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We model power grids as graphs with heavy-tailed sinks, which represent demand from cities, and study

cascading failures on such graphs. Our analysis links the scale-free nature of blackout sizes to the scale-free

nature of city sizes, contrasting previous studies suggesting that this nature is governed by self-organized

criticality. Our results are based on a new mathematical framework combining the physics of power flow

with rare event analysis for heavy-tailed distributions, and are validated using various synthetic networks

and the German transmission grid.
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Securing a reliable power grid is of tremendous societal

importance due to the highly disruptive repercussions of

blackouts. Yet the study of cascading failures in power

grids is a notoriously challenging problem due to its sheer

size, combinatorial nature, mixed continuous and discrete

processes, and physics and engineering specifications

[1–5]. Traditional epidemics models [6–9] are unsuitable

for its study, as the physics of power flow are responsible

for a nonlocal propagation of failures [10]. This challenge

has created extensive interest from the engineering and

physics communities [11–17]. Analytic models determin-

ing the blackout size ignore the microscopic dynamics of

power flow, while the analysis of more realistic networks

typically does not go beyond simulation studies. Therefore,

a fundamental understanding of blackouts is lacking.

The total blackout size, measured in terms of number of

customers affected, is known to be scale free [18–21],

meaning there exist constants C, α > 0 such that

PðS > xÞ ≈ Cx−α; ð1Þ

where ≈ means that the ratio of both quantities approaches

1 as x → ∞. This law, also known as the Pareto law, occurs

in many applications of science and engineering [22–26].

Its significance in our context lies in the fact that big

blackouts are substantially more likely than one would infer

from more conventional statistical laws. As a result,

mitigation policies cannot write off extremely large black-

outs as virtually impossible events, and should focus on

those in equal proportion to the small, frequent ones. Given

the tremendous societal impact of large blackouts, under-

standing why Eq. (1) occurs can lead to focused prevention

and/or mitigation policies and is therefore of major

significance.

Several attempts to explain Eq. (1) have appeared in the

literature. Using simulations, previous studies suggest that

Eq. (1) may occur as a consequence of self-organized

criticality [1,18,19,27,28]. Specifically, Ref. [18] compares

simulation traces of a model for blackouts with those of a

model that is known to exhibit self-organized criticality,

and shows that the autocorrelation functions are similar.

Such indirect analogies of different observables do not

provide direct explanations into the precise mechanism

behind Eq. (1).

Other strands of literature model the cascading mecha-

nism as a branching process with critical offspring dis-

tribution [29], without taking physical laws of electricity

into consideration. Such models lead to blackout sizes with

infinite mean, corresponding to a value of α ¼ 0.5. While a

naive parametric estimation procedure using all data would

lead to values of α in the range (0,1), modern statistical

techniques focusing on the tail end of the distribution

clearly indicate a finite mean blackout size [20,21].

In this Letter, we propose a radically different and much

simpler explanation than the aforementioned suggestions.

Our central hypothesis is that Eq. (1) is inherited from a

similar law for the distribution of city sizes [26,30–32]. We

support this claim with a careful analysis of actual data, a

new mathematical framework, and supporting simulations

for additional insight and validation.

To develop intuition, we view the power grid as a

connected graph where nodes represent cities, which are

connected by edges modeling transmission lines. Initially,

this is a single fully functioning network with balanced

supply and demand. After several line failures, the network

breaks into disconnected subnetworks, referred to as

islands. The balance between supply and demand is not

guaranteed to hold in each island, and at least one island is

facing a power shortage. As the sum of total demand will be

proportional to the total population in the island, the size of

the power shortage is proportional to the total population,

which is the sum of cities in that island. We now invoke a

property of sums of Pareto distributed random variables,

which informally says that the sum is dominated by the
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maximum. In other words, the size of the largest city in this

island drives the scale-free nature of the blackout. In

extreme value theory, this is known as the principle of a

single big jump [33,34].

This line of reasoning implies that city sizes and blackout

sizes both have Pareto distributions with similar tail

behavior. For the case of the U.S. blackout sizes (in terms

of the number of customers affected) and city sizes (in

terms of population), we confirm this with historical data as

summarized in Fig. 1, which shows that the parameters α

for blackout and city sizes distributions are remarkably

similar, each having a finite mean. See Supplemental

Material [35], Sec. II, for details.

In what follows, we make our claim rigorous by

introducing a new mathematical framework that captures

the salient characteristics of actual power system dynamics

[1] and sheds light on the connection between blackout and

city sizes. For a full account, see Ref. [35], Sec. IV.

We consider a network with n nodes and m lines. Node i
represents a city with Xi inhabitants. We consider a static

setting where each inhabitant demands one unit of energy.

We assume that the Xi’s are independent and identically

distributed Pareto random variables withPðX > xÞ ≈ Kx−α

for constantsK, α > 0. For convenience, we label the nodes

such that X1 represents the largest city.

For the electricity line flows, we adopt a linear dc power

flow model. This model approximates the more involved ac

power flow equations, is widely used in high-voltage

transmission system analysis [51], and accurately described

the evolution of the 2011 San Diego blackout [52].

Specifically, if g ¼ ðg1;…; gnÞ and X ¼ ðX1;…; XnÞ re-

present the power generation and demand at each city, then

the line flows f ¼ ðf1;…; fmÞ are given by f ¼ Vðg −XÞ,
where the matrix V ∈ R

m×n is determined by the network

topology and the line reactances.

Our framework consists of three stages called planning,

operational, and emergency. The first two stages determine

the actual line limits and line flows. We employ the widely

used direct current optimal power flow (dc OPF) formu-

lation with quadratic supply cost functions [1]:

min
g

1

2

Xn

i¼1

g2i

such that
Xn

i¼1

gi ¼
Xn

i¼1

Xi; ð2Þ

subject to the reliability constraint

−f̄ ≤ Vðg −XÞ ≤ f̄: ð3Þ

The planning stage concerns how the operational line limits

f̄ are set. For this, we solve Eq. (2) without Eq. (3), yielding

the uniform (across cities) solution g
ðplÞ
j ¼ ð1=nÞ

P
n
i¼1 Xi

for all j ≥ 1, and fðplÞ ¼ −VX (see Ref. [35], Sec. IV).

Then, the operational line limits f̄ are set as

f̄l ¼ λjf
ðplÞ
l

j ¼ λjðVXÞ
l
j; l ¼ 1;…; m; ð4Þ

where λ ∈ ð0; 1� is a safety tuning parameter, referred to as

loading factor. In the operational stage, we solve Eq. (2)

subject to Eq. (3), yielding a different solution gðopÞ which

is not uniform due to the constraint (3). Equation (4)

implies that line flows can have a heavy tail, which is

consistent with impedance data [53]. This property is

essential, as it allows us to create a subnetwork in which

the mismatch between supply and demand is heavy tailed.

This mismatch is established in the emergency stage,

which is described next. We focus on cascades initiated by

a single line failure, sampled uniformly across all lines. A

line failure changes the topology of the grid and causes a

global redistribution of network flows according to power

flow physics. Consecutive failures occur whenever there

are one or more lines for which the redistributed power flow

exceeds its emergency line limit Fl ¼ f̄l=λ. Failures are

assumed to occur subsequently, and take place at the line

where the relative exceedance is largest. Whenever line

failures create additional islands, we proportionally lower

either generation or demand at all nodes to restore power

balance. The cascade continues within each island until

none of the remaining emergency line limits are exceeded

anymore.

Our formulation may be extended to handle multiple

initial failures, correlated city sizes, generator failures,

simultaneous failures, generation limits, other strictly con-

vex supply cost functions, and other load-shedding mech-

anisms. Such variations would affect the value of the

prefactor C, but not the exponent α: the tail of the blackout
distribution is dominated by the scenario where there is a

single city that has a large power demand, while the

demand of the other cities is negligible. A formal version

of this statement is that, for sufficiently small ϵ,

103 104 105 106

xmin
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0.6

1.0

1.4
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2.2
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3.0

α

Fitted (xmin, α), city sizes

Fitted (xmin, α), blackout sizes

FIG. 1. Left: Pareto tail behavior of U.S. city [25] and blackout

sizes [50] in the region x > xmin. Estimates are based on PLFIT

[25]. Points depict the empirical complementary cumulative

distribution function (CCDF); solid line depicts the CCDF of

a Pareto distribution with parameters α, xmin. Right: Hill estimator

xmin → αðxminÞ, also known as the Hill plot [35]. The PLFIT

estimates for city sizes (blue dot) and blackout sizes (red dot) lie

within a relatively flat region of the graph, providing support for

the Pareto fit.
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PðS > xÞ ¼ PðS > x;X1 > x; Xi ≤ ϵx; i ≥ 2Þ þ oðx−αÞ:

ð5Þ

This is a mathematical description of the aforementioned

principle of a single big jump. After a normalization

argument, it suffices to consider the case where X1 ¼ y >
0 and Xj ¼ 0 for j ≥ 2. Then, the solution of the opera-

tional dc OPF can be computed in closed form: g
ðopÞ
1 ¼

½1 − λðn − 1Þ=n�y and g
ðopÞ
j ¼ ðλ=nÞy for j ≥ 2 (see

Ref. [35], Lemma 4.2). Let A1 be the set of nodes that

represents the island containing the largest city, after the

cascade has stopped. The islands that do not contain the

largest city must lower their generation to zero after a

disconnection, and hence immediately turn stable. Iterating,

the blackout size in component A1 is given by

S ¼
X

i∈A1

ðXi − giÞ ¼
X

j∉A1

ðgj − XjÞ ¼ λ
n − jA1j

n
y: ð6Þ

Integrating over realizations of X1 ¼ y, y ≥ x, and using

the property of Pareto tails PðmaxðX1;…; XnÞ > xÞ≈
nPðX > xÞ ≈ nKx−α [33], we find that Eq. (1) holds with

C ¼ nK
Xn−1

j¼1

PðjA1j ¼ jÞλαð1 − j=nÞα ∈ ½0;∞Þ: ð7Þ

The most delicate step, for which Ref. [35], Sec. IV.D

provides a rigorous proof, is to show that the cascade

sequence does not change when performing the normali-

zation argument in the limit x → ∞, which is nontrivial due

to continuity issues.

In Ref. [35], Sec. IV, we show that the prefactor C in

Eq. (7) is discontinuous at a discrete set of values of λ. At

such points, the number of possible scenarios leading to a

large blackout is increasing and/or jA1j is decreasing in λ.

We illustrate this in Fig. 2, which also shows how the

principle of a single big jump (5), which links the total

blackout size to the size of the largest city X1, is realized by

means of a few load-shedding events, each of which is a

fixed fraction of X1 and corresponds to a network

disconnection.

Our analysis illustrates how heavy-tailed city sizes cause

heavy-tailed blackout sizes. Our modeling choices allow

for a precise exploration of the cascade sequence, and,

inherently, an explicit formula for the blackout size tail.

However, we emphasize that the essential elements that

lead to heavy-tailed blackout sizes are that both the

demands and the line limits are heavy tailed. The small

nodes together generate a non-negligible fraction of the

demand of the large node. When the power grid satisfies

these properties, then Eq. (5) continues to hold, leading to a

heavy-tailed mismatch whenever there is a disconnection.

We illustrate this numerically by studying the effect of

relaxing several assumptions in our framework.

The choice of a quadratic cost function in the dc OPF

ensures that it is most efficient to divide the power

generation as equally as possible among the cities, causing

all cities to generate a non-negligible fraction of the total

demand. Other strictly convex increasing cost functions

would lead to a similar effect. Moreover, our result is robust

to piecewise linear cost functions (see Ref. [35], Sec. VI.C),

and to the inclusion of generation limits, as long as these

limits are a non-negligible fraction of the total demand.

To illustrate the sensitivity of our result with respect to the

chosen power flow model, we partially extend our frame-

work to the ac power flow model. We tested its effect on

multiple network topologies, and as illustrated in Fig. 3(a),

we conclude that city size tails still drive the blackout size

tail even when the dc assumption is violated. Intuitively, the

chosen power flow model determines the redistribution of

flow after failures, and thus the cascade sequence. This

effect is captured in the prefactor, but does not destroy the

Pareto-tailed consequence in the blackout size.

An important remark is that our mathematical framework

relies on the city sizes to be random variables. Naturally,

city sizes are essentially fixed. The remaining source of

FIG. 2. Cascade in a six-node network with X1 ¼ 1, Xj ¼ 0 for j ≥ 2, λ > 3=4. The four lower and upper line flows are λ=24 and

5λ=24, respectively, with corresponding emergency limits 1=24 and 5=24. The failure of an upper line causes the load on the adjacent

lower line to surge to λ=6 > 1=24, causing this line to trip (stage 2). This cutoff leads to the load on the three remaining lower lines to

surge to λ=18, causing them to trip as well (stage 3). After isolating nodes 2 and 6, the cascade ends with jA1j ¼ 4 and a total load shed of

2λ=6 (stage 4).
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randomness in our framework, namely the location of the

first failure, can be interpreted as a mechanism to bootstrap

linear combinations of city sizes. It is well known [33] that

bootstrap methods cannot recover heavy-tailed behavior if

the dataset is small. In order to recover a Pareto tail, the

frozen network therefore needs to be sufficiently large, e.g.,

104 nodes. To illustrate this, Fig. 3(b) shows simulation

results for the SynGrid model, a random graph model

designed to generate realistic power grid topologies [53].

Finally, Fig. 3(c) reveals that Pareto-tailed city sizes is a

crucial assumption in order to recover the same scale-free

behavior for blackout sizes, as light-tailed city sizes do not

lead to heavy-tailed blackout sizes. Additional supporting

experiments are reported in Ref. [35], Sec. VI.

We next present experimental results using the SciGRID

network [54,55], a model of the German transmission grid

that includes generation limits and relaxes several assump-

tions. We simulate blackout realizations by considering one

year’s worth of hourly snapshots. For each snapshot, we

solve the operational dc OPF and remove one line uni-

formly at random, initiating a cascade. To assign city sizes

to nodes, we have cities correspond to German districts,

and we assign a fraction of the population of each district to

specific nodes based on a Voronoi tessellation procedure. In

this way, we account for the feature that a single city can

encompass multiple nodes in a network. For more details,

see Ref. [35], Sec. VII.

The German SciGRID network has a relatively small

number of nodes (less than 600), and city sizes are frozen.

Therefore, we do not recover Pareto-tailed blackout sizes.

However, uniformly across different loading factors λ, we

found that the preponderance of blackouts involves just a

single load-shedding event due to a network disconnection.

For a moderate loading factor λ ¼ 0.7, nearly 98% of

blackouts only involve a single disconnection. Even for a

high loading factor λ ¼ 0.9, 90% of the blackouts involve a

single disconnection, and the fraction of blackouts with

four or more disconnections is below 4%. Figure 4 depicts

the largest observed blackout, for different values of λ.

Even in these massive blackouts, the bulk of the total load

shed is the result of a few load-shedding events. These

observations are typical properties that follow from our

framework (see Fig. 2), and sharply contrast the branching

process approximations where many small jumps

take place.

Using data analysis, probabilistic analysis, and simula-

tions, we have illustrated how extreme variations in city

sizes can cause the scale-free nature of blackouts. Our

explanation and refinement (7) of the scaling law (1) show

that specific details such as network characteristics only

appear in the prefactor (7). The main parameter α, which

determines how fast the probability of a big blackout

vanishes as its size grows, is completely determined by

the city size distribution. Decreasing the constant (7) by

performing network upgrades (which in our framework is

equivalent to decreasing λ) would only lead to a modest

decrease in the likelihood of big blackouts. Consequently, it

is questionable whether network upgrades, as considered in

Refs. [19,56], are the most effective way to mitigate the

consequences of big blackouts.

(a) (b) (c)

FIG. 3. Pareto tail behavior of simulated blackout sizes using

the described cascade model with relaxed assumptions, for

different topologies and loading factor λ ¼ 0.9. City sizes are

sampled from a Pareto distribution with tail index αðcityÞ ¼ 1.37 in

(a),(b), and from a uniform distribution with the same mean in (c).

Top: Points depict the empirical CCDF, dashed line depicts the

CCDF of a Pareto distribution with parameters α, xmin, estimated

via PLFIT [25]. Bottom: Hill plots. Red line corresponds to the tail

index αðcityÞ. A good fit is achieved when the PLFIT estimate (blue

dot) lies in a flat region closely tracing the red line.
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FIG. 4. Dissection of a massive blackout in the SciGRID network

for loading factors λ ¼ 0.7 (left) and λ ¼ 0.9 (right) in terms of

the cumulative number of affected customers at each stage of the

cascade, as displayed in the top charts with the selected stage

colored red. The corresponding islanded components are visu-

alized with different colors in the bottom illustrations.
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Instead, it may be more effective to invest in responsive

measures that enable consumers to react to big blackouts. It

is shown in Ref. [20] that durations of blackouts have a tail

which is decreasing much faster than Eq. (1). At the same

time, production facilities often lack redundancy—even

short blackouts can lead to huge costs, suggesting that the

costs associated to a blackout are concave up to a certain

duration. Therefore, if the goal is to minimize the negative

effects of a big blackout, it may be far more effective to

invest in solutions (such as local generation and storage)

that aim at surviving a blackout of a specific duration. This

is consistent with recent studies on the importance of

resilient city design [57].

Finally, our framework and insights suggest new ways of

approaching scale-free phenomena in other transportation

networks, such as highway traffic jams [58]. While trans-

port network topologies are not scale free, they may still

exhibit scale-free behavior, caused by the scale-free nature

of nodal sizes.
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