi: 10.1088/0964-
1726/23/7/075007

Staszewski, W. (2002, jun). Intelligent signal processing
for damage detection in composite materials. Compos-
ites Science and Technology, 62(7-8), 941–950. doi:
10.1016/s0266-3538(02)00008-8

Staszewski, W. J., & Worden, K. (2003). Signal process-
ing for damage detection. In Health monitoring of
aerospace structures (pp. 163–206). John Wiley &
Sons, Ltd. doi: 10.1002/0470092866.ch5

Su, C., Jiang, M., Liang, J., Tian, A., Sun, L., Zhang, L.,
. . . Sui, Q. (2020). Damage assessments of compos-
ite under the environment with strong noise based on
synchrosqueezing wavelet transform and stack autoen-
coder algorithm. Measurement: Journal of the Interna-
tional Measurement Confederation, 156, 107587. doi:
10.1016/j.measurement.2020.107587

Su, C., Jiang, M., Lv, S., Lu, S., Zhang, L., Zhang, F., & Sui,
Q. (2019). Improved damage localization and quantifi-
cation of cfrp using lamb waves and convolution neural
network. IEEE Sensors Journal, 19, 5784-5791. doi:
10.1109/JSEN.2019.2908838

Su, Z., Wang, X., Chen, Z., Ye, L., & Wang, D. (2006, nov).
Abuilt-inactive sensor network for health monitoring of
composite structures. Smart Materials and Structures,
15(6), 1939–1949. doi: 10.1088/0964-1726/15/6/050

Su, Z., & Ye, L. (2004, oct). Lamb wave-based
quantitative identification of delamination in CF/EP
composite structures using artificial neural algo-
rithm. Composite Structures, 66(1-4), 627–637. doi:
10.1016/j.compstruct.2004.05.011

Su, Z., & Ye, L. (2009). Processing of lamb wave signals. In
Identification of damage using lamb waves (pp. 143–
193). Springer London.

Su, Z., Ye, L., & Lu, Y. (2006, aug). Guided lamb waves
for identification of damage in composite structures: A

27



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

review. Journal of Sound and Vibration, 295(3-5), 753–
780. doi: 10.1016/j.jsv.2006.01.020

Tabian, I., Fu, H., & Khodaei, Z. S. (2019). A convolu-
tional neural network for impact detection and char-
acterization of complex composite structures. Sensors
(Switzerland), 19, 1-25. doi: 10.3390/s19224933

Tan, L., Saito, O., Yu, F., Okabe, Y., Kondoh, T., Tezuka,
S., & Chiba, A. (2022, jan). Impact damage detection
using chirp ultrasonic guided waves for development of
health monitoring system for cfrp mobility structures.
Sensors, 22(3), 789. doi: 10.3390/s22030789

Tibaduiza, D., Torres-Arredondo, M. Á., Vitola, J., Anaya,
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