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In systems theory and science, emergence is the way complex systems and patterns arise out of
a multiplicity of relatively simple interactions. Emergence is central to the theories of integrative
levels and of complex systems [Aziz-Alaoui & Bertelle, 2009]. In this paper, we use the emergent
property of the ultra weak multidimensional coupling of p 1-dimensional dynamical chaotic
systems which leads from chaos to randomness.

Generation of random or pseudorandom numbers, nowadays, is a key feature of industrial
mathematics. Pseudorandom or chaotic numbers are used in many areas of contemporary tech-
nology such as modern communication systems and engineering applications. More and more
European or US patents using discrete mappings for this purpose are obtained by researchers of
discrete dynamical systems [Petersen & Sorensen, 2007; Ruggiero et al., 2006]. Efficient Chaotic
Pseudo Random Number Generators (CPRNG) have been recently introduced. They use the
ultra weak multidimensional coupling of p 1-dimensional dynamical systems which preserve the
chaotic properties of the continuous models in numerical experiments. Together with chaotic
sampling and mixing processes, ultra weak coupling leads to families of (CPRNG) which are
noteworthy [Hénaff et al., 2009a, 2009b, 2009c, 2010].

In this paper we improve again these families using a double threshold chaotic sampling
instead of a single one.

We analyze numerically the properties of these new families and underline their very high
qualities and usefulness as CPRNG when very long series are computed. Moreover, a determin-
ing property of such improved CPRNG is the high number of parameters used and the high
sensitivity to the parameters value which allows choosing it as cipher-keys. It is why we call
these families multiparameter chaotic pseudo-random number generators (M-p CPRNG).

Keywords : Emergence; randomness; chaos; discrete time systems; floating point arithmetic;
random number generation.
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1. Introduction

Efficient Chaotic Pseudo Random Number Gen-
erators (CPRNG) have been recently introduced.
The idea of applying discrete chaotic dynamical
systems, intrinsically, exploits the property of
extreme sensitivity of trajectories to small changes
of initial conditions. They use the ultra weak mul-
tidimensional coupling of p 1-dimensional dynam-
ical systems which preserve the chaotic properties
of the continuous models in numerical experiments.
The process of chaotic sampling and mixing of
chaotic sequences, which is pivotal for these fam-
ilies, works perfectly in numerical simulation when
floating point (or double precision) numbers are
handled by a computer.

It is noteworthy that these families of very
weakly coupled maps are more powerful than the
usual formulas used to generate chaotic sequences
mainly because only additions and multiplications
are used in the computation process; no division
being required. Moreover, the computations are
done using floating point or double precision num-
bers, allowing the use of the powerful Floating Point
Unit (FPU) of the modern microprocessors (built
by both Intel and Advanced Micro Devices (AMD)).
In addition, a large part of the computations can
be parallelized taking advantage of the multicore
microprocessors which appear on the market of
laptop computers.

In this paper we improve the properties of these
families using a double threshold chaotic sampling
instead of a single one. The genuine map f used
as one-dimensional dynamical systems to generate
them is henceforth perfectly hidden.

A determining property of such improved
CPRNG is the high number of parameters used
(p × (p − 1) for p coupled equations) which allows
to choose it as cipher-keys due to the high sen-
sitivity to the parameter values. This is why we
call these families multiparameter chaotic pseudo-
random number generators (M-p CPRNG).

Several applications can be found for these
families, as for example, producing Gaussian
noise, computing hash function or in chaotic
cryptography.

In Sec. 2 we define the double threshold chaotic
sampling, in Sec. 3 we describe the emergence of
randomness in a particular window of parameter
value. We point out the parameter sensitivity in
Sec. 4, with some applications of the M-p CPRNG.

Finally in Appendix A we recall some basic proper-
ties of the previous CPRNG which allow the use of
the double threshold chaotic sampling.

2. Multiparameter Chaotic
Pseudo-Random Number
Generator (M-p CPRNG)

When a dynamical system is realized on a computer
using floating point or double precision numbers,
the computation is of a discretization, where finite
machine arithmetic replaces continuum state space.
For chaotic dynamical systems, the discretization
often has collapsing effects to a fixed point or to
short cycles [Lanford III, 1998; Gora et al., 2006]. In
order to preserve the chaotic properties of the con-
tinuous models in numerical experiments we con-
sider an ultra weak multidimensional coupling of p
1-dimensional dynamical systems.

2.1. System of p-coupled symmetric

tent map

In order to simplify the presentation of the M-p
CPRNG we introduce, we use as an example the
symmetric tent map defined by

fa(x) = 1 − a|x| (1)

with the parameter value a = 2, later denoted
simply as f , even though other chaotic maps of
the interval (as the logistic map, the baker trans-
form) can be used for the same purpose (as a mat-
ter of course, the invariant measure of the chaotic
map chosen is preserved). The dynamical system
associated to this one-dimensional map is defined
on the interval [−1; 1] ⊂ R [Sprott, 2003] by the
equation:

xn+1 = 1 − a|xn|. (2)

The considered system of the p-coupled dynamical
systems is described by:

Xn+1 = F (Xn) = A.(f(Xn)) (3)

with

Xn =









x1
n

...

xp
n









f(Xn) =









f(x1
n)

...

f(xp
n)









(4)

and
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A =













































ǫ1,1 = 1 −

j=p
∑

j=2

ǫ1,j ǫ1,2 · · · ǫ1,p−1 ǫ1,p

ǫ2,1 ǫ2,2 = 1 −

j=p
∑

j=1,j �=2

ǫ2,j · · · ǫ2,p−1 ǫ2,p

...
. . .

...
...

...
. . .

...
...

ǫp,1 · · · · · · ǫp,p−1 ǫp,p = 1 −

j=p−1
∑

j=1

ǫp,j













































(5)

F is a map of Jp = [−1, 1]p ⊂ R
p into itself.

Considering

ǫi,i = 1 −

j=p
∑

j=1,j �=i

ǫi,j,

the matrix A is always a stochastic matrix iff
the coupling constants verify ǫi,j > 0 for every i
and j.

If ǫi,j = 0, for i �= j, the maps are totally
decoupled, whereas they are fully crisscross coupled
when for example, ǫi,j = 1

p−1 , for i �= j. Gener-
ally, researchers do not consider very small values
of ǫi,j because it seems that the maps are quasi-
decoupled with those values and no special effect
of the coupling is expected. In fact, it is not the
case and ultra small coupling constants (as small as
10−7 for floating point numbers or 10−16 for double
precision numbers) allow the construction of very
long periodic orbits, leading to sterling chaotic gen-
erators. In this way, the randomness emerges from
chaos.

Moreover, each component of these numbers
belonging to R

p is equally distributed over the finite
interval J ⊂ R, when one chooses a function f
with uniform invariant measure. Numerical compu-
tations (up to 1013 numbers) show that this distri-
bution is obtained with a very good approximation.
They also have the property that the length of the
periods of the numerically observed orbits is very
large [Lozi, 2006].

2.2. Chaotic sampling and mixing

However, chaotic numbers are not pseudo-random
numbers because the plot of the couples of any com-
ponent (xl

n, xl
n+1) of iterated points (Xn,Xn+1) in

the corresponding phase plane reveals the map f
used as one-dimensional dynamical systems to gen-
erate them via Eq. (3).

Nevertheless, we have recently introduced a
family of enhanced Chaotic Pseudo Random Num-
ber Generators (CPRNG) in order to faster com-
pute long series of pseudorandom numbers with
desktop computer [Lozi, 2008a, 2008b]. This family
is based on the previous ultra weak coupling which
is improved in order to conceal the chaotic genuine
function.

In order to hide f in the phase space (xl
n, xl

n+1)
two mechanisms are used. The pivotal idea of the
first one mechanism is to sample chaotically the
sequence (xl

0, x
l
1, x

l
2, . . . , x

l
n, xl

n+1, . . .) generated by

the lth component xl, selecting xl
n every time the

value xm
n of the mth component xm, is strictly

greater (or smaller) than a threshold T ∈ J , with
l �= m, for 1 ≤ l,m ≤ p.

That is to say, to extract the subsequence
(xl

n(0)
,xl

n(1)
,xl

n(2)
, . . . , xl

n(q)
, xl

n(q+1)
, . . .) denoted here

(x0, x1, x2, . . . , xq, xq+1, . . .) of the original one, in
the following way.

Given 1 ≤ l,m ≤ p, l �= m






n(−1) =−1

xq = xl
n(q)

, with n(q) = min
r∈N

{r > n(q−1) |x
m
r >T}

(6)

The sequence (x0, x1, x2, . . . , xq, xq+1, . . .) is
then the sequence of chaotic pseudo-random
numbers.

The mathematical formula (6) can be best
understood in algorithmic way. The pseudo-code,
for computing iterates of (6) corresponding to N
iterates of (3) is:
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X0 = (x1
0, x

2
0, . . . , x

p−1
0 , xp

0) = seed
n = 0; q = 0;
do { while n < N

do { while (xm
n ≤ T )

compute (x1
n, x2

n, . . . , xp−1
n , xp

n);n++}

compute (x1
n, x2

n, . . . , xp−1
n , xp

n);
then n(q) = n;xq = x1

n(q);n++; q++}

This chaotic sampling is possible due to the
independence of each component of the iterated
points Xn versus the others (see Appendix A.1).

Remark 2.1. Albeit the number N Sampliter of
pseudo-random numbers xq corresponding to the
computation of N iterates is not known a priori,
considering that the selecting process is again linked
to the uniform distribution of the iterates of the tent
map on J , this number is equivalent to 2N

1−T
.

A second mechanism can improve the
unpredictability of the pseudo-random sequence
generated as above, using synergistically all the
components of the vector Xn, instead of two. Given

p − 1 thresholds

T1 < T2 < · · · < Tp−1 ∈ J (7)

and the corresponding partition of

J =

p−1
⋃

k=0

Jk (8)

with J0 = [−1, T1], J1 = ]T1, T2[ , Jk = [Tk, Tk−1[
for 1 < k < p − 1 and Jp−1 = [Tp−1, 1[, this simple
mechanism is based on the chaotic mixing of the
p − 1 sequences

(x1
0, x

1
1, x

1
2, . . . , x

1
n, x1

n+1, . . .),

(x2
0, x

2
1, x

2
2, . . . , x

2
n, x2

n+1, . . .), . . . ,

(xp−1
0 , xp−1

1 , xp−1
2 , . . . , xp−1

n , xp−1
n+1, . . .), . . . .

Using the last one (xp
0, x

p
1, x

p
2, . . . , x

p
n, xp

n+1, . . .) in
order to distribute the iterated points with respect
to this given partition defining the subsequence
(x0, x1, x2, . . . , xq, xq+1, . . .) by











n(−1) = −1

xq = xk
n(q)

, with n(q) = min
1≤k≤p−1

{

sk(q) = min
r∈N

{rk > n(q−1) |x
p
rk

∈ Jk}

}

.
(9)

The pseudo-code, for computing the iterates
of (9) corresponding to N iterates of (3) is:

X0 = (x1
0, x

2
0, . . . , x

p−1
0 , xp

0) = seed
n = 0; q = 0 ;

do { while n < N
do {while (xp

n ∈ J0) compute

(x1
n, x2

n, . . . , xp−1
n , xp

n);n++}

compute (x1
n, x2

n, . . . , xp−1
n , xp

n)
let k be such that xp

n ∈ Jk

then n(q) = n;xq = xk
n(q);n++; q++}

Remark 2.2. In this case also, N Sampliter is not
known a priori, however, considering that the
selecting process is linked to the uniform distribu-
tion of the iterates of the tent map on J , one has

N Sampliter ≈
2N

1 − T1
.

Remark 2.3. This second mechanism is more or
less linked to the whitening process [Viega, 2003;
Viega & Messier, 2003].

Remark 2.4. Actually, one can choose any of the
components in order to sample and mix the
sequence, not only the last one.

2.3. Double threshold chaotic

sampling

One can eventually improve the CPRG, previ-
ously introduced, with respect to the infinity norm
instead of the L1 or L2 norms because the L∞

norm is more sensitive than the others to reveal the
concealed f [Lozi, 2009]. For this purpose we intro-
duce a second kind of threshold T ′ ∈ N, together
with T1, . . . , Tp−1 ∈ J such that the subsequence
(x0, x1, x2, . . . , xq, xq+1, . . .) is defined by











n(−1) = −1

xq = xk
n(q)

, with n(q) = min
1≤k≤p−1

{

sk(q) = min
rk∈N

{rk > n(q−1) + T ′ |xp
rk

∈ Jk}

}

.
(10)
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In pseudo-code (10) is then:

X0 = (x1
0, x

2
0, . . . , x

p−1
0 , xp

0) = seed
n = 0; q = 0;
do { while n < N

do {while (n ≤ n(q−1) + T ′ and xp
n ∈ J0)

compute (x1
n, x2

n, . . . , xp−1
n , xp

n);n++}

compute (x1
n, x2

n, . . . , xp−1
n , xp

n)
let k be such that xp

n ∈ Jk

then n(q) = n;xq = xk
n(q);n++; q++}

Remark 2.5. In this case also, N Sampliter is not
known a priori, it is more complicated to give
an equivalent to it. However, considering that the
selecting process is linked to the uniform distribu-
tion of the iterates of the tent map on J , and to the
second threshold T ′, it implies that

N Sampliter ≤ min

{

2N

1 − T1
,
N

T ′

}

.

Remark 2.6. The second kind of threshold T ′ can
also be used with only the chaotic sampling, without
the chaotic mixing.

3. Emergence of Randomness

Numerical results on chaotic numbers produced
by (3)–(9) show that they are equally distributed
over the interval J with a very good precision [Lozi,
2008a, 2008b, 2009]. (See also Appendix A.2.)

In this section we emphasize that when the
parameters ǫi,j belong to a special window (called
the window of emergence), the M-p CPRNG defined
above behaves well.

3.1. Approximated invariant

measures

In order to perform numerical computation, we have
to define some numerical tools — the approximated
invariant measures.

First we define an approximation PM,N (x) of
the invariant measure also called the probability
distribution function linked to the 1-dimensional
map f when computed with floating numbers (or
numbers in double precision). In this scope we
consider a regular partition of M small intervals
(boxes) ri of J defined by

si = −1 +
2i

M
, i = 0,M (11)

ri = [si, si+1[ , i = 0,M − 2 (12)

rM−1 = [sM−1, 1] (13)

J =

M−1
⋃

0

ri (14)

the length of each box is

si+1 − si =
2

M
(15)

(note that this regular partition of J is different
from the previous one linked to the threshold values
Ti, according to (8)).

All iterates f (n)(x) belonging to these boxes
are collected (after a transient regime of Q itera-
tions decided a priori, i.e. the first Q iterates are
neglected). Once the computation of N + Q iter-
ates is completed, the relative number of iterates
with respect to N/M in each box ri represents the
value PN (si). The approximated PN (x) defined in
this article is then a step function, with M steps.
As M may vary, we define

PM,N (si) =
M

N
(#ri) (16)

where #ri is the number of iterates belonging to
the interval ri. PM,N (x) is normalized to 2 on the
interval J .

PM,N (x) = PM,N (si) ∀x ∈ ri. (17)

In the case of p-coupled maps, we are more
interested by the distribution of each component
(x1, x2, x1

2, . . . , x
p) of X rather than the distribu-

tion of the variable X itself in Jp. We then consider
the approximated probability distribution function
PM,N (xj) associated to one among several com-
ponents of F (X) defined by (3) which are one-
dimensional maps. In this paper, we use equally
Ndisc for M and Niter for N when they are more
explicit.

The discrepancies E1 (in norm L1), E2 (in norm
L2) and E∞ (in norm L∞) between PNdisc,Niter

(x)
and the Lebesgue measure which is the invariant
measure associated to the symmetric tent map, are
defined by

E1,Ndisc,Niter
(x) = ‖PNdisc,Niter

(x) − 1‖L1 (18)

E2,Ndisc,Niter
(x) = ‖PNdisc,Niter

(x) − 1‖L2 (19)

E∞,Ndisc,Niter
(x) = ‖PNdisc,Niter

(x) − 1‖L∞
. (20)

In the same way, an approximation of the corre-
lation distribution function CM,N (x, y) is obtained
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numerically building a regular partition of M2 small
squares (boxes) of J2 imbedded in the phase sub-
space (xl, xm).

si = −1 +
2i

M
, tj = −1 +

2j

M
, i, j = 0,M (21)

ri,j = [si, si+1[× [tj , tj+1[ , i, j = 0,M − 2 (22)

rM−1,j = [sM−1, 1] × [tj , tj+1[ , j = 0,M − 2 (23)

ri,M−1 = [si, si+1[× [tM−1, 1], i = 0,M − 2 (24)

rM−1,M−1 = [sM−1, 1] × [tM−1, 1] (25)

the measure of the area of each box is

(si+1 − si)(ti+1 − ti) =

(

2

M

)2

. (26)

Once N + Q iterated points (x1
n, xm

n ) belonging
to these boxes are collected, the relative number of
iterates with respect to N/M2 in each box ri,j repre-
sents the value CN (si, tj). The approximated proba-
bility distribution function CN (x, y) defined here is
then a 2-dimensional step function, with M2 steps.
As M can take several values in the next sections,
we define

CM,N (si, tj) =
M2

N
(#ri,j) (27)

where #ri,j is the number of iterates belonging to
the square ri,j . CM,N (x, y) is normalized to 4 on the
square J2.

CM,N(x, y) = CM,N (si, tj) ∀(x, y) ∈ ri,j. (28)

The discrepancies EC1 (in norm L1), EC2 (in
norm L2) and EC∞

(in norm L∞) between
CNdisc,Niter

(x, y) and the uniform distribution on the
square, are defined by

EC1,Ndisc,Niter
(x, y)

= ‖CNdisc,Niter
(x, y) − 1‖L1 (29)

EC2,Ndisc,Niter
(x, y)

= ‖CNdisc,Niter
(x, y) − 1‖L2 (30)

EC∞,Ndisc,Niter
(x, y)

= ‖CNdisc,Niter
(x, y) − 1‖L∞

. (31)

Finally let ACNdisc,Niter
(x, y) be the autocor-

relation distribution function which is the corre-
lation function CNdisc,Niter

(x, y) of (28) defined in

the phase space (xl
n, xl

n+1) instead of the phase

space (xl, xm). In order to control that the enhanced
chaotic numbers (x0, x1, x2, . . . , xq, xq+1, . . .) are
uncorrelated, we plot them in the phase subspace
(xq, xq+1) and we check if they are uniformly dis-
tributed in the square J2 and if f is concealed (i.e.
EAC1,Ndisc,Niter

(xq, xq+1), EAC2,Ndisc,Niter
(xq, xq+1),

EAC∞,Ndisc,Niter
(xq, xq+1) vanish).

3.2. A window of emergence of

randomness

In order to point out the usefulness of the double
threshold chaotic sampling, we simply consider the
case of only 4-coupled equation, and such that:

ǫi,j = ǫi ∀ i �= j and ǫi,i = 1 − 3ǫi (32)

Eq. (3) becomes (33):






































































x1
n+1 = (1 − 3ǫ1)f(x1

n) + ǫ1f(x2
n)

+ ǫ1f(x3
n) + ǫ1f(x4

n)

x2
n+1 = ǫ2f(x1

n) + (1 − 3ǫ2)f(x2
n)

+ ǫ2f(x3
n) + ǫ2f(x4

n)

x3
n+1 = ǫ3f(x1

n) + ǫ3f(x2
n)

+ (1 − 3ǫ3)f(x3
n) + ǫ3f(x4

n)

x4
n+1 = ǫ4f(x1

n) + ǫ4f(x2
n)

+ ǫ4f(x3
n) + (1 − 3ǫ4)f(x4

n)

(33)

Moreover we assume that

ǫi = iǫ1. (34)

For the sake of simplicity we consider only
the chaotic sampling method (i.e. we use only
one threshold T ), without the chaotic mixing.
We then compute E1,Ndisc,Niter

(x), E2,Ndisc,Niter
(x),

E
∞,Ndisc,Niter

(x) and EAC1,Ndisc,Niter
(xq, xq+1),

EAC2,Ndisc,Niter
(xq, xq+1), EAC∞,Ndisc,Niter

(xq, xq+1)
for Ndisc = 1024 and Niter = 1011. We choose
T = 0.9 and T ′ = 20. We display in Fig. 1 the values
of the six computed errors when ǫ1 ∈ [10−17, 10−1],
the seed (initial values) being x1

0 = 0.330000, x2
0 =

0.338756, x3
0 = 0.504923, x4

0 = 0.324082.
A window of emergence comes clearly into sight

for the values ǫ1 ∈ [10−15, 10−7] if one considers all
together the six errors.

The errors E∞,Ndisc,Niter
(x) and EAC∞,Ndisc,Niter

(xq, xq+1) narrowing this window in which
340 753 095 ≤ N Sampliter ≤ 340 768 513 out of
Niter = 1011.
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Fig. 1. The window of emergence of randomness.

Fig. 2. Graphs of the symmetric tent map f, f(2) and f(3)

on the interval [−1, 1].

Fig. 3. In shaded regions the autocorrelation distribution
ACM,N (x, y) is constant for the symmetric tent map f on
the interval [−1, 1] for M = 1 or 2.

3.3. The underneath of randomness

The double threshold chaotic sampling is very effi-
cient because its aim is mainly to conceal f in the
most drastic way. In order to understand the under-
neath mechanism, consider first that in the phase
space (xl

n, xl
n+1) the graph of the chaotically sam-

pled chaotic numbers is a mix of the graphs of the
f (r) for all r ∈ N (Fig. 2).

It is obvious as shown in Fig. 3 that for r = 1
if M = 1 or 2, ACM,N(x, y) is constant and nor-
malized on the square hence EAC1,Ndisc,Niter

(x, y) =
EAC 2,Ndisc,Niter

(x, y) = EAC∞,Ndisc,Niter
(x, y) = 0.

Fig. 4. Regions where the autocorrelation distribution
ACM,N (x, y) is constant for the symmetric tent map f are
shaded, for M = 4. (The square on the bottom left-hand side
of the graph shows the size of the ri,j box.) ACM,N (x, y)
vanishes on the white regions.
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Fig. 5. In shaded regions the autocorrelation distribution
ACM,N (x, y) is constant for the symmetric tent map f(2) on
the interval [−1, 1] for M = 1, 2 and 4.

The autocorrelation function is different from
zero only if M > 2 (Fig. 4).

In the same way as displayed in Figs. 5–7,
EAC1,Ndisc,Niter

(x, y) = EAC2,Ndisc,Niter
(x, y) =

EAC∞,Ndisc,Niter
(x, y) = 0 for f (i) iff M < 2i. Hence

for a given M , if we cancel the contribution of all
f (i) for 2i < M , it is not possible to identify the
genuine function f .

3.4. Testing the randomness

As shown previously [Lozi, 2008a] (see also Appen-
dices A.2 and A.3), the errors in L1 or L2 norms
decrease with the number of chaotic points (as in
the law of large numbers) and conversely increase
with the number M of boxes used to define

Fig. 6. Regions where the autocorrelation distribution
ACM,N (x, y) is constant for the symmetric tent map f(2)

are shaded for M = 8.

Fig. 7. Regions where the autocorrelation distribution
ACM,N (x, y) is constant for the symmetric tent map f(3)

are shaded for M = 16.

ACM,N (x, y). It is the same for the error in L∞

norm.
Figure 8 shows that when M is greater than 25,

the sequence defined by (10) behaves better than
the one defined by (6) or (9) when applied to (33).

Figure 9 shows that when the number of chaotic
points increases the error EAC∞,Ndisc,Niter

(xq, xq+1)

Fig. 8. Error of EAC ,Ndisc,Niter
(xq, xq+1), Ndisc = 21 to

210, Niter = 109, thresholds T = 0.9 and T ′ = 20, ǫi = iǫ1,
ǫi = 10−14. Computations are done using double precision
numbers (∼14–15 digits).
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Fig. 9. Error of EAC ,Ndisc,Niter
(xq, xq+1), Ndisc = 21 to

210, Niter = 109 to 1011, thresholds T = 0.9 and T ′ = 20,
ǫi = iǫ1, ǫi = 10−14 . Computations are done using double
precision numbers (∼14–15 digits).

decreases drastically. If for example T ′ > 100, it
is necessary to use a huge grid of 2100 × 2100 boxes
splitting the square J2 in order to find a trace of the
genuine function f . This is numerically impossible
with double precision numbers. Then the chaotic
numbers emerge as random numbers.

4. Applications

Generation of random or pseudorandom numbers,
nowadays, is a key feature of industrial mathemat-
ics. Pseudorandom or chaotic numbers are used
in many areas of contemporary technology such
as modern communication systems and engineer-
ing applications. More and more European or US
patents using discrete mappings for this purpose are
obtained by researchers of discrete dynamical sys-
tems [Petersen & Sorensen, 2007; Ruggiero et al.,
2006].

When an efficient M-p CPRNG is defined, there
exists a huge number of applications for the pseudo-
random numbers it can generate, as for exam-
ple chaotic masking, chaotic modulation or chaotic

shift keying in the fields of secure communications
[Hénaff et al., 2009a, 2009b, 2009c, 2010].

4.1. Parameter sensitivity

We have improved a determining property of the
M-p CPRNG in this paper via Eq. (33) and double
threshold chaotic sampling (10) is the high num-
ber of parameters used (p × (p − 1) for p coupled
equations) which allows to choose it as cipher-keys,
however this achievement is possible only if there is
a high sensitivity to the parameters values.

In order to point out this sensitivity, it is
enough to consider the simplest case of 2-coupled
equations with two sets of slightly different param-
eters (ǫ1, ǫ2) and (ǫ∗1, ǫ2): ǫ1 = 0.000001, ǫ∗1 =
0.0000010000000000003 and ǫ2 = 0.000002.

{

x1
n+1 = (1 − ǫ1)f(x1

n) + ǫ1f(x2
n)

x2
n+1 = ǫ2f(x1

n) + (1 − ǫ2)f(x2
n)

(35)

{

x∗1
n+1 = (1 − ǫ1)f(x∗1

n ) + ǫ∗1f(x∗2
n )

x∗2
n+1 = ǫ2f(x∗1

n ) + (1 − ǫ2)f(x∗2
n )

(36)

The double threshold sampling is done using
T = 0.9 and T ′ = 20 and the same seed is taken

X0 = (x1
0, x

2
0) = X∗

0 = (x∗1
0 , x∗2

0 ).

Despite the fact that the difference between ǫ1
and ǫ∗1 is tiny:

|ǫ1−ǫ∗1|
ǫ1

= 3 × 10−13, the sequences

(x0, x1, x2, . . . , xq, xq+1, . . .) and (x∗
0, x

∗
1, x

∗
2, . . . , x

∗
q ,

x∗
q+1, . . .) differ completely as displayed in Table 1.

(In fact, all the components (x1
n(q)

, x2
n(q)

) and

(x∗1
n(q)

, x∗2
n(q)

) are different.)

Then rather than a unique CPRNG which is
introduced here, there is a quasi-infinite family of
CPRNG that the M-p CPRNG define allowing sev-
eral possibilities of applications.

4.2. Gaussian noise

As an example of such application, the gen-
eration of Gaussian noise from the sequences
(x0, x1, x2, . . . , xq, xq+1, . . .) is very easy when a
Box–Muller transform is applied.

A Box–Muller transform [Box & Muller, 1958]
is a method of generating pairs of independent
standard normally distributed (zero expectation,
unit variance) random numbers, given a source of
uniformly distributed random numbers. The polar
form [Knop, 1969] of such a transform takes two
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Table 1. Sequences (x1
n(q)

, x∗1
n(q)

) and (x2
n(q)

, x∗2
n(q)

) of Eqs. (35) and (36)

with ǫ1 = 0.000001, ǫ∗1 = 0.0000010000000000003 and ǫ2 = 0.000002.
X0 = (x1

0, x
2
0) = X∗

0 = (x∗1
0 , x∗2

0 ).

ǫ1 0.000001 ǫ∗1 0.0000010000000000003

x1
0 0.330000013113021851 x∗1

0 0.330000013113021851

x1
n(0)

−0.959214817207605153 x∗1
n(0)

−0.0585367291739744555

x1
n(1)

0.657775688600752417 x∗1
n(1)

0.386129403866398935

x1
n(2)

−0.784600935471051031 x∗1
n(2)

0.471824729381262631

ǫ1 0.000001 ǫ∗1 0.0000010000000000003

x2
0 0.338756413113021848 x∗2

0 0.338756413113021848

x2
n(0)

0.914472270898123885 x∗2
n(0)

−0.646249812458326023

x2
n(1)

0.9156844129956766 x∗2
n(1)

0.894262910879751405

x2
n(2)

0.910813705361448345 x∗2
n(2)

0.820811987022524114

samples from a different interval [−1, 1] and maps
them to two normally distributed samples without
the use of sine or cosine functions. This form of the
polar transform is widely used, in part due to its
inclusion in Numerical Recipes.

As the sequences (x0, x1, x2, . . . , xq, xq+1, . . .)
are uniformly distributed in J = [−1, 1] ⊂ R, the
application is straightforward.

4.3. Hash function

Another example of application could be the com-
putation of hash function. A hash function is
any well-defined procedure or mathematical func-
tion that converts a large, possibly variable-sized
amount of data into a small one. The values
returned by a hash function are called hash values,
hash codes, hash sums, checksums or simply hashes.

Hash functions are mostly used to speed up
table lookup or data comparison tasks — such as
finding items in a database, detecting duplicated
or similar records in a large file, finding similar
stretches in DNA sequences, and so on.

A hash function may map two or more keys
to the same hash value. In many applications, it is
desirable to minimize the occurrence of such col-
lisions, which means that the hash function must
map the keys to the hash values as evenly as possi-
ble. Depending on the application, other properties
may be required as well. Although the idea was con-
ceived in the 1950s, the design of good hash func-
tions is still a topic of active research.

Although hash function generally involves inte-
gers, one can consider that the application which
maps the initial seed X0 = (x1

0, x
2
0, . . . , x

p−1
0 , xp

0)

into any predetermined term of the sequence
(x0, x1, x2, . . . , xq, xq+1, . . .) is a hash function work-
ing on floating point numbers.

We will explore this application in a forthcom-
ing paper.

Others applications show the high-potency of
such M-p CPRNG. Due to limitation of this article,
they will be published elsewhere.

5. Conclusion

Using a double threshold in order to sample a
chaotic sequence, we have improved with respect
to the infinity norm the M-p CPRNG previously
introduced. When the value of the second thresh-
old T ′ is greater than 100, it is impossible to find
the genuine function used to generate the chaotic
numbers. The new M-p CPRNG family is robust
versus the choice of the weak parameter of the sys-
tem for 10−15 < ǫ < 10−7, allowing the use of this
family in several applications as for example pro-
ducing Gaussian noise, computing hash function or
in chaotic cryptography.
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Appendix

A.1. Independency of the chaotic

subsequences generated by

each component

One key feature of CPRNG is the use of chaotic
numbers themselves in order to do the sampling
process. This is possible as the sequences of chaotic
numbers produced by each component are indepen-
dent of the others. In order to control that they
are uncorrelated, we compute EC1,Ndisc,Niter

(xk, xl),
EC2,Ndisc,Niter

(xk, xl), and EC∞,Ndisc,Niter
(xk, xl) for

1 ≤ k ≤ l ≤ 4.
Figure 10 displays the error EC1,Ndisc,Niter

(x1,
x2) versus the number of iterated points of the
approximated correlation function between the first

Fig. 10. Error EC1,Ndisc,Niter
(x1, x2) for the first and the

second components (x1, x2) of the 4-coupled symmetric tent
map (33). Ndisc = 102

× 102, ǫi = iǫ1, ǫi = 10−14, Niter

varies from 105 to 1011. Computations are done using dou-
ble precision numbers (∼14–15 digits). The initial values are
x1
0 = 0.330, x2

0 = 0.338756, x3
0 = 0.504923, x4

0 = 0.0.
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Table 2. Numerical values corresponding
to Fig. 10.

Niter EC1,Ndisc,Niter
(x1, x2)

105 25 733 330 × 10−8

106 7 876 310 × 10−8

107 2 500 231 × 10−8

108 804 889 × 10−8

109 247 724 × 10−8

1010 80 411 × 10−8

1011 26 640 × 10−8

Table 3. Error EC1,Ndisc,Niter
(xk, xl) for 1 ≤ k ≤ l ≤ 4 of

the 4-coupled symmetric tent map (33). Ndisc = 102
× 102,

Niter = 1011, ǫi = iǫ1, ǫi = 10−14. Computations are done
using double precision numbers (∼14–15 digits). The ini-
tial values are x1

0 = 0.330, x2
0 = 0.338756, x3

0 = 0.504923,
x4
0 = 0.0.

EC1,Ndisc,Niter

(xk, xl) xl = x2 x3 x4

xk = x1 2561 × 10−8 2551 × 10−8 2527 × 10−8

x2 2522 × 10−8 2507 × 10−8

x2 2486 × 10−8
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Fig. 11. Difference between the correlation distribution
function CNdisc,Niter

(x1, x3) and the uniform distribution of

the 4-coupled symmetric tent map (33). Ndisc = 102
× 102,

Niter = 1011, ǫi = iǫ1, ǫi = 10−14, Computations are done
using double precision numbers (∼14–15 digits). The ini-
tial values are x1

0 = 0.330, x2
0 = 0.338756, x3

0 = 0.504923,
x4
0 = 0.0.
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Fig. 12. Projection of Fig. 11 on the phase subspace
(x1, x3).

and the second components (x1, x2) for the 4-
coupled symmetric tent map (33). Ndisc = 102×102,
ǫ1 is fixed to 10−14, Niter varies from 105 to 1011.
The corresponding numerical results are displayed
in Table 2.

In order to fully verify the uncorrelation, every
couple of components must be checked simulta-
neously. In the considered case Niter = 1011 for
the 4-coupled symmetric tent map, the errors
EC1,Ndisc,Niter

(xk, xl) for 1 ≤ l ≤ l ≤ 4 are displayed
in Table 3.

The difference between the correlation distri-
bution function CNdisc,Niter

(x1, x3) and the uniform
distribution of the 4-coupled symmetric tent map is
plotted in Fig. 11 and its projection on the phase
subspace (x1, x3) is displayed in Fig. 12.

A.2. Distribution of iterates of

4-coupled symmetric tent

maps

We consider the distribution of the iterates of
Eq. (33) on the interval J = [−1, 1] ⊂ R. The
numerical experiments are performed on several
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Fig. 13. Error E1,Ndisc,Niter
(x1) of Eq. (33). Ndisc = 10−4,

ǫi = 10−14, Niter varies from 105 to 3 × 1012. The initial
values are x1

0 = 0.3300, x2
0 = 0.3387, x3

0 = 0.3313, x4
0 =

0.3332.

computers involving different microprocessors of
Advanced Micro Devices (AMD) and Intel (Cen-
trino and dual core) technologies in order to check
the portability of the algorithms we propose. In the
same goal the package is written using many ver-
sions of Borland C. All the experiments give similar
results.

Double precision numbers are used. We fix ǫ1 =
10−14 in order to belong to the window of emergence
(Fig. 1).

Table 4. Numerical values
corresponding to Fig. 13.

Niter E1,Ndisc,Niter
(x3)

105 24 991.33 × 10−5

106 8073.91 × 10−5

107 2526.63 × 10−5

108 807.72 × 10−5

109 256.29 × 10−5

1010 79 701.99 × 10−8

1011 25 241.40 × 10−8

1012 7880.34 × 10−8

3 × 1012 4531.71 × 10−8

As intuitively expected, the density of iterates
of each component of (33) converges towards the
Lebesgue measure when ǫ1 → 0.

The asymptotic properties of dynamical sys-
tems intuitively imply that for a fixed value
of Ndisc when the number Niter increases,
E1,Ndisc,Niter

(x) which measures the discrepancy
between PNdisc,Niter

(x) and the Lebesgue measure
converges towards 0, except if there exist one or
many periodic orbits of finite length lower than Niter

which capture the iterates. In this case whatsoever
the value of Niter is, the approximated distribution
function converges to the distribution function of
the periodic orbit if it is unique or to some average

Fig. 14. Error of EAC1,Ndisc,Niter
(xq, xq+1) for a system of

4-coupled equations when the first component x1 is sampled
by x4 for both the threshold values 0.98 and 0.998 and when
the three components x1, x2, x3 are mixed and sampled by
x4 for the threshold values T1 = 0.98, T2 = 0.987, T3 = 0.994
and T1 = 0.998, T2 = 0.9987, T3 = 0.9994, Ndisc = 10 × 10,
ǫi = 10−14, ǫi = iǫ1, N Sampliter varies from 103 to 1010.
Initial values: x1

0 = 0.3300, x2
0 = 0.3387, x3

0 = 0.3313, x4
0 =

0.3332.
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Table 5. Numerical values corresponding to Fig. 14.

EAC1,Ndisc,Niter
(xq, xq+1) EAC1,Ndisc,Niter

(xq, xq+1)
4-Coupled Equations 4-Coupled Equations T1 = 0.998,

Niter N Sampliter T = 0.998 N Sampliter T2 = 0.9987, T3 = 0.9994

105 95 0.70947368 93 0.68924731

106 971 0.26570546 1015 0.25881773

107 10 095 0.079871223 10 139 0.086706776

108 100 622 0.023190157 100 465 0.026815309

109 1 001 408 0.0071386288 1 000 549 0.0089111078

1010 9 998 496 0.002493667 9 998 814 0.0027932033

1011 100 013 867 0.00071561417 100 001 892 0.00085967214

1012 999 994 003 0.00025442753 999 945 728 0.000234685100

1013 10 000 042 552 0.000088445108 10 000 046 137 0.000073234736

of the distribution functions of the periodic orbits
observed if there are several ones.

Figure 13 shows the errors E1,Ndisc,Niter
(x1) ver-

sus the number of iterates of the approximated dis-
tribution functions with respect to the first variable
x1 for Eq. (33). Ndisc is fixed to 10−4, ǫ1 = 10−14,
Niter varies from 105 to 3×1012. The corresponding
numerical results are displayed in Table 4.

A.3. Comparisons between different

sets of parameter values

In this subsection, we compare the numerical results
of method (6) (chaotic sampling) when the thresh-
old values are 0.98 and 0.998 with respect to the
auto correlation function EAC1,Ndisc,Niter

(xq, xq+1)
applied to Eq. (33). In the same figure (Fig. 14)
we display the results for both methods (6) and (9)
(chaotic sampling and mixing) for the threshold
values T1 = 0.98, T2 = 0.987, T3 = 0.994 and
T1 = 0.998, T2 = 0.9987, T3 = 0.9994.

In order not to be influenced by the number
of iterates which are computed, we compare these
results versus the number N Sampliter of pseudo
random numbers computed which varies upon the
values of the thresholds.

A.4. Impact of the initial values on

the results

It is well known that the choice of the seed of a
PRNG is very important. Some seed can lead to
the collapse of the period of the computed random
numbers. In order to check if the choice of the ini-
tial condition of a CPRNG (equivalent to the choice
of the seed of a PRNG) changes dramatically the

results, we have tested a sequence of different initial
values.

Figure 15 shows the distribution of the error
E1,Ndisc,Niter

(x1) for 500 000 initial values for 4-
coupled symmetric tent maps. The computations

Fig. 15. Distribution of the error E1,Ndisc,Niter
(x1) for

500 000 initial values for 4-coupled symmetric tent maps (33).
Computations done using double precision numbers (∼14–
15 digits), ǫi = iǫ1, ǫi = 10−14, Niter = 106, Ndisc = 102. The
initial values are selected following: x1

0,k =−0.92712 + 10−7
×

k, x2
0,k = −0.9183636 + 10−7

× 7k, x3
0,k = −0.92576657 +

10−7
× 13k, x4

0,k = −0.92390643 + 10−7
× 17k, for k = 1 to

500 000.
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Table 6. Minimal and maximal values of the E1,Ndisc,Niter
(x1) errors for 500 000 initial

values for 4-coupled symmetric tent maps. Computations done using double precision
numbers (∼14–15 digits), ǫi = iǫ1, ǫi = 10−14, Niter = 106, Ndisc = 102.The initial
values are selected following: x1

0,k = −0.92712+10−7
×k, x2

0,k = −0.9183636+10−7
×7k,

x3
0,k = −0.92576657+10−7

×13k, x4
0,k = −0.92390643+10−7

×17k, for k = 1 to 500 000.

Ndisc 102 103 104

min E1,Ndisc,Niter
(x1) 4002 × 10−6 20 740 × 10−6 75 152 × 10−6

max E1,Ndisc,Niter
(x1) 13 872 × 10−6 30 116 × 10−6 784 384 × 10−6

are done using double precision numbers (∼14–
15 digits), ǫi = iǫ1, ǫi = 10−14, Niter = 106,
Ndisc = 102. The initial values are selected fol-
lowing: x1

0,k = −0.92712 + 10−7 × k, x2
0,k =

−0.9183636 + 10−7 × 7k, x3
0,k = −0.92576657 +

10−7 × 13k, x4
0,k = −0.92390643 + 10−7 × 17k,

for k = 1 to 500 000.

The distribution follows more or less a Gaus-
sian distribution, maximal and minimal results are
displayed in Table 6.

All these results confirm that the families of
chaotic attractor we have introduced are robust
versus the choice of the initial seed.
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