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Many biological and man-made networked systems are characterized by the simultaneous presence of
different sub-networks organized in separate layers, with links and nodes of qualitatively different types.
While during the past few years theoretical studies have examined a variety of structural features of complex
networks, the outstanding question is whether such features are characterizing all single layers, or rather
emerge as a result of coarse-graining, i.e. when going from the multilayered to the aggregate network
representation. Here we address this issue with the help of real data. We analyze the structural properties of
an intrinsically multilayered real network, the European Air Transportation Multiplex Network in which
each commercial airline defines a network layer. We examine how several structural measures evolve as
layers are progressively merged together. In particular, we discuss how the topology of each layer affects the
emergence of structural properties in the aggregate network.

I
n the past fifteen years, network theory1–3 has successfully characterized the interaction among the constituents
of a variety of complex systems4,5, ranging from biological6 to technological7, and social8 systems. However, up
until recently, attention was almost exclusively given to networks in which all components were treated on

equivalent footing, while neglecting all the extra information about the temporal- or context-related properties of
the interactions under study. Only in the last three years, taking advantage of the enhanced resolution in real data
sets, network scientists have directed their attention to the multiplex character of real-world systems, and
explicitly considered the time-varying9–14 and multi-layered15–26 nature of networks.

A paradigmatic example of intrinsically multiplex system is represented by the Air Transportation Network
(ATN). The ATNs have undergone a very significant growth during the last decades, giving rise to the dense and
redundant system we know nowadays27. In the ATN, nodes represent airports, while links stand for direct flights
between two airports. On the other hand, each commercial airline corresponds to a different layer, containing all
the connections operated by the same company. While a considerable effort has recently been devoted to the
characterization of the structural properties28–30 of ATNs and their role in the dynamical processes taking place on
them31–34, their multiplex nature has remained almost unexplored.

When studying systems that can be represented as a graph made of diverse relationships (layers) between its
constituents, an important question, typical of complex systems analysis, arises: can the topological properties of
the whole system be traced to those of its layers or do they emerge from the simultaneous presence of multiple
layers? Emergence is said to happen when the focus is switched from one scale to a coarser level of description.
This question can be addressed by comparing the most usual structural properties of the multiple layers com-
posing a network35 and their analogue in the aggregate representation of the network, in which the layer structure
is disregarded.

To address the above question we resort to the European ATN data set. Taking advantage of the high-
resolution of these data, comprising a number of airlines (layers) operating in Europe during the year 2011,
we succeed to extract the multiplex character of the system, and we investigate how the structural properties
usually observed in the ATN are here emerging as a result of progressive layer merging. To this end, we quantify
various topological measures, such as the degree distribution, the clustering coefficient or the presence of rich-
club effect, in networks obtained by merging together a growing number of layers, from the lowest level of
resolution of a single layer, up to the fully aggregate network. In addition, we compare two different types of
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layers, those corresponding to major (national) airlines and those
labeled as low-cost companies. We analyze their structural differ-
ences, and their different contribution to the properties of the global
ATN.

Results
The European ATN can be represented as a graph composed of M 5

37 different layers each representing a different European airline (see
Methods for details). Each layer m has the same number of nodes, N,
as all European airports are represented in each layer. Furthermore,
the data set allows extracting two main subsets, comprising all major,
and low-cost airlines, with 18 and 10 layers respectively (See Fig. 1).
In particular, panels (a) and (b) display the structure of the aggregate
network focusing first on its redundancy by sketching those links
belonging to more than one layer and on its unicity by reporting
those links that only exist in a specific layer. Panels (c) and (d) show,
instead, the single-layer ATN corresponding to a given major and
low-cost airlines, respectively. In each of the panels we highlighted
the nodes with the highest number of connections.

Topological measures. To characterize the structural properties of
both the aggregate ATN and its layers, we consider several features
widely used in network literature35, i.e. cumulative degree distri-
bution P.(k), clustering coefficient C, size of the giant component
S, average path length L and Rich-club coefficient R. We briefly
describe below the specific meaning of each of these measures in
our context. The interested reader will find a complete description
of all those quantities in the Methods section.

. The cumulative degree distribution P.(k), gives the probability of
finding a node with a number of connections (or degree) equal or
greater than k. The degree distribution is a powerful tool which
allows understanding both structural and dynamical character-
istics of a system as, for instance, its tolerance to attacks or fail-
ures36,37 so it represents a cornerstone in the characterization of
critical infrastructures, such as the ATN.

. The average path length ÆLæ, measures the average number of
hops one has to make to go from a node to another. In the context
of ATNs, it indicates the average number of flights a passenger has
to take to go from his/her origin to his/her destination. However,
if the system is not connected, this quantity diverges and it is
preferable to restrict attention to the giant (largest) component
of the system (see below).

. The clustering coefficient C, measures the probability, C [ [0, 1],
that two nodes with a common neighbor are connected together.
C is a typical measure in systems made of social acquaintances8,
but in our case it is useful to estimate the density of triangular

motifs (denoting the possibility of performing round trips of
length 3).

. The size of the giant component38 S, denotes the largest fraction of
overall nodes such that any pair of them is connected through a
path of finite length. In our case, it estimates the largest coverage
that a given airline (or a combination of them) provides in terms
of the available destinations that a passenger can reach from an
origin inside the giant component.

. The Rich-club coefficient39 R, measures the tendency of highly
connected nodes, i.e. the hubs, to be connected among them-
selves. To measure it, one has to compute the abundance of links,
w(k), among nodes with a number of connections equal or greater
than a certain value k, and the maximum possible number of links
among those nodes, w(k)max. Then, the ratio between these two
quantities gives the relative abundance of links among nodes with
at least k connections. Finally, R(k) is given by the ratio between
the abundance of links in the real case w(k)/w(k)max and the same
quantity calculated in a proper randomized version of the original
network. Colizza et al.28 measured R for the ATN, and found that
world air transportation network displays indeed a Rich-club
effect, i.e. for large values of k the value of R(k) is larger than 1.

Emergence of topological properties of the European ATN. We
now analyze the evolution of the former measures as more and more
layers are merged (independently of whether they do correspond to
major or low-cost companies), until the complete aggregate ATN,
comprising all the available layers, is reached (see the Methods
section for the details on the layer merging procedure). The results
are shown in Fig. 2.

In panel (a) we show the evolution for the cumulative degree
distribution of the aggregate ATN and those networks obtained by
merging 1, 5 and 20 randomly chosen layers. Since right-skewed
distributions often display high noise levels at the end of their tails
due to the lack of statistics, it is convenient to consider the cumulative
distribution instead of the distribution P(k) itself35. A power-law
behavior P.(k) / k2a is observed in all the situations considered,
with a decrease in the exponent a, ranging from a 5 1.84 in the single
layer case (m 5 1) to a 5 1.39 for the aggregate ATN. The increase in
heterogeneity with the number of layers considered points to a
richer-gets-richer phenomenon different from the one seen in clas-
sical models for growing scale-free networks: while in the latter case,
it results from the addition of new nodes, in the present case it
emerges from the addition new layers.

In panel (b) we report the clustering coefficient. In this case, we
show the behavior of ÆCæ as a function of the number of layers used to
construct the aggregate ATN, averaged over the number of different
combinations of m elements (m 5 1, …, M). Interestingly, we see
how the clustering suddenly increases as we merge just a few layers:

Figure 1 | Visual representation of the ATN. From left to right: the aggregate network of all the layers in which only links belonging to more

than one layer are displayed. The same network but in which we display those links which belongs to only one layer and connecting at least one node with

degree greater than or equal to 75. An example of ATN network of a major airline and, finally, the network of a low-fare (low-cost) airline. In each

network, the airports with the highest degree are highlighted.
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to achieve more than 80% of the final clustering value, we only need
to randomly merge together five layers. This result indicates that the
large density of triangles present in the ATN is a consequence of the
merging of different layers rather than a single-layer property. Thus,
in order to make round trips of length 3 one should make use, most of
the times, of more than one airline.

The former result contrasts with the picture obtained for the
evolution of the size of the giant component ÆSæ. Panel (c) describes
a monotonous and progressive increase of the coverage as more
layers are aggregated. In fact, around 40% of the European cities
are covered when merging together five randomly chosen layers. It
is worth noticing that ÆSæ also tells us that we are considering a system
which is already above the percolation threshold, so that every step
towards the aggregate network produces an increment in the collec-
tion of reachable destinations (see the value of ÆSæ for m 5 1).
However, the behavior of the transition for the average path length
ÆLæ (restricted to those nodes in the giant component) in panel (d)
shows a rise-and-fall behavior indicating that combining few layers
results in the merging of unconnected components at the aggregate
level, causing a fast increase in its length. On the other hand, after the
maximum for L is reached, the addition of new layers has a twofold
effect on the giant components: it incorporates new nodes, but also
creates alternative links between already present nodes. Thus, the
average path length of the giant component balances the addition
of new destinations with the creation of new links, and suffers a slow
decrease when increasing m.

Finally, panel (e) shows, only for the aggregate network, the exist-
ence of a Rich-club effect quantifying the abundance of links between
nodes with degree larger or equal to k, w(k), normalized with respect
to its maximum. This quantity is computed both for the real ATN
and for a set of randomized versions of the network in which all the
links are rewired keeping the same degree sequence of the original
network. This randomization aims at destroying any kind of correla-
tion between the local properties of connected nodes. From the figure
it is clear that initially the two curves coincide indicating that the

existence of flights between airports with few connections (less than k
5 30) is equally probable in the ATN and in its randomized version.
Instead, for k[ 30,60½ � the points corresponding to the real ATN stand
above those corresponding to the randomized network. This result
points out that the aggregate ATN displays Rich-club effect (the
largest effect being found for k 5 47), thus confirming for the
European case the findings of Colizza et al.28 for the ATN. The
existence of such effect is quite logical, as usually highly connected
nodes correspond to the principal airports of the main European
cities which, in most of the cases, are connected among themselves
via direct flights. Finally, for k.60 the fluctuations of the randomized
case are too large for any statement to be made on the existence of a
Rich-club effect.

Major versus low-cost layers. The European ATN is composed of
layers corresponding to airlines of different types. In particular, we
find among them major (national, such as Lufthansa), low-cost fares
(such as Easyjet), regional (such as Norwegian Air Shuttle) or cargo
(such as Fed-Ex) airlines. These kinds of airlines have developed
according to different structural/commercial constraints. For
instance, it is known that major airlines are designed following the
so-called hub and spoke structure, to provide an almost complete
coverage of the airports belonging to a given country40,41 and
maximize efficiency in terms of national transportation interests.
Low-cost companies, instead, tend to avoid overly centralized
structures and, to be more competitive, typically cover more than
one country simultaneously. To unveil the role that each type of
airline plays in the emergence of the topological features of the
aggregate ATN, we considered two subsets of layers respectively
comprising only it majors and low-cost airlines. The results of this
study are shown in Fig. 3.

We first address the cumulative degree distribution P.(k). In the
two panels (a) and (b) we show the distributions P.(k) for major (a)
and low-cost (b) layers when considering different levels for the
merging of the layers of the same kind. For major airlines, the typical

Figure 2 | Evolution of topological properties of the complete ATN network. (a) Average cumulative degree distribution P.(k) for groups of layers

merged together: single layers (N ), five layers (&), twenty layers (¤) and the aggregate (m). (b–c–d) Average clustering ÆCæ, size of giant component ÆSæ,
path length ÆLæ as a function of m. (e) Link abundance for nodes of degree k or greater, w(k) divided by its maximum w(k)max for the aggregate network in

both real case (&) and its randomized version (N ). The vertical dashed line represent the value of k at which the difference among the two curves is

maximal. (f) A subset of the aggregate network showing the connections among those nodes whose degree is greater than (or equal to) 47. The size of the

nodes is proportional to the degree.
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trend of a single layer (m 5 1) displays a plateau for moderate values
of k, indicating a centralized character of this kind of layers, with few
hubs having remarkably higher than average connectivity. In addi-
tion, when merging more layers (m 5 10 or all the major airlines) the
trend shows a rather continuous decay due to the combination of
hubs of different size (depending on the nation of the airline). Notice
that a hub of a single layer (a single national airline) is highly con-
nected within the same country, but also has some flights to capitals
of other European countries which, in turn, are hubs of their corres-
ponding major layers. On the other hand, the cumulative distri-
bution of typical low-cost airlines shows a rather different pattern,
as its decay is rather progressive, and airports of different size coexist
within the same layer.

The differences in organization of low-cost and major airlines is
further highlighted by the behavior of the clustering coefficient ÆCæ.
Panel (c) shows how major airlines display sharp increases in ÆCæ as
more major layers are merged, followed by a plateau for m . 5. This
saturation of C is due to the fact that, when merging major layers
randomly, national hubs tend to connect together (we have already
discussed this fact when introducing the Rich-club effect) in the
aggregate network. The saturation of clustering is, however, not
observed for the aggregate ATN [see Fig. 2.(b) or the inset in panel
(c)] for which C(m) always increases. This is due to the fact that the
merging of low-cost layers leads to a continuous formation of new
triangles, thus increasing the clustering with m. In addition, in panel
(d) we show the evolution with m of the average number of triangles,
Æn3æ, normalized with respect to the total number of triads in the
aggregate network for both major and low-cost layers. Interestingly,
the monotonic growth of Æn3æ reveals that the saturation of the clus-
tering coefficient when m 5 5 for major layers is not due to the fact
that new triangles are not added when m . 5 but to a balance
between the new triads and the new connections added when mer-
ging additional layers.

The behavior of the giant component ÆSæ, normalized with respect
to the total number of destinations covered by each kind of airline
(see panel (e)), does not give any particular insight in terms of differ-
ences between low-cost and major airlines, except for the fact that in
the low-cost case we observe larger fluctuations, mainly due to the

large variability in size of the giant component of single layers. On the
other hand, the picture described by the average path length ÆLæ in
panel (f) is very interesting. Major and low-cost subsets behave rather
differently not only between them, but also with respect to the evolu-
tion of the complete set (see inset). For layers corresponding to major
companies, ÆLæ increases with the number of merged layers. The
interpretation of this continuous growth is straightforward: each
time a layer corresponding to a major airline is added, even if it shares
some common destinations (say some European capitals having
their corresponding major airlines within the original set of merged
layers), the number of new available nodes (small destinations only
available through the new added major layer) is large enough to
generate an increase in L. On the contrary, the case of low-cost dis-
plays a rise-and-fall in the behavior of ÆLæ, due to the large coverage
of European countries/cities that already each single low-cost layer
displays. Thus, as we merge some of them together, they already
cover nearly all the low-cost destinations, and merging of additional
layers just adds new connections between them. When combined
into the original ATN, these two different trends lead to the saturated
evolution of ÆLæ(m) shown in the inset.

Finally, we examine once again the onset of the Rich-club effect.
From panels (g) and (h) we notice how the graph corresponding to
the aggregate network constructed by merging layers corresponding
to major airlines (g) displays the presence of a rich club for k 5 38
(almost the same value as in the case of the total aggregate ATN).
Interestingly, the Rich-club effect is absent when merging low-cost
layers so that, while in the case of major airlines the merge of layers
containing large hubs ends up in a system composed of a connected
core of highly connected nodes, the more distributed nature of the
low-cost layers prevents the formation of a Rich-club. Thus, a rel-
evant conclusion is that the well-known28 Rich-club effect observed
in ATNs is exclusively related to the presence of major airlines.

Discussion
The characterization of the interaction patterns in large systems has
recently been spurred by the incorporation of the paradigm of multi-
plexity. Taking advantage of the European ATN data set, with details
of the airlines operating each flight, we showed that the topological

Figure 3 | Evolution of topological properties of major (&) and low-cost (m) subsets. (a–b) Average cumulative degree distribution P.(k) for

different number of layers merged together. (c–d–e–f) Average clustering ÆCæ, number of triangles Æn3æ, size of giant component ÆSæ, path length

ÆLæ as a function of the number of layers merged. The insets display the same quantities in the case of the complete set. (g–h) link abundance for the

aggregate network. The vertical dashed line represents the value of k at which the difference among the two curves is maximal.
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properties of the ATN are generally not present in single layers,
rather they are the consequence of an emerging phenomenon inti-
mately related to the multilayer character of the system. We also
pointed out that the merging of low-cost and major (national) layers
leads to the emergence of qualitatively different aggregate networks.
Finally, we demonstrated that the combination of these two different
behaviors accounts for the many important structural features of the
global ATN, such as the Rich-club effect (mainly due to the layers of
major airlines), path redundancy (resulting from a cooperative com-
bination of the clustering of low-cost and major layers), or small-
worldness (remarkably enhanced by the presence low-cost layers).

Our study highlights the importance of considering the multiplex
character of most real networked systems, and shows that consider-
ing layers as relevant entities of a network (such as nodes and links at
the micro-scale or communities at the meso-scale) will contribute to
a better understanding and modeling of dynamical processes taking
place at the level of aggregate network.

Methods
Dataset. The data analyzed in this paper are taken from the complete list of
airlines operating Instrumental Flight Rules (IFR) flights between European
airports on a certain day obtained from EUROCON-TROL and the Complex
World Network in the context of the SESAR Work Package E42. We selected only
those airlines whose number of destinations is above the average (which is 32),
obtaining L~37 different airlines (layers), that include both major companies
(like Lufthansa or Air France), and low-fares (low-cost) companies (as Ryanair or
Easyjet). Each layer , in this multiplex representation is a graph

G‘~ N ‘
,E‘

� �
~ N ,E‘
� �

with N ‘
~N~450 nodes and K, links that models a

single airline. An example of such networks is shown in Fig. 1. The ensemble of all
these layers constitutes our multilayer system, that we will call the complete set.
We will also consider the subset of major airlines, that will be a multiplex network
made of L0~18 layers, and the subset of low-cost companies, with L00~10 layers.
Note that the remaining airlines, such as cargo airlines, constitutes a marginal
small subset and therefore its analysis is residual.

Topological indexes. In this section, we present a summary of the topological
measures used throughout the paper. Note that the considered topological measures
are essentially defined for classic monoplex networks, and their extensions to the
multiplex setting is an exercise, whose details are here shown.

One of the most basic topological parameter of a complex network G~ N ,Eð Þ is the
degree distribution P(k) which is defined as the probability that a node chosen uni-
formly at random has degree k, or equivalently the fraction of nodes in the network
having degree k3,35. Since broad distributions often display high noise levels at the end
of their tails, here related to the low abundance of highly connected nodes, it is
convenient to consider the cumulative distribution P.(k). Cumulative distribution
P.(k) is the probability that a randomly chosen node has a degree equal or greater
than k, i.e.

Pw kð Þ~ 1
N

X?
k0~k

N kð Þ, ð1Þ

where N(k) is the number of nodes with degree k and N~ Nj j is the total number of
nodes in the network.

The average path length4 L(G) is the average length of the shortest paths among all
the couples of nodes in the network, i.e.

L Gð Þ~ 1
N N{1ð Þ

X
i,j[N

dij, ð2Þ

where dij is the minimum number of hops one has to make to go from node i to node j
in G (the distance from i to j). Note that this definition diverges if G is not connected,
since dij may be infinite. One way to avoid this divergence is considering the average
only on the largest connected component, and an alternative approach that has been
shown very useful in many cases is considering the harmonic mean of the distances.

The (local) clustering coefficient4 ci of a node i[N is defined as

ci~
2 ei

ki ki{1ð Þ , ð3Þ

where ei is the number of neighbors of i which are mutual neighbors, and ki is the
degree of node i. Therefore the (local) clustering coefficient of a node i is the ratio
between the number of neighbors of i which are mutual neighbors and the maximal
possible number of edges between neighbors of i. The (average) clustering coefficient
C of a graph is the arithmetic mean of ci over all its nodes.

The giant component S(G) is the largest connected component of G and the size of
the giant component is the proportion of nodes in the network that belong to the giant
component, i.e.,

S Gð Þ~ max
i[N

Ni

N
ð4Þ

where Ni is the number of nodes of the maximal connected subnetwork of G con-
taining node i.

If we take a node with degree 0ƒkƒ Nj j, the Rich-club coefficient R(k)39 is given by

R kð Þ~ w kð Þ
w kð Þmax

w0 kð Þ
w0 kð Þmax

� �{1

~
2w kð Þ

Nwk Nwk{1ð Þ
Nwk Nwk{1ð Þ

2w0 kð Þ
~

w kð Þ
w0 kð Þ

, ð5Þ

where

(i) w(k) is the number of edges connecting nodes of degree greater or equal to k
(called the link abundance),

(ii) w(k)max is the maximum number of links that can exist between nodes of degree
k,

(iii) w9(k) is the link abundance on a network with the same degree sequence of the
original but with connections randomly shuffled.

(iv) w9(k)max is the maximum number of links that can exist between nodes of
degree k on a network with the same degree sequence of the original but with
connections randomly shuffled.

(v) N.k is the number of nodes with degree greater or equal to k.

If, for a certain value of k, R(k) . 1 for some 0ƒkƒN~ Nj j, then we say that G has
a Rich-club. Note that in the plots presented in this paper, we decided to present the
ratios w(k)/w(k)max and w9(k)/w9(k)max instead of R(k). The randomization, in our
case, is repeated 1,000 times, while the shuffling is repeated 10,000 times to ensure a
robust statistical sampling. Note that for the ATN network, having a size of N 5 450
nodes, the number of random shuffling steps is large enough to guarantee that the
resulting network is fully randomized. This randomization method is known as
Markov Chain Monte Carlo Algorithm43. However, for bigger graphs other methods
are recommended so to minimize the computation cost for producing reliable ran-
domized networks, see the work by Del Genio et al.44.

Next, we describe the layer merging procedure used to study the evolution of the
topological measures and the behavior of the layers in the major airline and low-cost
multiplex sub-networks.

If we fix a subset of layers G‘; ‘~‘1, � � � ,‘m
� 	

to merge together, we construct a
monoplex network G0~ N ,E0ð Þ (i.e. a classic network with only one layer) given by

G0~
[m
j~1

G‘j :

This network G9 is obtained by projecting all the m layers onto one and by con-
verting multiple links into single ones.

Now if we fix m, we look for all the possible mergings of m layers, The number of
different configurations to arrange n layers into groups of size m without repetitions is

given by Cn
m~

n
m

� �
, therefore if we want to compute a topological measure on the

ensemble of m layers, we should first compute it on each of the Cn
m mergings, and then

average over all Cn
m possible configurations. However, when the number of possible

configurations exceeded a certain threshold, we operated a random sampling over
500,000 mergings in order to avoid the growth of the computation time. Throughout
the paper the operator Æ?æ denotes the average over the elements of the ensemble. As
an example, if we want to compute the clustering coefficient over an ensemble C, we
compute:

Ch i~ 1
Ncomb

X
i[C

Ci, ð6Þ

where Ncomb is the number of elements of C and Ci is the average clustering of the
network obtained merging together the layers corresponding to i[C.
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