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We compute the shear modulus of structural glasses from a first-principles approach based on the

cloned liquid theory. We find that the intrastate shear modulus, which corresponds to the plateau modulus

measured in linear viscoelastic measurements, strongly depends on temperature and vanishes continu-

ously when the temperature is increased beyond the glass temperature.
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The shear modulus is an unambiguous measure of the
mechanical stability of materials. When one cools a glass
former below its glass transition, a nonzero shear modulus
appears on laboratory-accessible time scales. The under-
standing of the mechanism through which this rigidity
emerges at the glass transition is a basic problem in con-
densed matter physics.

A standard view on glasses is to regard them as very
slow liquids with extremely high shear viscosity [1].
Viscoelastic measurements show that supercooled liquids
and various soft-glassy materials behave as solids: The
elastic modulus develops a plateau at low frequencies,
which extends to lower and lower frequencies by lowering
the temperature or increasing the density (see [2,3] and
references therein). Thus glasses acquire rigidity progres-
sively. This feature is remarkably different from ordinary
transitions from liquid to crystal, where the rigidity appears
abruptly at the first-order phase transition.

Among various theoretical attempts, the so-called ran-
dom first-order theory (RFOT) [4] provides a useful work-
ing ground to study the supercooled liquids and glasses in a
unified manner [5]. At the mean-field level it is backed up
by some microscopic approaches. On the one hand, it is
intimately related to the mode-coupling theory (MCT)
concerning the dynamics at relatively high temperatures
[6]. On the other hand, the so-called cloned liquid ap-
proach, which combines the traditional liquid theory and
the replica method, allows one to compute thermodynamic
static quantities at lower temperatures [7–9]. This approach
is currently the main first-principles approach to studying
properties of the glass phase. So far, it has been limited to
computing thermodynamic properties, in particular, the
‘‘complexity’’ giving the entropy associated with the num-
ber of glass states. One of the major challenges at present is
to understand how the nucleation processes allowing the
jumps between glass states, which are not taken into ac-
count in the simplest RFOT scenario, can be included in
this scheme. These processes are, in particular, crucial for
explaining why the mean-field prediction of a dynamical
transition at the dynamical (MCT) temperature Tc breaks
down, and is replaced by a rapid increase of the relaxation

time when the temperature gets close to Tc. Attempts in
this direction include the mosaic theory of [5] and the study
of long-range interactions [10].
We shall extend the cloned liquid approach in order to

compute the static shear response of glasses. We identify
the plateau modulus mentioned above by distinguishing
intrastate and interstate stress fluctuations. When applied
to mesoscopic samples, this approach predicts that the
stress vs strain curve should have an intermittent behavior.
Models.—We consider a system of N particles (i ¼

1; 2; . . . ; N) at position ri ¼ ðxi; yi; ziÞ in the laboratory
frame, which are interacting with each other via two-
body potentials, HðfrijgÞ ¼

P
i<jvijðrijÞ, where rij ¼ ri �

rj and rij ¼ jrijj. In order to study the rigidity against

simple shear deformation, we consider a system of parti-
cles in a container with two boundary walls which are
normal to the z axis and separated from each other by
distance Lz as shown in Fig. 1. To impose a shear strain
� on the system, we simply displace the top wall by an
amount �Lz into the x direction. Then it is convenient to
introduce a sheared frame with x0, y0, and z0, which are
related to the laboratory frame as ðx; y; zÞ ¼ ðx0 þ
z0�; y0; z0Þ. The volume of the system, V, and the number
density � ¼ N=V remain constant under this shear.
Shear modulus.—The total free-energy Fð�Þ of the sys-

tem can be written as

� �Fð�Þ ¼ ln
Z

V

Q
i d

3r0i
VN e��Hðfrijð�ÞgÞ; (1)

FIG. 1 (color online). Schematic picture of the system under
static shear. (a) Mobile particles (open circles) bounded by
‘‘random walls’’ (filled circle). (b) Schematic mean-field picture
of the energy landscape and stress-strain curve.
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with ��1 ¼ kBT being the inverse temperature. The ideal
gas part of the free energy is omitted because it does not
change. Note that the integration over the interior volume
of the container is taken using the sheared frame r0 ¼
ðx0; y0; z0Þ for which the integration rangeV is independent
of the shear �.

Taking the infinitesimal shear, the free energy can be
expanded formally as Fð�Þ ¼ Fð0Þ þ Nh�i�þ N

2 ��2 þ
Oð�3Þ, where the shear stress � and the shear modulus �
are

� ¼ dh�i=d� ¼ hbi � N�½h�2i � h�i2�; (2)

with

N�¼ dH

d�
¼X

i<j

rv0ðrÞjr¼rij x̂ijẑij;

Nb¼ d2H

d�2
¼X

i<j

ẑ2ij½r2v00ðrÞx̂2ij þ rv0ðrÞð1� x̂2ijÞ�r¼rij ;

(3)

where h. . .i denotes a thermal average evaluated with zero
strain � ¼ 0. We have introduced shorthand notations like
x̂ij ¼ ðxi � xjÞ=rij, and the prime stands for differentia-

tion. The first term hbi in the definition of � in Eq. (2) is
called the Born term. It represents the instantaneous re-
sponse of the system against shear Gð� ¼ 0Þ (see below),
which is finite even in liquids. The second term is the
correction term due to thermal fluctuations of the shear
stress.

This type of fluctuation formula for the static elastic
constants is well known [11,12]. In liquids, it is equivalent
to the static limit of the Green-Kubo formula which relates
the dynamic linear response against shear ��ðtÞ ¼R
t
�1 dt0Gðt� t0Þ _�ðt0Þ to the shear-stress autocorrelation

function h�ðtÞ�ðt0Þi by Gð�Þ ¼ �h�ð�Þ�ð0Þi. Linear vis-
coelastic measurements give access to the complex dy-
namical modulus Gð!Þ ¼ !G�ð!Þ.

Boundary condition to shear.—Let us pause here to
discuss more explicitly the boundary condition. First of
all, it is obvious that the boundary walls should not be
strictly translationally invariant to exert shear on the sys-
tem. On the other hand, we want the system to maintain
translational invariance at least on macroscopic scales. We
thus assume that the walls are built from a quenched
random configuration of particles, as shown in Fig. 1, so
that the system keeps translational invariance in a statisti-
cal sense.

Because of the translational invariance at macroscopic
scales, the thermodynamic free-energy density
limV!1Fð�Þ=V is independent of �. This also happens in
crystals, as discussed recently [13]. However, the definition
of the shear modulus (and of the solid state) is through the
linear response to a shear: The shear modulus in solids is
nonzero because of the noncommutation of the small shear
limit �� ! 0 and thermodynamic limit V ! 1. The same
phenomenon happens in glasses. This discussion has inter-
esting consequences if one studies the deformation of

mesoscopic samples on very small scales. We expect that
the stress h�i and shear modulus � of a single realization
of the random walls will be nonzero even after the thermal
averaging, but will fluctuate along the � axis (see Fig. 1).
Only if one performs an average along the � axis will one
recover the zero average value. Physically, the breakdown
of the commutation of the two limits means that the
elasticity theory fails. Thus elasticity and plasticity must
emerge simultaneously in solids. We will argue that the
plastic events can be viewed as changes of the relevant
metastable states when one varies � (see Fig. 1).
Shear on a cloned system.—Let us now analyze the static

response of glasses to shear. Taking the view of the RFOT,
we suppose that there exist exponentially many metastable
states � ¼ 1; 2; . . . with free energies per particle f�.
Our strategy is to consider a cloned system: m replicas

(a ¼ 1; 2; . . . ; m) are forced to stay in the same metastable
state, and we examine how the system responds to a
generalized shear such that each replica a is submitted to
a different strain �a. The total free energy Fm of such a
cloned system can be written formally as

Fmð�Þ¼Fmð0ÞþN
Xm

a¼1

h�ai�aþN

2

Xm

a;b¼1

�ab�a�bþOð�3Þ:

(4)

By clone symmetry the generalized shear modulus�ab can
be written as

�ab ¼ �̂�a;b þ ~� (5)

with �̂ ¼ hbi � N�
P

�½h�2i� � h�i2��P� and ~� ¼
�N�½P�h�i2�P� � ðP�h�i�P�Þ2�, where P� ¼
e�m�½Nf��Fmð0Þ� is the thermal weight of the �th metastable
state at temperature T=m and h. . .i� stands for a thermal
average within the �th metastable state. �̂ can be naturally
interpreted as the intrastate shear modulus and ~� as the
negative correction due to interstate thermal fluctuations. It
is easy to see that the physical shear modulus � of a single
system at temperature T=m can be obtained as � ¼P

m
b¼1 �ab ¼ �̂þm ~�.

Physically, the intrastate shear modulus �̂ should be
interpreted as the plateau modulus measured in linear
viscoelastic measurements [3]. We expect it not to fluctuate
between different metastable states. On the other hand, ~�,
which is due to the interstate fluctuations, should be differ-
ent on different realizations of the random walls. As we
discussed before, the statistical translational symmetry of
the random walls requires the total modulus� to vanish on
average; this imposes that, on average over the realizations
of random walls, ~� ¼ ��̂=m.
Within the RFOT [4], the metastable states disappear at

a dynamical transition temperature Tcð>TKÞ predicted by
the MCT [6]. Thus the plateau modulus �̂ is positive only
below Tc.
Cage expansion of the shear modulus.—Within the

cloned liquid theory (see details in [7]) one assumes that
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particles in different replicas form molecules with a certain
‘‘cage’’ size A, which plays the role of an order parameter
that distinguishes the liquid phase A ¼ 1 from the glass
phase A <1. The system is considered as a liquid at an
effective temperature T� ¼ T=m�, where m� ¼ m�ðTÞ is
determined for each temperature T by the stationarity
condition of the free energy. One finds that m� < 1 when
T < TK, where TK is the Kauzmann temperature [14],
while m� sticks to the value 1 for larger temperatures. In
many cases the behavior of m� is well approximated by
m� ’ T=TK [7,8]. It is convenient to label the molecules as
i ¼ 1; 2; . . . ; N and to write the position of a particle as
rai ¼ ri þ ua

i , where ri is the center-of-mass position of
the molecule and ua

i describes the displacement of the
particle in replica a within the molecule (

P
au

a
i ¼ 0).

The cage size A � ½Nmðm� 1Þ��1
P

i

P
a<bhðuai � ubi Þ2i

is assumed to be small enough to allow a small cage
expansion. Then the fluctuation within the cage is charac-
terized by huai ubj icage ¼ �2ð1�m�abÞ Am �ij, where u is a

component of u. If the cage size A changes discontinuously
from a finite value to1 at Tc, as predicted by the MCT [6],
the cage expansion can work, in principle, right up to Tc

[9].
Using the above prescription, we have computed the

shear modulus up to first order in the cage expansion
[15]. The intrastate (or plateau) modulus is obtained as

�̂ ¼ hbi� � J1 þ ðJ2 þ J3Þð1�mÞ; (6)

where h. . .i� is a thermal average at temperature T� and

J1 ¼ 2
A

m

1

N

X

i

X

j1ð�iÞ

X

j2ð�iÞ
��hrij1�ij1 � rij2�ij2i�;

J2 ¼ �2
A

m

1

N

X

i<j

hr2
ijbiji�;

J3 ¼ 2
A

m

1

N

X

i<j

X

k<l

��hbijr2
klvðrklÞic�;

(7)

where �ij and bij are the summands in Eq. (3) and h. . .ic�
stands for a connected correlation function at T�. In the
derivation of the above result, we used the fact that the
shear modulus is zero in the liquid hbi� � ��h�2ic� ¼ 0.

The remarkable fact is that we can compute the plateau
modulus at temperatures between TK and Tc. From Eq. (6),
one finds that in this regime (where m� ¼ 1), it takes the
simple and suggestive form �̂ ¼ hbi � J1. The physical
interpretation of this result is very simple. On time scales
shorter than the �-relaxation time, the stress field is essen-
tially frozen in time. There, the only appreciable fluctua-
tions are those associated with the � relaxation. The term
J1 represents the strength of the stress fluctuations due to
these processes.

A test case: a binary soft-sphere system.—To test our
scheme we performed an explicit computation of the shear
modulus of the standard binary mixture of particles with
soft-core interactions [16]. The Kauzmann temperature of

this system is TK ’ 0:14 [8], while the dynamical (MCT)
transition temperature is Tc ’ 0:22 [17]. In Fig. 2 we show
the result for the case of density � ¼ 1. To evaluatem� and
the radial distribution function g�ðrÞ at T�, we performed
the cloned liquid computation using the binary hypernetted
chain approximation [8].
The evaluation of various terms in Eq. (6) is done as

follows. The Born term and J2 involve only two-point
functions so that they can be evaluated easily using g�ðrÞ.
We evaluate J1 by J1 ¼ �2 A

m

R
d3rg�ðrÞ��jr�j2ðrÞ �

2 A
m

R
d3r1d

3r2gðr1Þgðr2Þgðr12Þ��r�ðr1Þ � r�ðr2Þ, where
we made a chain approximation in order to approximate
the three-point correlation function by a product of two-
point terms, an approximation which is reasonable at high
densities. The evaluation of J3 involves a connected four-
point function which is expected to be smaller than the
other terms, and we have neglected it at present.
As shown in Fig. 2, the plateau modulus �̂ strongly

depends on the temperature. Remarkably, it continuously
crosses zero at a temperature very close to Tc determined
by direct numerical simulations [17]. Furthermore, the
cage size A is found to still be very small (10�2) at this
temperature, which justifies our use of the first-order small
cage expansion. Our result of a plateau shear modulus
emerging continuously below Tc disagrees with the con-
ventional MCT [6], which predicts that the shear modulus
jumps discontinuously to a finite value at Tc from the liquid
side. Our result means that the density field is frozen at Tc

as the MCT predicted, but the system is just marginally
stable there [18], a picture which is consistent with the
energy landscape picture of the RFOT [19–23]. For the
viscoelastic measurements, this continuous transition sug-
gests a power-law behavior G0ð!Þ, G00ð!Þ / !	.
Intermittency of static shear response.—Our results have

a natural interpretation within a mean-field picture. They
suggest the following ‘‘intermittent’’ nature of static shear
response below TK at mesoscopic scales such that the

FIG. 2 (color online). Shear modulus of a binary soft-sphere
system, computed from the cloned liquid approach. The bottom
curve gives the plateau shear modulus; it is positive below Tc ’
0:22.
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system size N is large but finite. Within the mean field, the
parameter m ¼ m�ðTÞ ’ T=TK obtained in the cloned liq-
uid approach is naturally interpreted as the Parisi parame-
ter of the one-step replica symmetry breaking ansatz for the
glass phase.

As shown in Fig. 1, the interpretation at the mean-field
level is that of a free-energy landscape Fð�Þ which may be
viewed as a sequence of parabolas with curvature �̂ (pla-
teau modulus) along the � axis, matching with each other
at yield points [24]. Below TK, the static response to the
shear is dominated by an intrastate response with an occa-
sional interstate response when passing the yield points.

This picture is analogous to the mesoscopic response in
mean-field spin-glass models [25]. Here � plays the role of
the external magnetic field h in spin glasses, which exhibit
a stepwise increase of magnetizationmðhÞ along the h axis.
The drops of the stress passing the yield points corresponds
to steps of the magnetization. At a given �, each metastable
state has a random free energy f� and a random stress h�i�
so that the increase of � induces level crossings between
low-lying states.

The distribution of the stress may be modeled by a
Gaussian distribution with zero average and variance

�=
ffiffiffiffi
N

p
. From the correspondence with the spin-glass prob-

lem [25], we expect the typical spacing between the yield

points to scale as ��s � TK=ð�
ffiffiffiffi
N

p Þ and the width of

thermal rounding of the yield points to scale as ��w �
T=ð� ffiffiffiffi

N
p Þ. Here the parameter � is fixed as ��2 ¼ �̂=m

in order to satisfy the condition that the total shear modu-
lus, including the interstate shear modulus, becomes zero
on average. At low temperatures, if we choose a value of �
randomly, most of the time we will observe the plateau
modulus �̂, which is positive; occasionally, with probabil-
ity ��w=��s � T=TK, we will find a negative shear
modulus.

Discussion.—Our computations predict a nonzero pla-
teau modulus �̂ at all temperatures below the dynamical
transition temperature Tc, including the low temperature
regime [12]. They also give a natural way to compute this
dynamical transition temperature within the cloned liquid
theory, offering an alternative to the MCT computation.
This plateau modulus should be observable dynamically on
time scales smaller than the � relaxation time ��.
Therefore one expects it to be seen, on all laboratory
time scales, at all temperatures below the glass transition
temperature (where the � relaxation time becomes larger
than 103 s).

The prediction of intermittent shear response in meso-
scopic samples should also be amenable to experimental
tests. It is supposed to take place even at temperatures
higher than TK at the length and time scales of the so-
called mosaic states proposed by the RFOT [4,5], because

each mosaic is subjected to a random pinning field pro-
vided by the surrounding mosaics.
We thank Giulio Biroli, Jean-Philippe Bouchaud, Song-

Ho Chong, Silvio Franz, Jorge Kurchan, Anael Lemaı̂tre,
Kunimasa Miyazaki, Michio Otsuki, and Tommaso Rizzo
for useful discussions. This work is supported by Triangle
de la physique Grant No. 117.

[1] C. A. Angell, Science 267, 1924 (1995).
[2] C. Maggi, B. Jakobsen, T. Christensen, N. B. Olsen, and

J. C. Dyre, J. Phys. Chem. B 112, 16320 (2008).
[3] T.G. Mason, Martin-D. Lacasse, G. S. Grest, D. Levine, J.

Bibette, and D.A. Weitz, Phys. Rev. E 56, 3150 (1997).
[4] T. R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Phys.

Rev. A 40, 1045 (1989).
[5] M. P. Eastwood and P. G. Wolynes, Europhys. Lett. 60,

587 (2002); J.-P. Bouchaud and G. Biroli, J. Chem. Phys.

121, 7347 (2004); G. Biroli, J. P. Bouchaud, A. Cavagna,

T. S. Grigera, and P. Verrocchio, Nature Phys. 4, 771

(2008).
[6] W. Götze, in Liquids, Freezing and Glass Transition,

edited by J. P. Hanssen, D. Levesque, and J. Zinn-Justin

(North Holland, Amsterdam, 1991), p. 287.
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