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Linear Data Representation

• PCA – ICA – Sparse Coding

• Underlying model is linear.

• Each data point is assumed to be created with the following linear model

	

• ∈ , is the data vector (observed)

• ∈ , is the set of basis vectors (columns of A are basis vectors ).

• ∈ is the weights vector. (unknown)

What is Sparse Coding?

• PCA: Given , , . . . Creates an orthogonal basis set , such 
that the underlying sources (weights) are uncorrelated. 

• ICA: Given , , . . . Creates a basis set of vectors as 
columns of , such that the underlying sources are independent. 

• Sparse Coding: Given , , . . . Find set of basis vectors 
such that the associated vectors are sparse.

• Usually called “dictionary learning”. 

• 	 	… 	 	 	…
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Sparse Vector Recovery
• Measure of sparseness?

• ∑ 		 .

• Diversity: Number of nonzero elements in a vector.

• as → 0.

• If ∈ , the measure of sparseness is: 	 as → 0.

• Sparse Inverse Problem:

• Used columns in are called the support set. Finding support set is 
equivalent to finding . Global solution is NP-hard.

min 		 s.t 					

Some of the existing methods

• Convex relaxation of objective function 

min 			 s.t 			

• In noisy cases,

min 			 s.t 			

• Other possible formulations

min 			 s.t     	

• or,

min 	
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Greedy Pursuit Methods
• These methods, in general, starts with an empty support set and adds 

one of the basis vectors from at each iteration. 

• ≜	current support set (initially empty)

• Orthogonal Matching Pursuit 
argm |〈 , 〉|

A 	 ∪

• Order Recursive Matching Pursuit

argmin ‖ ∪

	
.

How well do they work?

• Theoretical: These algorithms guarantee to find the global solution if 
satisfy certain conditions, which are very conservative conditions and 
doesn’t apply to real world applications.

1

• Practical: They work really well, especially convex relaxation 
methods. 

• Note: In practice, one doesn’t necessarily need the sparsest solution.
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Sparse Coding (Dictionary Learning)

• Problem definition: Given data , , … , , find dictionary , such 
that associated could be sparse.  (diversity ) 

	 	

	 	 	

	 	

Not easy, 
sparse 
inverse 
solution.

Why sparseness?

• Each cell has a low probability of activation given a single image 
(subimage block).

• This simplifies feature detection, e.g. edge detection

• Storage and retrieval with associative memory. (For higher levels of 
the network)

	 	

	 	 	

Not easy, 
sparse 
inverse 
solution.
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Why sparseness?

• Sparseness also results in independence. 

• . , . , … , . ∑ mutual	info.

• Under the assumption that joint entropy (information in the image) is preserved, if we 
minimize individual entropies, mutual info gets smaller. Thus, we would get more 
independent cells. 

• ↓	→ sparsity providing prior distributions.

• Minimum entropy code

	 	

	 	 	

Not easy, 
sparse 
inverse 
solution.

	 	

How to learn or ?

• Assume we are given ’s. So we know , .

• We know the model Y = .

• argmin	 	 .

• However we don’t know ’s upfront.
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How to learn ?

MOD method
[Engan et al.]

How to learn 	or ? (Olshausen & Field  paper)

• E = -(preserve information) - (sparseness of )

• (preserve information) .

• (sparseness of ) = ∑ .

• Possible S(x) could be , log	 1 , | |. 

• They are all unimodal and peaked around 0.

• Minimize E.

• , 			 ∑ log	 1
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How to learn 	or ? (Olshausen & Field  paper)

• E = -(preserve information) - (sparseness of )

(preserve information) .

(sparseness of ) = ∑ .

log 1

Algorithm 
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Experiments (Artificial data)

Dictionary 
learning 
algorithm 
worked for 
artificial data. 

Experiments (Natural Images)

Ten 512x512 
natural images in 
the American 
northwest

16x16 image 
patches

log 1 .

192 basis functions 

Spatially localized, oriented, band-
pass (selective to structure at 
different spatial scales)
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Experiments (Natural Images)

Spatially localized, oriented, band-
pass (selective to structure at 
different spatial scales)

Experiments (Natural Images)

Ten 512x512 
natural images in 
the American 
northwest

16x16 image 
patches

log 1 .

192 basis functions 

Solid line – After learning dictionary
Broken line – Random initial 
conditions

Decreased entropy, increased 
independence. 
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Conclusion
• Dictionary learning problem although it is hard, can be solved 

iteratively by first learning the sparse activations and updating 
the dictionary and so on.

• Sparsification as a preprocessing step is desirable since it has 
benefits of feature detection, memory storage, and 
independence etc.

• Sparsification for natural images results in spatially localized, 
oriented, and bandpass filters (basis functions), just like V1. 

Note: Discovery of sensory filters by dictionary learning are not 
limited to the visual inputs but also auditory.

Sparse Coding for audio?

Evan Smith & 
Lewicki, Nature 
2006

Cat auditory 
nerve fibres
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Sparse Coding for audio?

Evan Smith & 
Lewicki, Nature 
2006

Learned 
basis 
functions

Questions?


