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Abstract

Background: The human gut contains approximately 1014 bacteria, belonging to hundreds of different species.

Together, these microbial species form a complex food web that can break down nutrient sources that our own

digestive enzymes cannot handle, including complex polysaccharides, producing short chain fatty acids and

additional metabolites, e.g., vitamin K. Microbial diversity is important for colonic health: Changes in the composition

of the microbiota have been associated with inflammatory bowel disease, diabetes, obesity and Crohn’s disease, and

make the microbiota more vulnerable to infestation by harmful species, e.g., Clostridium difficile. To get a grip on the

controlling factors of microbial diversity in the gut, we here propose a multi-scale, spatiotemporal dynamic

flux-balance analysis model to study the emergence of metabolic diversity in a spatial gut-like, tubular environment.

The model features genome-scale metabolic models (GEM) of microbial populations, resource sharing via extracellular

metabolites, and spatial population dynamics and evolution.

Results: In this model, cross-feeding interactions emerge readily, despite the species’ ability to metabolize sugars

autonomously. Interestingly, the community requires cross-feeding for producing a realistic set of short-chain fatty

acids from an input of glucose, If we let the composition of the microbial subpopulations change during invasion of

adjacent space, a complex and stratified microbiota evolves, with subspecies specializing on cross-feeding

interactions via a mechanism of compensated trait loss. The microbial diversity and stratification collapse if the flux

through the gut is enhanced to mimic diarrhea.

Conclusions: In conclusion, this in silico model is a helpful tool in systems biology to predict and explain the

controlling factors of microbial diversity in the gut. It can be extended to include, e.g., complex nutrient sources, and

host-microbiota interactions via the intestinal wall.

Keywords: Flux-balance analysis with molecular crowding, Dynamic multi-species metabolic modeling, Intestinal

microbiota, Multiscale modeling, Compensated trait loss, Microbial communities

Background
The human colon is a dense and diverse microbial habi-

tat, that contains hundreds of microbial species [1].

These species together form a community that breaks

down complex polysaccharides into monosaccharides,

which are then fermented further into short chain fatty

acids (SCFAs) that are taken up by the host [2]. The
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composition of the intestinal microbiota and the topol-

ogy of the community-level metabolic network formed by

it [3] are associated with health and disease. For exam-

ple, the microbiota produces the short-chain fatty acid

butyrate, which has been proposed to lower the risk

for colon cancer [2]. Inflammatory bowel disease (IBD)

and obesity are correlated with gain or loss of enzymes

in the periphery of the network [3], suggesting that in

obese persons and in IBD patients the microbiota pro-

duces a different set of metabolic end-products. Topolog-

ical analysis further found indications that microbiota of

obese individuals have a more diverse set of enzymes to
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extract energy from the diet [3]. Patients with diarrhea-

predominant irritable bowel syndrome show large tempo-

ral shifts in the composition of the microbiota [4].

The most important source of bacterial diversity in the

colon is probably due to metabolic interactions between

bacteria [5]. The main nutrient sources entering the

colon are non-degraded polysaccharides, including resis-

tant starch and cellulose, oligosaccharides, proteins and

simple sugars [6]. In addition to these exogenous sources

of sugar, the colonic epithelium secretes mucins, which

are an important nutrient source for the microbiota [6].

In this paper we ask what mechanisms are responsible

for the diversity of the gut microbiota. The structured

environment and the diversity of undigested nutrient

sources (e.g., complex polysaccharides, e.g., found in food

fibers) found in the gut have been shown to sustain

diverse microbial communities [2, 7]. Interestingly, how-

ever, diverse ecosystems can also arise in homogeneous

environments with only one primary resource [8–12]. For

example, glucose-limited, continuous cultures of E. coli

reproducibly evolve acetate cross-feeding within about

100 generations (see Ref. [11] and references therein). In

these experiments, one subpopulation enhances its glu-

cose uptake efficiency and secretes acetate as a waste

product. The acetate then provides a niche for a second

strain that can grow on low concentrations of acetate.

Mathematical modeling can help understand under

what conditions such cross-feeding and diversification

can emerge in homogeneous environments. In their isol-

ogous diversification model, Kaneko and Yomo [13, 14]

studied sets of identical, chaotically oscillating metabolic

networks that exchange metabolites via a common,

shared medium. Although small populations of oscil-

lators will easily synchronize with one another, larger

populations will break up in specialized, synchronized

sub-populations. Mathematical modeling has also given

insight into the conditions that make specialization and

cross-feeding beneficial from an evolutionary point of

view. For example, cross-feeding can evolve if there exists

a trade-off between uptake efficiency of the primary and

secondary nutrient source [15], or if a trade-off exists

between growth rate and yield [16]. In absence of such

metabolic trade-offs, cross-feeding can evolve if the enzy-

matic machinery required to metabolize all available

nutrients is so complex that distributing enzymes across a

number of species or strains becomes the more probable,

‘easier’ evolutionary solution [17].

These initial mathematical models included simplified

or conceptual models of metabolism. More recently, it has

become feasible to construct models of microbial commu-

nities based on genome-scale metabolic network models

(reviewed in Ref. [18]). In these models, multiple species

of bacteria interact with one another by modifying a com-

mon pool of metabolites. One class of models optimizes

the bacterial and community growth rates in parallel,

assuming flux-balance of whole community at once [19]

or iteratively within the individual bacteria and at commu-

nity level [20]. Such approaches can also include dynamic

changes of the community-level constraints, including

extracellular concentrations of metabolites [21].

To also capture the emergent population dynamics

of bacterial communities due to secretion and uptake

of metabolites by the bacteria, (static optimization-

based) dynamic flux-balance analysis (dFBA) has been

introduced [22]. These couple the optimization-based

flux-balance analysis (FBA) approach for modeling

intracellular metabolism, with an ordinary-differential

equation model (ODE) for modeling the metabolite con-

centrations in the substrate. These community models

more closely approximate microbial metabolism than

the initial, more abstract models, such that the results

can be compared directly to experimental observations.

For example, Tzamali and coworkers [23] used multi-

species dFBA to compare the performance of metabolic

mutants of E. coli in batch monoculture versus its per-

formance in co-culture with an alternative mutant. Their

model predicted co-cultures that were more efficient

than their constituent species. Louca and Doebeli [24]

proposed methodology to calibrate the bacterial models

in such dynamic multispecies FBA approaches to data

from experimental monocultures. By coupling these cali-

brated dynamical models of isolated strains of E. coli, the

framework could reproduce experimentally observed suc-

cession of an ancestral monoculture of E. coli by a cross-

feeding pair of specialists. Because these models assume

direct metabolic coupling of all species in the model via

the culture medium, the model best applies to well-mixed

batch culture systems or chemostats. The more recent

coupled dynamic multi-species dFBA and mass trans-

fer models [18, 25–27], or briefly, spatial dFBA (sdFBA)

models are more suitable for modeling the gut micro-

biota. These spatial extensions of the multispecies dFBA

approach couple multiple dFBAmodels to one another via

spatial mass transport models (based on numerical solu-

tions of partial-differential equations), such that bacteria

can exchange metabolites with their direct neighbors.

In order to explore whether and under which circum-

stances a diverse microbial community can arise from a

single nutrient source in the gut, here we extended the

sdFBA approach to develop a multiscale model of col-

lective, colonic carbohydrate metabolism and bacterial

population dynamics and evolution in a gut-like geome-

try. To this end, we combined spatial models of population

dynamics with genome-scale metabolic models (GEMs)

for individual bacterial species and a spatial mass trans-

port model. In addition to the sdFBA approaches, we

extended the model with an “evolutionary” component,

in order to allow for unsupervised diversification of the
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microbial communities. We inoculate the metabolic sys-

tem with a meta-population of bacteria containing a set

of available metabolic pathways. When, depending on

the local availability of nutrients, the bacterial popula-

tion expands into its local neighborhood the metapop-

ulation gains or looses metabolic pathways at random.

We find that spatially structured, microbial diversity

emerges spontaneously in ourmodel starting from a single

resource. This diversity depends on interspecies cross-

feeding interactions.

Results
A full multiscale model of the metabolism of the human

gut would need to include around 1014 individual bacte-

ria belonging to hundreds of bacterial species, for which

in many cases curated GEMs are unavailable. We thus

necessarily resorted to a more coarse-grained approach,

while maintaining some level of biological realism by con-

structing the model based on a validated, genome-scale

metabolic network model of Lactobacillus plantarum

[28]. Figure 1 gives an overview of the workflow of the

paper. We first (1) constructed a metabolic model rep-

resenting a subset of the gut microbiota, which we used

for the dFBA model (2). We then asked to what extent

cross-feeding can emerge in large communities of inter-

acting and diversified bacteria, such as those found in the

colon, using a dynamic multi-species metabolic model-

ing (DMMM) approach [18, 23, 29], which is an exten-

sion of the dynamic flux-balance analysis (dFBA) method

[22, 30]. To this end, we constructed a well-mixed model

of a bacterial consortium (3), by coupling 1000 of the

dFBA models via a common, external exchange medium

that allowed the bacteria to exchange a subset of the

metabolites in the GEM. We initiated the exchange

medium with a pulse of glucose, then observed the turn-

over of glucose into a series of short-chain fatty acids (4),

and quantified cross-feeding (5): the extent to which the

bacteria exchanged metabolites via the common medium.

Next we asked to what extent spatially diversified micro-

bial communities can emerge in a tube-like environment

(6), if the microbial communities are allowed to special-

ize to the local availability of metabolites. In the spatial

model, the GEMs inside the bacteria were allowed to

evolve. After running the model for a fixed time, we quan-

tified howmuch the GEMs had diversified and performed

local cross-feeding (7) and to what extent they had locally

changed the external concentrations of metabolites (8),

leading to stratification and niche formation.

Construction of a metabolic model representing a subset

of the gut microbiota

We first constructed a hypothetical, but biologically-

realistic “supra-organism” model [3, 31], called “metabac-

terium” here, that represents a sample of the gut microbial

community in a single metabolic network model. For

this preliminary, explorative study we used a GEM of

Lactobacillus plantarum [28], a resident of the colon

and a strain widely used for probiotics, and extended
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Fig. 1Workflow of the modeling. (1) Construction of “metabacterium” model, based on a Lactobacillus plantarum GEM [28] extended with

metabolic pathways commonly found in the gut microbiota; (2) dynamic flux-balance analysis model; (3) well-mixed community of “metabacteria”

exchanging metabolites via a common medium; (4) observation of metabolites in the common medium; (5) measure cross-feeding coefficient; (6)

spatial modeling in a gut-like environment with evolving “metabacteria”; (7) look for speciation and cross-feeding; (8) look for stratification of

metabolic environment
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it with four key metabolic pathways of the intestinal

microbial community: (1) propionate fermentation, (2)

butyrate fermentation, (3) the acrylate pathway and (4)

the Wood-Ljungdahl pathway. In future versions of our

framework this network could be replaced by metabolic

network models derived from metagenomic data [3] as

they become available. The current, simplified network

contains 674 reactions (Supplementary File 1), and com-

pares well with consensus metabolic networks of carbohy-

drate fermentation in the colon [32, 33]. For a schematic

overview of the key pathways including in the metabolic

network, see Fig. 2a.

The uptake and excretion rates of genome-scale

metabolic networks can be calculated using constraint-

based modeling. To represent diauxic growth, i.e., by-

product secretion as a function of extracellular metabolite

concentrations, we used an extension of FBA called Flux

Balance Analysis with Molecular Crowding (FBAwMC)

[34]. FBAwMC correctly predicts diauxic growth and the

associated secretion of by-products in micro-organisms

including E. coli, Saccharomyces cerevisiae [35], and

L.plantarum [36]. As an additional, physiologically-

plausible constraint FBAwMC assumes that only a finite

number of metabolic enzymes fits into a cell, with

each enzyme having a maximum metabolic turnover,

Vmax. For each reaction, FBAwMC requires a crowd-

ing coefficient, defined as the enzymatic volume needed

to reach unit flux through that reaction. Each reac-

tion is assigned a “crowding coefficient”, a measure

of the protein cost of a reaction: Enzymes with low

crowding coefficients have small molecular volume or

catalyse fast reactions. Given a set of maximum input

fluxes, FBAwMC predicts the optimal uptake and excre-

tion fluxes as a function of the extracellular metabolite

concentrations.

As FBAwMC optimizes growth rate, not growth yield

as in standard FBA, it predicts a switch to glycolytic

metabolism at high glucose concentrations at which faster

metabolism is obtained with suboptimal yield. Its accurate

prediction of diauxic growth together with by-product

secretion as a function of extracellular metabolite concen-

trations make FBAwMC a suitable method for a microbial

community model.

Metabolic diversity causes cross-feeding in a well-mixed

system

To study the extent of cross-feeding emerging already

from a non-evolving metabolic community of “metabac-

teria”, we first set up a simulation of 1000 interacting

metapopulations, where each subpopulation was initiated

with a set of crowding coefficients selected at random

from an experimentally determined distribution of crowd-

ing coefficients of Escherichia coli [35, 36], for lack of

similar data sets for L. plantarum. The simulation was

initiated with pure glucose and was ran under anaero-

bic conditions. We then performed FBAwMC on all 1000

metapopulations, optimizing for ATP production rate as a

proxy for growth rate. This yielded 1000 sets of metabolic

input and output fluxes, Fi, and growth rates, μi for all

1000 metapopulations. These were used to update the

extracellular concentrations, �M andmetapopulation sizes,

Xi, by performing a single finite-difference step of [23, 29]
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Fig. 2 a. Simplified scheme of central carbon metabolism of the GEM: 1) Glycolysis. 2) lactate fermentation. 3) Propionate fermentation. 4) Acrylate

pathway. 5) Pyruvate dehydrogenase. 6) Pyruvate formate-lyase. 7) Butyrate fermentation. 8) Acetate fermentation. 9) Acetogenesis via

Wood-Ljungdahl pathway. 10) Ethanol fermentation. 11) butyryl-CoA:acetate-CoA transferase. Pathways are reversible - arrow directions indicate

the most common direction; b. Metabolite dynamics over time. At time 0 only glucose is available
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d �M

dt
=

∑

i

Xi
�Fi (1)

and

dXi

dt
= μiXi. (2)

with a timestep �t = 0.1 h. After updating the environ-

ment in this way, we performed a next time simulation

step.

Figure 2b shows how, in the simulation, the metabac-

teria modified the environment over time. The sec-

ondarymetabolites that were producedmostly are acetate,

butyrate, carbon dioxide, ethanol, formate, lactate and

propionate. This compares well with the metabolites that

are actually found in the colon [37] or in an in vitro model

of the colon [38]. In the first 30 min of the simulation, the

initial pulse of glucose is consumed, and turned over into

acetate (red), lactate (grey), formate (brown), and ethanol

(yellow). These are then consumed again, and turned over

into proprionate (purple) via pathways 3 and 4 (Fig. 2a)

and into butyrate (blue) via pathways 7 and 11. CO2 is

also increasing due to the turnover of pyruvate into acetyl

co-A via pathway 5 (pyruvate dehydrogenase). After about

two hours of simulated time, proprionate and CO2 levels

drop again due to the production of butyrate (blue): pro-

prionate is consumed reversing reaction 3 and 4; CO2 is

consumed in pathway 9 that produces acetate from for-

mate. The conversion of acetate back to acetyl-coA then

drives the production of butyrate; a surplus of acetyl-coA

is turned over into acetaldehyde and ethanol in pathway

10. Interestingly, formate and CO2 are produced at the

same time; this rarely occurs in any single organism but

does occur in this microbial consortium.

To test to what extent these results depend on the ability

of the individual FBAwMCmodels to represent metabolic

switching and overflow metabolism [34, 36], we also sim-

ulated the model using standard flux-balance analysis

[39]. In this case, all glucose was converted into ethanol,

whereas lactate and propionate did not appear in the

simulation (Additional file 1: Figure S1). To test to what

extent the results rely on cross-feeding, we also checked

if any of the single-species simulations could also produce

so many metabolites. Out of 100 single-species simula-

tions none produced as many ormore excretedmetabolite

species than the interacting set of species.

Quantification of cross-feeding

Most of the metabolites were only transiently present

in the medium, �M, suggesting that the metabolites were

re-absorbed and processed further by the bacteria. To

quantify the amount of such cross-feeding in the simu-

lations, we defined a cross-feeding factor, C(i), with i a

species identifier. Let

Fup,tot(i, j) ≡

∫ tmax

t=0
B(n, t)Fup(i, j, t)dt

Fex,tot(i, j) ≡

∫ tmax

t=0
B(n, t)Fex(i, j, t)dt (3)

be the total amount of metabolite j that species i consumes

and excretes during the simulation. B(i, t) here equals the

biomass of species i at time t. The amount of carbon

species i gets via cross-feeding then equals,

C(i) =
∑

j

cC(j)max(Fup,tot(i, j) − Fex,tot(i, j), 0)

− 6Fup,tot(i, glucose).

(4)

Here, cC(j) is themolar amount of carbon atoms permol

metabolite j (e.g., cC(glucose) = 6). If species i during the

fermentation consumes more of metabolite j than it has

produced, species i has cross-fed on metabolite j. We sub-

tract the amount of glucose from the sum, because glucose

is the primary nutrient source that is present at the start of

the simulation. Now we can calculate the total amount of

carbon the population acquires via cross-feeding, relative

to the total amount of carbon taken up by the population

Crel =

∑

i C(i)
∑

i

∑

j cC(j)Fup,tot(i, j)
. (5)

If Crel = 0, there is no cross-feeding. In that case,

every species only consumes glucose as carbon source or

only consumes as much carbon from other metabolites

as it has secreted itself. Conversely, if Crel = 1 all car-

bon the species has consumed during the simulation is

from non-glucose carbon sources the species has excreted

itself. For the whole simulation Crel = 0.39 ± 0.02, indi-

cating that 39% of all carbon consumed by the bacteria

comes from cross-feeding. Cross-feeding was largest on

lactate, CO2, acetate, ethanol, formate and propionate.

Many of these metabolites are known to be involved in

bacterial cross-feeding in the colon or cecum (for inter-

conversion between acetate and lactate, see Ref. [40]; and

for interconversion between acetate and butyrate in the

murine cecum, see Ref. [41]). In the original L. plantarum

model we also find cross-feeding, but only on lactate and

acetaldehyde (Additional file 2: Figure S2). Taken together,

in agreement with previous computational studies that

showed cross-feeding in pairs of interacting E. coli [23],

these simulations show that cross-feeding interactions

occur in coupled dynamic FBAwMCmodels.

Spatially explicit, evolutionary model

The well-mixed simulations showed that cross-feeding

appears in populations of interacting metabacterial

metabolic networks. However, this does not necessar-

ily imply microbial diversity, because it is possible that

the same metabacterium secretes and reabsorbs the same

metabolites into the substrate, in which case there would
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be no true cross-feeding. Furthermore, the previous

section did not make clear whether cross-feeding will

be ecologically stable under conditions where subpopula-

tions of the supra-organisms are lost. In a spatially explicit

model, cross-feeding possibly arises more easily and is

more easy to detect, as different metabolic functions

can be performed at different locations [42]. We there-

fore developed a spatially explicit, multiscale evolutionary

model of gut microbial metabolism. We initiate the sim-

ulation with a population of metapopulations of bacteria

that can perform all metabolic functions under anaerobic

conditions, just as in the well-mixed simulation. We then

let the systems evolve and study if meta-populations of

bacteria with specific metabolic roles evolve.

Model description

Figure 3 sketches the overall structure of our model.

The model approximates the colon as the cross-section

of a 150 cm long tube with a diameter of 10 cm.

The tube is subdivided into patches of 1 cm2, each

containing a uniform concentration of metabolites, and

potentially a metapopulation of gut bacteria (hereafter

called “metabacterium”) (Fig. 3a). Each metabacterium

represents a small subpopulation (or ’metapopulation’)

of gut bacteria with diverse metabolic functions, and is

modeled using a metabolic network model containing the

main metabolic reactions found in the gut microbiota,

as described above (Fig. 2a). Based on the local metabo-

lite concentrations, �c(�x, t), the metabolic model delivers

a set of exchange fluxes Fi,n and a growth rate, μ(�x),

which is assumed to depend on the ATP production rate

(Fig. 3b; see “Methods” for detail). The metabolites dis-

perse to adjacent patches due to local mixing, which we

approximate by a diffusion process (Fig. 3c), yielding

d�c(�x, t)

dt
= �F(�x, t)B(�x, t) +

D

L2

∑

�i∈NB(�x)

(

�c(�i, t) − �c(�x, t)
)

,

(6)

where �F(�x, t) is the flux of metabolites between the

medium and the metabacterium, and the sum runs over
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Fig. 3 Setup of the simulation model of a metabolizing gut microbial community. The model represents a community of growing subpopulations

of genetically identical bacteria. a The metabolism of each population is modeled using a unique, modified GEM of L. plantarum[28]; b Based on

extracellular metabolite concentrations, the genome scale model predicts the growth rate (r) of the subpopulation and the influx and efflux rates of

a subset of 115 metabolites. These are used as derivatives for a partial-differential equation model describing the concentrations of extracellular

metabolites, ∂ci(�x, t)/∂t = Fi(�x) + D∇2c(�x, t), where c the metabolites diffuse between adjacent grid sites, �x. d The population is represented on a

two-dimensional, tube-like structure, with periodic inputs of glucose. e To mimic advection of metabolites through the gut, the concentrations are

periodically shifted to the right, until they f exit from the end of the tube. g The bacterial populations hop at random to adjacent grid sites; to mimic

adherence to the gut wall mucus bacterial populations are not advected, unless indicated otherwise. h Once the subpopulation has grown to twice

its original size, it divides into an empty spot in the same lattice size at which time the metabolic network is mutated. i Two subpopulations can live

on one grid point; with yellow indicating presence of one subpopulation, and green indicating the presence of two subpopulations. (Structural

formulas: Licensed under Public domain via Wikimedia Commons; “Alpha-D-Glucopyranose” by NEUROtiker, also licenced under public domain via

Wikipedia Commons)
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the four nearest neighbors NB(�x); dispersion is approx-

imated by Fick’s law, where D is a diffusion coefficient

and L = 1 cm the interface length between two adjacent

patches. The local density of metabacteria, B(�x) is given by

dB(�x, t)

dt
= μ(�x, t)B(�x, t). (7)

To mimic meals, a pulse of glucose of variable mag-

nitude enters the tube once every eight hours (Fig. 3d).

The metabolites move through the tube via a simplified

model of advection: At regular intervals, all metabolites

are shifted one patch (Fig. 3e). Metabolites continuously

leave the tube at the end through an open boundary condi-

tion (Fig. 3f). To mimic peristaltic movements that locally

mix the gut contents together, metabacteria randomly hop

to adjacent lattice sites (Fig. 3g) and leave the gut only

via random hops over the open boundary condition. In a

subset of simulations, accelerated bowel movements are

simulated by advecting the metabacteria together with

the metabolites. To a first approximation, the boundaries

are impermeable to the metabolites, a situation reflect-

ing many in vitro models of the gut microbiota (reviewed

in Ref. [43]); later versions of the model will consider

more complex boundary conditions including absorption

of metabolites [44].

When the local biomass in a patch, B(�x, t), has grown

to twice its original value, the metapopulation expands

into the second position on the grid point (Fig. 3h). To

mimic a local carrying capacity, the metapopulation does

not spread out or grow any further if both positions in

the patch are occupied. In the visualizations of the sim-

ulations, full patches are shown in green, singly occupied

patches are shown in yellow, and empty patches are shown

in black (Figs. 3i and 4). During expansion, changes in

the relative abundance of species may enhance or reduce

the rate of particular reactions, or even delete them from

the metapopulation completely. Similarly, metabolic reac-

tions can be reintroduced due to resettling of metabolic

species, e.g., from the gut wall mucus [45]. To mimic

such changes in species composition of the metapopula-

tion, during each expansion step, we delete enzymes from

the metabolic network at random, reactivate enzymes at

random, or randomly change crowding coefficients such

that the metapopulation can specialize on one particular

reaction or become a generalist.

The crowding coefficients, as they appear in the flux-

balance analysis with molecular crowding (FBAwMC)

method that we used for this model, give the minimum

cellular volume filled with enzymes required to gener-

ate a unit metabolic flux; they are given by the Vmax of

the enzyme and enzyme volume [34]. Equivalently, in our

metapopulation model, the crowding coefficient of a reac-

tion is the minimum intracellular volume averaged over

all bacteria in the patch that must be filled with enzymes

in order to generate a unit flux through the reaction. It

depends on the density of the enzyme in the bacteria

and also on the corresponding values of Vmax. Because

the Vmax of a reaction can differ orders of magnitudes

between species (see for example the enzyme database

BRENDA [46]), the evolutionary dynamics in our model

could drive the metabacteria to reduce all crowding coef-

ficients concurrently, producing a highly efficient gener-

alist. To introduce a biologically more realistic trade-off

between metabolic rate and cost in terms of volume, we

therefore included an experimentally observed trade-off

between growth rate and growth yield among micro-

organisms [47, 48]: Micro-organisms that grow fast have

low growth yield and vice versa. We take this trade-off

into account explicitly by assuming a maximal growth rate

given the carbon uptake rate of the cells. This trade-off

prevents the metabacteria from growing infinitely fast by

mutating their crowding coefficients.

As an initial condition, we distribute metabacteria over

the grid, each containing all available metabolic reactions,

i.e., each metabacterium initially contains all bacterial

“species” that the complete metabacterium represents.

To reflect variability in the relative abundances of the

bacterial species in each metabacterium the crowding

coefficients are drawn at random from an experimental

distribution as described above (Fig. 3a).

Evolution of diversity due tometabolic cross-feeding

To evaluate the behavior of our model, we performed

ten independent simulations. These show largely similar

A

B

C

Fig. 4 Screenshot of the spatially explicit model. The proximal end of the colon is on the left, the distal end on the right. Thus, nutrients flow from left

to right. a Cells on the grid. At maximum 2 cells can be on the same grid point. Yellow:one cell present, green: 2 cells present. (b) Glucose

concentration. Black: low concentrations, white: high concentrations. (c) Formate concentrations. In total, 115 extracellular metabolites are taken

into account in the model
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phenomenology; therefore we will first describe the

progression of one representative simulation in detail,

and then discuss differences with the other simulations.

Figure 5a shows the average number of metabolic reac-

tions present in the metabacteria over time in the simula-

tion. At t = 0 all metabacteria still have all 674 reactions,

but over time the number of available reactions gradu-

ally drops to below 200. This reduction of the number of

metabolic genes could indicate a homogeneous popula-

tion that is specialized, e.g., on fermentation of glucose

where most of the metabolic network is not used. An

alternative explanation is that each of the metapopulation

retains a subset of the full network, an indication of cross-

feeding. The amount of cross-feeding will likely change

over the tube: The metabacteria in the front have direct

access to glucose, whereas the metabacteria further down

in the tube may rely on the waste-products of those in

front. We therefore determined a temporal average of the

cross-feeding factors, Crel (Eq. 5), at each position in the

tube over t = 3500 to t = 4000, a time range at which

most genes have been lost. The first observation to note

is that in the spatial evolutionary simulations, the aver-

age cross-feeding factor Crel has a higher value than in

the well-mixed simulations. In this particular simulation,

the spatial average cross-feeding factor at t = 4000 is

Crel = 0.65 ± 0.09, compared with Crel = 0.39 ± 0.02

in the well-mixed case (n = 10). The cross-feeding factor

for individual cells (C(i), Eq. 4), showed large population

heterogeneity. As Fig. 5b shows, the cross-feeding factor

in the tube front is close to 0, indicating the presence

of primary glucose consumers, while cross-feeding slowly

increases towards the distal end until it almost reaches

1, indicating complete cross-feeding. Thus in the proxi-

mal end the bacteria rely mostly on the primary nutrient

source, while near the distal end cells of the tube rely

on cross-feeding. This observation is consistent for all

simulations (see Additional file 3: Figure S3).

Emergence ofmetabolic stratification

We next investigated the mechanism by which such cross-

feeding emerges in the simulation. Additional file 4: Figure

S4 plots the metabolite concentrations over evolutionary

time for the simulation of Fig. 5. In this particular simu-

lation, the concentrations of formate and lactate initially

rise rapidly, after which they drop gradually. The butyrate

concentrations increase over evolutionary time. In all sim-

ulations, the metabolite concentrations change gradually,

but not necessarily following the same temporal pattern.

Figure 6 shows the spatial distribution of a set of key

metabolites averaged over 2000 h to 4000 h of the repre-

sentative simulation. Interestingly, the flow of metabolites

through the colon in interaction with the bacterial popula-

tion creates a spatially structured, metabolic environment.

The proximal end is dominated by the primary carbon

source glucose (Fig. 6a), with the peak in the average

glucose concentration due to the periodic glucose input.

Further down in the tube we find fermentation products,

including lactate and ethanol, whereas the distal end con-

tains high levels of acetate and CO2, showing that the

metabacteria convert the glucose into secondary metabo-

lites. Among these secondary metabolites, the levels of

acetate (Fig. 6b), ethanol (Fig. 6e), formate (Fig. 6f), lactate

(Fig. 6g) and propionate (Fig. 6h) drop towards the distal

end off the tube, so they are further metabolized by the

metabacteria. In this particular simulation, butyrate and

CO2 are not consumed and their concentrations increase

monotonically towards the end. The small drop at the very

distal end is caused by themetabolite outflow. The profiles

of the other simulations were consistent with this repre-

sentative simulation (Additional file 5: Figure S5). In all

simulations, the proximal end was dominated by glucose.

Further towards the end of the tube, zones of fermentation

products developed as in the representative simulation,

but the precise location of each product was different and

not all products were present. Most notably, in two out
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of ten simulations, butyrate was absent and in two other

simulations proprionate was absent. Also, in three out of

ten simulations lactate was more confined to the front of

the tube (up to around 50 sites) than in the representative

simulation.

Metabacteria specialize on local metabolic niches

These results demonstrate that the metabacteria spa-

tially structure their metabolic environment, generating a

stratified structure of metabolic “niches” along the tube,

each offering a separate set of metabolites. Therefore, we

next asked if this environmental structuring gives rise to

metapopulations uniquely adopted to the microenviron-

ment. We took computational samples of all metabacteria

found in the tube between 3500 h and 4000 h, to aver-

age out the variations at the short timescale. We tested

the growth rate of these samples (consisting of on average

n ≈ 1100 metabacteria) in six, homogeneous metabolic

environments, containing uniform concentrations of pure

(1) glucose, (2) acetate, (3) formate, (4) lactate, and (5)

propionate, and (6) a mixture of of CO2 and H2. Figure 7

shows the average and standard deviation of the growth

rates of the metabacteria in each of these six environ-

ments, as a function of the position from which they were

sampled from the tube. Strikingly, the metabacteria near

the distal end of the tube have lost their ability to grow

on glucose (Fig. 7a), indicating that they have specialized

on secondary metabolites, including acetate (Fig. 7b) and

lactate (Fig. 7e). Interestingly, in support of the conclusion

that the metabacteria specialize on the metabolic niches

generated by the population as a whole, the metabacte-

ria sampled from the distal end on average grow faster on

acetate and lactate than the metabacteria sampled from

the front of the tube. Acetate and lactate are produced

in the proximal colon and flow to the distal part of the

tube where themetabacteria canmetabolize it; in the front

of the tube acetate and lactate concentrations are lower,

such that neutral drift effects can safely remove the cor-

responding metabolic pathways from the metabacteria.

Remarkably, the metabacteria also grow on CO2, because

of the presence of hydrogen gas, that allows growth on

CO2 via the Wood-Ljungdahl pathway [49]. To further

characterize the alternative metabolic modes occurring

in the model, we clustered the population present at the

end of the simulation t = 4000 h with respect to their

maximum growth rates in the six environments (Fig. 8).

Clearly, different metabolic “species” can be distinguished.

One “species” can metabolize glucose, a second “species”

can metabolize most secondary metabolites and a third

“species” has specialized on acetate. Thus in our simula-

tion model a number of functional classes appear along

the tube, each specializing on its own niche in the full

metabolic network.

Increased flux through the tubemakes diversity collapse

From the results in the previous section, we conclude

that the inherent spatial structuring of the colon results

in separate niches. This allows the population to diver-

sify, such that different “species” have different metabolic

tasks. A recent population-wide metagenomics study of
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stool samples from the Flemish and Dutch population

[50] showed that, among a range of life-style related fac-

tors and medicine use, the diversity of the human gut

microbiota correlates strongest with the Bristol stool scale

(BSS), a self-assessed indicator of the “softness” of the

stool. The analysis showed that for softer stools (higher

stool index, indicative of faster transit times [51]), the

diversity of the gut microbiota was reduced [52]. To inves-

tigate whether transit time could also be correlated with

reduced diversity in our model, we studied the effect of

increased fluxes through the tube (“diarrhea”), by assum-

ing that the supra-bacteria flow through the tube at the

same rate as the metabolites do. Strikingly, the maxi-

mal growth rate of the cells has become independent of

the position (Fig. 9). Again, we clustered the population

present at the end of the simulation with respect to their

maximum growth rates in glucose, acetate, H2 and CO2,

formate, lactate and propionate (Fig. 10). In contrast to the

simulations without cell flow, the population does practi-

cally not diversify. All supra-bacteria can grow on glucose,

Formate

CO2

Propionate

Lactate

Glucose

Acetate

Acetate consumers

Glucose consumers Secondary metabolite
consumers

Fig. 8 Hierarchical clustering of all cells present at the end of the simulation, with respect to the growth rates on glucose, acetate, CO2 , formate,

lactate and propionate. Black indicates low growth rate, red high growth rate. We used [72] to perform the cluster analysis, with average linkage and

a euclidian distance metric
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acetate and H2 and CO2. Thus, our simulations suggest

that increased transit times may contribute to a reduction

of microbial diversity, by reducing the spatial hetero-

geneity in the gut and, consequently, the construction of

ecological niches and cross-feeding interactions.

Discussion
We have presented a coupled dynamic multi-species

dynamic FBA and mass-transfer model of the gut

microbiota. We first studied a non-spatial variant of the

model, in order to determine to what extent cross-feeding

can emerge in a non-evolving, diverse population of

metabacteria. The individual metabacteria in this model

contain the major carbohydrate fermentation pathways in

the colon. Starting from glucose as a primary resource,

the model produced acetate, butyrate, carbon dioxide,

ethanol, formate, lactate and propionate. These fermen-

tation products compared well with the short-chain fatty

 formate 

 propionate 

 lactate 

 glucose 

 acetate 

CO2

Fig. 10 Hierarchical clustering of all cells present at the end of the simulation with cell flow, with respect to the growth rates on formate, CO2 ,

propionate, lactate, glucose and acetate. Black indicates low growth rate, red high growth rate. We used [72] to perform the cluster analysis, with

average linkage and a euclidian distance metric
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acids found in the colon [37] or with those found in

an in vitro model of the colon [38]. Our model gener-

ated these short-chain fatty acids only if it was run with

FBAwMC and not with standard FBA, indicating that the

individual metabacteria must be able to exhibit diauxic

shifts. In FBAwMC these are due to rate-yield metabolic

trade-offs [34, 36].

It has been argued that metabolic trade-offs in com-

bination with mutational dynamics may already explain

population diversity as it will select for suboptimal phe-

notypes with equally fit mutational neighbors - i.e., ‘sur-

vival of the flattest’ [53]. This mechanism may already

sufficiently explain diversity in microbial ecosystems, sug-

gesting that cross-feeding or spatial heterogeneity is not

required for diversity. However, cross-feeding interactions

exist in the gut [54, 55] and are likely to be an important

factor in determining microbial diversity. Indeed, our spa-

tially explicit, sdFBA model shows that already on a single

food source a stratified structure of metabolic niches is

formed, with glucose consumers in front, followed by

strata inhabited by secondary and tertiary consumers.

Interestingly, these secondary and tertiary consumers

specialized to their metabolic niche: Metabacteria sam-

pled from the rear end of the tube could no longer grow

on the primary resource glucose (Fig. 7a), and they grew

better on the secondary metabolite lactate than bacteria

from the front did (Fig. 7e). This specialization was mostly

due to “gene loss”, i.e., simplification of the metabolic net-

works. Interestingly, metabacteria with reduced genomes

did not have a growth advantage in our model, yet they

lost essential pathways required for metabolizing the pri-

mary resource. Such “trait loss without loss of function

due to provision of resources by ecological interactions”

[56] is indicative of an evolutionary mechanism known as

compensated trait loss [56]. Note, however, that because

smaller metabacteria did not have a growth advantage in

our model, the gene loss in our model is due to drift.

Hence it differs from the Black Queen Hypothesis [57],

which proposes that the saving of resources associated

with gene loss accelerate the evolution of compensated

trait loss. An interesting future extension of the model

would consider the metabolic costs associated with the

maintenance of metabolic pathways.

The formation of metabolic niches and the observed

compensated trait loss required that the metabacteria can

maintain their approximate position in the gut-like tube,

e.g., by adhering to the gut wall or by sufficiently fast

reproduction [52]. The microbial diversification did not

occur if the metabacteria moved along with the flow of the

metabolites, a situation resembling diarrhea. Decreased

microbial diversity is often seen causative for diarrhea,

e.g., because it facilitates colonization by pathogenic

species including Clostridium difficile [58]. Our model

results suggest an additional, inverse causation, where

accelerated transit reduces microbial diversity. Experi-

mental studies are consistent with the idea that transit

speed is causative for reduced diversity, but with a dif-

ferent mechanism: Microbiota sampled from softer stools

(i.e., higher BSS and faster transit time) have higher

growth potential, suggesting that faster transits favor fast

growing species [52]. A second potential strategy to pre-

venting wash-out from the gut at high transit times is

adherence to the gut wall e.g., by the species of the P

enterotype [52]. Thus these observations suggest that the

reduction of microbial diversity at fast transits is due

to selection for fast growing or adherent species. Our

computational model suggests an alternative hypothesis,

namely that increased transit times reduce the potential

for bacterial cross-feeding, thus reducing the build-up of

metabolic niches in the environment.

Conclusion
We have presented a coupled dynamic multi-species

dynamic FBA and mass-transfer model of the gut micro-

biota. We first studied a non-spatial variant of the model,

in order to determine to what extent cross-feeding can

emerge in a non-evolving, diverse population of metabac-

teria. The individual metabacteria in this model con-

tain the major carbohydrate fermentation pathways in

the colon. Starting from glucose as a primary resource,

the model produced acetate, butyrate, carbon dioxide,

ethanol, formate, lactate and propionate. We next dis-

cussed a spatial variant of the model in a gut-like environ-

ment, a tube in which the metabolites diffuse and advect

from input to output, and the bacteria attach to the gut

wall. This spatially explicit, sdFBA model was extended

with models of bacterial population dynamics, and ‘muta-

tion’ of the metabacteria due to the gain and loss of

pathways from the local population. In this model, a strat-

ified structure of metabolic niches formed, with glucose

consumers in front, followed by strata inhabited by sec-

ondary and tertiary consumers that lost the ability to grow

on the primary resource. Interestingly, the stratification,

and hence niche formation and specialization was lost if

we increased transit speeds through the tube, to mimic

diarrhea. Thus our model results suggest that enhanced

enhanced transit speeds might contribute to the obser-

vation that softer stools (i.e., faster transit) have lower

diversity [52].

Of course our model is a simplification as it lacks many

key features of the gut microbiota and of the gut itself.

The metabacterium only contain a minimal subset of the

metabolic pathways that are found in the gut microbiota.

Future versions of our model could extend the current

metabacterium model with additional metabolic path-

ways, e.g., methanogenesis or sulfate reduction. Adding

multiple pathways would increase the number of poten-

tial cross-feeding interactions and improve the biological
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realism of the model. An alternative route that we are cur-

rently taking is to include multiple, alternative metabac-

teria, each representing a functional group in the human

gut microbiota [59]. This will allow us to compare the

metabolic diversification observed in our computational

model with metagenomics data, or use the model to com-

pare alternative enterotypes [60].

A further simplification of this first study of our model,

is that we have focused exclusively on glucosemetabolism.

Future versions of the model will also consider lipid

and amino acid metabolism, allowing us to compare the

effect of alternative “diets” and consider the break-down

of complex polysaccharides present in plant-derived food

fibers. Further extensions include more complex interac-

tions with the gut wall, which is currently impenetrable

as in some in vitro models of the gut microbiota [61, 62].

Additional terms in Eq. 6 will allow us to study the effects

of SCFA from the gut lumen, oxygen supply, and effects of

the production of mucus by the gut wall [63].

Methods

Metabolic model

We converted the GEM of L. plantarum [28] to a stoichio-

metric matrix, S. Reversible reactions were replaced by a

forward and a backward irreversible reactions. Next, we

added four metabolic pathways that are crucial in carbo-

hydrate fermentation in the colon, but are not present in

the network: propionate fermentation, butyrate fermenta-

tion, the acrylate pathway and the Wood-Ljungdahl path-

way. We used the Kegg database (http://www.genome.jp/

kegg) [64] to add the necessary reactions. For the Wood-

Ljungdahl pathway, we followed the review paper [49].

Additional file 6 lists all reactions and metabolites of the

GEM, in particular those that we added to the GEM of

L. plantarum.

To calculate the fluxes through themetabolic network as

a function of the extracellular environment, we used flux-

balance analysis with molecular crowding (FBAwMC)

[34, 35]. FBAwMC assumes that all reactions through a are

in steady state:

d�x

dt
= S · �f = 0, (8)

where �x is a vector of all metabolites, �f is a vector

describing the metabolic flux through each reaction in the

network, and S is the stoichiometric matrix. FBAwMC

attempts to find a solution �f of Eq. 8 that optimizes for

an objective function under a set of constraints �flb ≤ �f ≤
�fub, with �flb and �fub the lower and upper bounds of the

fluxes. Furthermore, FBAwMC constrains the amount of

metabolic enzymes in the cell. This leads to the following

constraint

∑

aifi ≤ Vprot, (9)

where ai ≡ Mvi
Vbi

is the “crowding coefficient”, M the

cell mass, V the cell volume, vi the molar volume of the

enzyme catalysing reaction i and bi is a parameter describ-

ing the proportionality between enzyme concentration

and flux. For a derivation of Eq. 9 see Ref. [34]. Vprot is a

constant (0 ≤ Vprot ≤ 1) representing the volume fraction

ofmacromolecules devoted tometabolic enzymes.We use

a value of Vprot = 0.2, equal to the value used in [36] for

other bacteria.

The crowding coefficients are not known for every

reaction in the metabolic network. Therefore, following

Vazquez and coworkers [35], crowding coefficients were

chosen at random from a distribution of known crowding

coefficients for E. coli based on published molar volumes

(Metacyc [65]) and turnover numbers (Brenda [46]). Both

in the well-mixed simulations as in the spatially explicit

simulations, we allowed for unlimited influx of hydro-

gen gas, water, sodium, ammonium, phosphate, sulfate

and protons. To calculate the growth rate, we find a solu-

tion of Eq. 8 that maximizes the rate of ATP production,

given the crowding constraint (Eq. 9). ATP production has

been shown to be a good proxy for biomass production

[66] and it allows us to avoid the additional complexity

of, e.g., amino acid metabolism and vitamin metabolism.

The growth rate μ was then calculated by dividing the

ATP production rate by a factor of 27.2, the factor that

was used for ATP in the biomass equation of the original

L. plantarummodel [28].

Well-mixed model

Simulations of the well-mixed model are performed in

Matlab, using the COBRA Toolbox [67]. We use an

approach similar to Ref. [23] to model a population of

cells in a well-mixed environment. We initiated 1000

cells with crowding coefficients for all their reactions set

according to the experimental distribution of E. coli (see

Section Metabolic model) We start with a total biomass

concentration (B) of 0.01 gram dry weight/liter (gDW/l),

divided equally over all 1000 metabacteria (i.e., ∀i ∈

[1, 1000] : Bi(0) = 10−5 gr DW/l). At time t=0 we initi-

ate the environment with a glucose concentration of 1.0

mM. At every time-step, the maximal uptake rate for each

metabolite j is a function of its concentration, cj(t), as,

Fup,max(j) =
1

�t

cj(t)
∑1000

i=1 Bi(t)
. (10)

We then perform FBAwMC for all 1000 supra-bacteria

and update the concentrations of all metabolites that are

excreted or taken up, as,

cj(t + �t) = cj(t) + �t

1000
∑

i=1

Fi,jBi (11)

http://www.genome.jp/kegg
http://www.genome.jp/kegg
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FBAwMC yields a growth rate μi for each supra-

bacterium i, which is used to update the biomass as,

Bi(t + �t) = Bi(t) + μiBi(t)�t. (12)

This procedure is continued until the supra-bacteria

have stopped growing.

Spatially explicit, evolutionary model

For the spatially explicit simulations, we developed a C++

package to perform constraint-based modeling using the

GNU Linear Programming Kit (GLPK, http://www.gnu.

org/software/glpk/) as linear programming tool. The mul-

tiscale, computational model of the gut microbiota was

also developed in C++. It describes individual metabacte-

ria, or “cells” living on a grid, each with its own, unique

GEM. Nutriets enter the grid at one end, flows through

the grid, diffuses over the grid and is consumed by the

cells. Uptake and excretion of metabolites is calculated

using the GEM in each cell. The cells divide proportional

to the calculated ATP production rate and mutate upon

division. We simulate a total time of 4000 h (equivalent to

80000 time steps). A model description in pseudocode is

given in Fig. 11. All parameters in the model are given in

Table 1.

Initialization

We initialize the grid with cells that have the same

metabolic network as in the well-mixed simulations. We

choose the crowding coefficients for each reaction ran-

domly. We allow maximally 2 cells to be present on each

grid point. Thus, per grid point there are two “slots” that

can be empty or filled by a cell. At time t=0, we initial-

ize every slot of every grid point with a probability of 50%

with a cell with random crowding coefficients. Because of

the modeled population size (in the order of 1000 cells),

each cell should be viewed as a metapopulation of bacte-

ria that is representative for the local composition of the

intestinal microbiota: i.e, a metabacterium.

Nutrient dynamics

We assumed that nutrients enter the colon every eight

hours. In this study we consider glucose as the primary

resource, because we want to focus on the bacterial diver-

sity that can result from a single resource. Thus we assume

that polysaccharides are already broken down to glucose.

To allow for variability, we pick the amount of glucose

from a normal distribution with mean of 42 mmol and a

relative standard deviation of 20%. This mean value is cho-

sen such that one the one hand all nutrients are consumed

during passage through the gut and on the other hand

it allows for a sufficiently large population size (≈ 1000

metabacteria).

The glucose is consumed by the metabacteria, accord-

ing to the metabolic networks. These network take into

Fig. 11 Pseudocode of the spatially explicit computational model

account 115 extracellular metabolites, whose dynamics

are all modeled explicitly in the model. The majority of

these metabolites are never produced. Production and

consumption for each metabolite is modeled using

ci(t + �t) = ci(t) + �t

2
∑

n=1

(Fi,nVnDENS_MAX/4.0)

(13)

Thus, the concentration ci(t) of each metabolite i is

updated each timestep �t according to the calculated

influx/efflux, Fi,n, and cell volume, Vn, of the cells on

the grid point (maximally 2). Fluxes in the metabolic

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
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Table 1 Parameters of the spatially explicit model

Parameter Value Units Comments

�t 3.0 min

�x 1.0 cm

Grid length 150 Grid sites

Grid height 10 Grid sites

TIME_END 4000 hr

# slots per grid point 2

DENS_MAX 1.0 g DW · l−1 See main text

Initial density 50% Assumed

TIME_FOOD 8 hr Assumed

FOOD_IN 42 mmol Assumed

Diffusion constant 14000 μm2/s Assumed (compare
900 μm2/s glucose
in water)

P_MOVECELL 0.05 Assumed

DEATH_BASAL 0.025 hr−1 Assumed

DEATH_DENS 2.0 hr−1 Assumed

TIME_DRIFT 15 min Passage time of
approximately 40
hrs

P_CELL_FLOW Variable

UPTAKE_HOST Variable

μ_DEL 0.002 Assumed

μ_BIRTH 0.0002 Assumed

μ_POINT 0.002 Assumed

μ_POINT_STEP 0.2 Assumed

network have unit mmol · g DW−1 · h−1, where exter-

nal metabolite concentrations are in mmol · l−1. To con-

vert the fluxes to extracellular concentration changes,

we therefore multiply with DENS_MAX; it is the maxi-

mum bacterial density in g DW · l−1, which is estimated

as explained in Table 1. The division by four is because

there can be at maximum 2 cells of volume 2 at one

grid point. DENS_MAX is the maximum local den-

sity of bacterial cells; it is used to calculate the change

in metabolite concentration based on the metabolite

influx and efflux. If a grid point is fully occupied with

two meta-bacteria the cell density at that point equals

DENS_MAX. A high DENS_MAX results in large changes

in extracellular concentrations due to exchange fluxes.

We estimated DENS_MAX using an estimated bacterial

density of 1014 cells/l, an estimated bacterial cell size of

10−16 l/cell and a cellular density of 100 g DW/l, i.e.,

maxcelldensity = 1014 cells
l

∗ 10−16 l
cells

∗ 100
g DW

· lcell−1

[68, 69]. To prevent negative concentrations, the uptake

per time step �t is capped at

MAX_UPTAKEi =
4.0ci

�t ∗ DENS_MAX ∗ (V1 + V2)
.

(14)

Each metabolite flows through the colon: Every 15 min,

all metabolites are shifted one grid point to the right. This

results in a passage time of 37.5 h, similar to observed

colonic transit times (e.g., 39 hrs in [70]). Every metabolite

is also dispersed uniformly due to turbulence and peri-

stalsis. In absence of exact data for dispersion coefficients,

we simplify these processes by a diffusion processes, with

an effective diffusion constant of 14 × 103μm2/s for

all metabolites. This dispersion coefficient is an order

of magnitude higher than the diffusion constant of glu-

cose in water, and provides a good balance between local

mixing while maintaining sufficient differentiation in our

simulations.

Population dynamics

FBAwMC yields growth rate, μ, for each metabacterium i

using an empirical, auxiliary reaction [71]. The volume of

the metabacterium is then updated, as

Vi(t + �t) = Vi(t) + Vi(t) ∗ μi ∗ �t. (15)

Cell death is taken into account in a density dependent

way. This stabilizes the population, making sure that the

population does not grow too fast if too much nutrients

are given or dies out if too little nutrients are given. The

death rate of a cell is calculated as follows

DEATH_RATE =

(

DEATH_BASAL + DEATH_DENS

TOTAL_NEIGHBOURS

MAX_NEIGHBOURS

)

,

(16)

where TOTAL_NEIGHBOURS is the total amount of

neighbours and MAX_NEIGHBOURS the maximum

amount of neighbours (17 in the centre of the grid,

because there are 2 slots per grid point).

Next the metabacteria expand into the empty patch on

the same grid point when their volume exceeds a value of

2. The volume of the parent metabacterium is then equally

distributed over the two daughter metabacteria. During

this expansion, three types of “mutations” can occur:

(a) the complete deletion of a reaction, i.e., extinction of

the species responsible for this reaction, with

probability μ_DEL;

(b) the reintroduction of metabolic pathways,

corresponding to the invasion of the bacterium

previously responsible for this pathway, with

probability μ_BIRTH;

(c) the strengthening or weakening of one of the

pathways, corresponding to the relative growth or

suppression of a bacterial species in the

metapopulation, with probability μ_POINT.
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To delete reaction (a) the maximal flux through that

reaction is set to 0. To reintroduce a reaction (b), we

release the constraint by setting it to a practically infinite

value (999999 mmol/gr DW hr). A point mutation (c) cor-

responds to a change of the crowding coefficient (ai in

Eq. 9) of that specific reaction, as

ai,new = ai,old ∗ 10step, (17)

In this way, the metabacteria specialize on certain reac-

tions, i.e., by having only one or a few bacterial species

in the patch. step is selected at random from a nor-

mal distribution with mean 0 and standard deviation

μ_POINT_STEP. In this way, if the crowding coefficient is

large, the mutation step will be large as well. This is neces-

sary, because crowding coefficients are almost distributed

log-normally [35, 36].

A possible non-physical side effect of this approach is

that all crowding coefficients evolve to a value of ai = 0,

in which case the growth rates would no longer be lim-

ited by enzymatic efficiency and volume of the patch. In

reality, bacteria must trade off growth rate and growth

yield (see Fig. 12 and Refs. [47, 48]). To take this trade-

off into account, we first calculate the total carbon uptake

rate using FBAwMC as described above. We then cal-

culate the maximal allowed growth rate, μmax belonging

to that carbon uptake rate, using the empirical formula

μmax = 1/3.9Gup (i.e., the black curve in Fig. 12). We cap

the growth rate μ to the maximum growth rate, μmax.

Cell movement

To model the cells’ random movement over the grid, we

loop over all grid points in random order. Every grid point

has two “slots” that may or may not be occupied. Each
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Fig. 12 Derivation of empirical formula for maximum growth rates as

a function of the glucose uptake rate. Green squares are data from

yeast species [48]; blue squares represent data from bacterial species

[47]. The black, dashed curve is the maximum allowed growth yield

given the glucose uptake rate, Gup . The empirical function is
1

3.9Gup+2.8 and is designed such that all data points lie below it

slot, whether it is occupied or not, has a probability of

P_MOVECELL to exchange its position with a randomly

chosen slot in a randomly chosen neighboring grid point,

but this only succeeds if that slot has not already moved

this turn.

An advection algorithm is introduced to model the

flow of bacteria along the tube, with parameter P_CELL_

FLOW determining the advection velocity relative to the

metabolite flux (see Section Nutrient dynamics). At each

metabolite flow step (once every 15 min), with probability

P_CELL_FLOW all the cells shift one grid point to the

right synchronously. I.e., for the default value P_CELL_

FLOW=0 the cells do not flow at all, whereas for P_CELL_

FLOW=1 the cells flow at the same rate as themetabolites.

We performed simulations with P_CELL_FLOW ∈

{0, 0.5, 1}. To mimic reentry of bacterial species from the

environment, we assume periodic boundary conditions:

All cells that leave the distal end of the gut, enter into the

proximal end.

Additional files

Additional file 1: Figure S1. Simulation of the non-spatial, extended L.
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