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Abstract

In vitro primary cultures of dissociated invertebrate neurons from locust ganglia are used to experimentally investigate the
morphological evolution of assemblies of living neurons, as they self-organize from collections of separated cells into
elaborated, clustered, networks. At all the different stages of the culture’s development, identification of neurons’ and
neurites’ location by means of a dedicated software allows to ultimately extract an adjacency matrix from each image of the
culture. In turn, a systematic statistical analysis of a group of topological observables grants us the possibility of quantifying
and tracking the progression of the main network’s characteristics during the self-organization process of the culture. Our
results point to the existence of a particular state corresponding to a small-world network configuration, in which several
relevant graph’s micro- and meso-scale properties emerge. Finally, we identify the main physical processes ruling the
culture’s morphological transformations, and embed them into a simplified growth model qualitatively reproducing the
overall set of experimental observations.
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Introduction

The issue of why and how an assembly of isolated (cultured)

neurons self-organizes to form a complex neural network is a

fundamental problem [1–3]. Despite their more limited, and yet

laboratory-controllable, repertoire of responses [1,4], the under-

standing of such cultures’ organization is, indeed, a basis for the

comprehension of the mechanisms involved in their in vivo

counterparts, and provide a useful framework for the investigation

of neuronal network development in real biological systems [3].

Some previous studies highlighted the fact that the structuring

of a neuronal cultured network before the attainment of its mature

state is not random, being instead governed and characterized by

processes eventually leading to configurations which are compa-

rable to many other real complex networks [5]. In particular,

networking neurons simultaneously feature a high overall cluster-

ing and a relatively short path-length between any pair of them

[6]. Such configurations, which in graph theory are termed small-

world [7], are ubiquitously found in real-world networking systems.

Small-world structures have been shown to enhance the system’s

overall efficiency [8,9], while concurrently warranting a good

balance between two apparently antagonistic tendencies for

segregation and integration in structuring processes, needed for

the network’s parallel, and yet synthetic performance [10].

In this paper, we experimentally investigate the self-organiza-

tion into a network of an in vitro culture of neurons during the

course of development, and explore the changes of the main

topological features characterizing the anatomical connectivity

between neurons during the associated network’s growth. To that

purpose, dissociated and randomly seeded neurons are initially

prepared, and the spontaneous and self-organized formation of

connections is tracked up to their assembling into a two

dimensional clustered network.

Most existing studies in neuronal cultures restricted their

attention to functional networks (statistical dependence between

nodes activities) and not to the physical connections supporting the

functionality of the network [11]. The reason behind this

drawback is that the majority of investigations focused on

excessively dense cultures, hindering the observation of their fine

scale structural connectivity. Although there are studies striving to

indirectly infer the underlying anatomical connectivity from the

functional network, it has been shown that strong functional

correlations may exist with no direct physical connection [12].

Only few studies dealt with the physical wiring circuitry. However,

on the one hand, only small networks were considered; on the

other hand, how the network state evolves during the course of the

maturation process has not been investigated [6].

Here, instead, we focus on intermediate neurons’ densities, and

provide a full tracking of the most relevant topological features

emerging during the culture’s evolution. In particular, we show

experimentally that in vitro neuronal networks tend to develop from

a random network state toward a particular networking state,

corresponding to a small-world configuration, in which several
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relevant graph’s micro- and meso-scale properties emerge. Our

approach also unveils the main physical processes underlying the

culture’s morphological transformation, and allows using such

information for devising a proper growth model, qualitatively

reproducing the set of our experimental evidence.

Together with confirming several results of previous works on

functional connectivity [13], or on morphological structuring at a

specific stage of the cultures’ evolution [6], we offer a systematic

characterization of several topological network’s measures from

the very initial until the final state of the culture. Such a longitudinal

study of the network structure highlights as yet unknown self-

organization properties of cultured neural networks, such as i) a

large increase in both local and global network’s efficiency

associated to the emergence of the small-world configuration,

and ii) the setting of assortative degree-degree correlation features.

Experimental Set-Up

Neuronal cultures and network growth
In this paper, we report on six cultured networks, which were

grown from independent initial sets of dissociated neurons

extracted from the frontal ganglion of adult locusts of the

Schistocerca gregaria species. In all cases, a same protocol was used,

involving animals that were daily fed with organic wheat grass and

maintained under a 12:12 h light:dark cycle from their fifth

nymph growth to their early adult stage of development. At this

latter stage, we followed the dissection and culturing protocol

thoroughly described in [14]. In brief, the frontal ganglia were

dissected from anesthetized animals, and enzymatically treated to

soften the sheath. Ganglia were then forced to pass through the tip

of a 200 ml pipette to mechanically dissociate the neurons. The

resulting suspension of neuronal somata was plated on Conca-

navalin A pre-coated circular area (r*5 mm) of a Petri dish where

it was left for 2 h to allow adhesion of neurons at random positions

of the substrate. After plating, 2 ml culture medium (Leibovitz L-

15) enriched with 5% locust hemolymph was added. Cultures were

then maintained in darkness under controlled temperature (290C)

and humidity (70%).

The density at which cultures are seeded determines the

maturation rate and the spatial organization at the mature state

[15,16]. For the purpose of this work, aimed at studying the

network evolution into a clustered network, 6 dense cultures of 12

ganglia each (*1,200 neurons) were used and monitored during

18 days in vitro (DIV). During the entire experiment, the culture

medium was not changed.

High-resolution and large scale images of the whole culture

were acquired daily using a charge coupled device camera (DS-

Fi1, Nikon) mounted on a phase contrast microscope (Eclipse Ti-

S, Nikon), with automated control of a motorized XYZ stage

(H117 ProScan, Prior Scientific).

A typically observed growth evolution is shown in Fig. 1

(restricted to just a small part of the whole culture) between 3 and

12 DIV. Neurons ranging from 10 to 50 mm in size are initially

randomly anchored to a two dimensional substrate, while after 3

DIV (Fig. 1A and B) many cells already start growing neuronal

processes (neurites) trying to target neighboring cells. During this

growth process, neurites also split and reach other processes

forming loops of neurites up to 6 DIV, when the maximum stage

of network development takes place (Fig. 1C). At this point, the

growth rate decreases and a different mechanism starts shaping the

network: tension is generated along the neurites as they stretch

between neurons or bifurcation points to form straight segments

[17].

The latter process favors neuron migration, giving rise to

clusters of neurons, and the fusion of parallel neurites into thicker

bundles together with the retraction of those branches which did

not target any neuron (see black arrow in Fig. 1C). The resulting

network topology shown in Fig. 1D after 12 DIV (and in the

enlarged area in Fig. 1E) is characterized by a random distribution

of few clusters of aggregated neurons linked by thick nerve-like

bundles.

Anatomical graph extraction and complex network
statistics

Our experiments consistently show that cultures self-organize

from random scattered distributions of bare neurons into spatial

networks of interconnected clusters of neurons (compare Fig. 1A

and Fig. 1E).

In order to properly quantify the topological and spatial changes

of the anatomical neuronal network as cultures approach their

mature state, we developed a custom image analysis software in

MATLAB to detect the location of neurons, clusters of neurons

and neurite paths. The used imaging software has been fully

customized for the purpose of the analysis of the present data. The

general details of the developed imaging software will be reported

elsewhere. The performance of the algorithm is sketched in Fig. 2.

The algorithm takes as an input a gray color image of the culture

at a particular day (Fig. 2A), upon which it superimposes a layer of

new information comprising the contours of the clusters of neurons

(red shadows), the traces of the neurites (green lines), and

connection points between neurites, as well as those between

neurites and clusters (blue dots) (Fig. 2B).

The information contained in the produced layer is then used to

map the neuronal network into a graph G (see Fig. 2C) whose

nodes (in blue) are either cluster centroids or connection points,

and the links (in green) are straight lines connecting them.

Therefore, our graph is made of two types of nodes: neurons or

clusters of neurons (vi) and neurite connection points (ui). Treating

all links as identical, i.e. ignoring edge length and edge

directionality, this graph can be described in terms of a symmetric

adjacency matrix A whose elements aij are equal to 1 if nodes i

and j are linked, and 0 otherwise.

We focus on the network statistical properties at the level of the

vi nodes, ignoring the dynamics of both neurite connections and

branching points. Therefore, we extract from G the subgraph

defining the connectivity among nodes of class vi in such a way

that vi and vj are linked either directly or through a connected

path of ui nodes.

The analysis of the networks’ evolution requires accounting for

the birth and death of links (and, in some cases, nodes) over time.

Figure 3 shows the mean values for the number of nodes and the

of links at each DIV, calculated for the 6 cultures. During the

growth phase, spanning from 0 to 6 DIV, the number of nodes

with at least one connection slowly increases with age, while the

number of links rises exponentially, reaching a maximum at DIV

6. After this time point, the convergence of parallel neurites and

neuronal clusterization induces a more gentle decrease in the

number of links, accompanied by a slight reduction in the number

of nodes. In order to properly compare networks of different size,

we need to refer to a measure which is independent of the network

size: the link density, defined as the ratio between the total number

of measured links and the number of links characterizing the

arrangement of the same number of identified nodes in a complete

clique configuration. As illustrated in the inset of Fig. 3A, at any

stage of development, the cultured networks are far from being

fully connected (only about 2% of all possible connections exist

Small-World Emergence in Cultured Neuron Networks
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between nodes), and thus operate in a low-cost regime of sparse

anatomical connections.

In such a sparse connectivity regime, we quantify how our

networks constrained in 2D space percolate. To do so, we measure

the size S1 of the giant connected component (GCC) and the size

S2 of the second largest component (GCC2) as a function of the

age [18,19]. Figure 3B shows that the number of nodes forming

such connected components smoothly increases at the same rate

along the first days of the network development, up to the DIV 6

when the difference in size between them suddenly and

consistently starts to grow. From that point on, the GCC2 starts

collapsing and progressively merging into the GCC, and the

establishment of an almost fully connected network of clusters

characterizes the rest of the culture’s life. Figure 3B reports the

evolution of the number of nodes belonging to both GCC and

GCC2.

A deeper information on the culture evolution can be gathered

by monitoring the behavior of a subset of local and network-wide

quantities. For that purpose, we calculated several topological

properties of the extracted adjacency matrices (using the Matlab

Boost Graph Library package and the Brain Connectivity Toolbox

[20]), whose definitions are provided in [5,20]. In particular, we

analyzed the clustering coefficient (C), the average shortest path

length (L), the local (Eloc) and global (Eglob) efficiency [8], the

network assortativity (r) and the cumulative degree distribution

(Pcum(k)), obtained from the degree distribution P(k) as

Figure 1. Culture development of locust frontal ganglion neurons into clustered networks. (A) After 3 DIV, completely dissociated
neurons had already started growing neuronal processes with continuous branching. The area outlined in (b) is enlarged in B. (C) Same area as in (B)
but at 6 DIV. At this stage, neurons and small clusters of neurons are already densely connected and form a complex network. At the same stage,
branched neurites (pointed by the black arrow) that failed to contact neighboring neurons start to retract. (D) Migration of neurons due to the
tension along neurites leads to the formation of large neuronal clusters and of thicker bundles of neurites. For a better visualization, the area outlined
in (e) is enlarged in E.
doi:10.1371/journal.pone.0085828.g001

Figure 2. Extraction of the adjacency matrix defining the
neural network connectivity. (A) Image cut taken from a 6 DIV
culture and (B) the layer on top showing the identification of neurons
and clusters of neurons (red), neurites connecting them (green) and
neurite branching points (blue). (C) Mapping of the neuronal network
into a graph where blue dots represent the nodes and green lines the
links of the graph.
doi:10.1371/journal.pone.0085828.g002
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Pcum(k)~
Pk’~kmax

k’~k P(k’) being k the degree (or number of links)

of a node.

In all cases, the calculation of such statistics was restricted to the

set of nodes having at least one link, and for the calculation of L to

those pairs of nodes belonging to the GCC. Moreover, the

experimental values of C and L were also compared with those

expected in equivalent random null hypothesis networks, i.e.

random networks artificially constructed to have the same number

of nodes and links and to display the same degree distribution.

Specifically, for each experimental network at a particular age, we

generated 20 independent realizations of equivalent random

networks, and calculated the corresponding expected network

statistics.

Finally, in order to quantify the degree-degree correlation

properties, the network assortativity was defined by considering for

each node i the average degree of its neighbors knn, and by

computing the linear regression of log(SknnT) vs. log(k
p
i ). The

assortativity coefficient r was then calculated as the Pearson

correlation coefficient corresponding to the best fit of

log(SknnT)*p log(k). If rw0 (rv0), the network is set to be

assortative (disassortative), while depending upon the obtained

value of p, the degree correlation properties are said to be of a

linear (p~1), sub-linear (pv1), or super-linear (pw1) nature.

Results

Emergence of small-world structure
The first days of the cultures’ development (from DIV 0 to DIV

3) were characterized by networks with very few nodes and links

(see Fig. 3A). After DIV 3, the networks showed a very

pronounced increase in the number of links and nodes (from

DIV 3 to DIV 6) preceding a spatial network reorganization

eventually driving the graph into its clustered, mature state.

The associated networks statistics sheds light on the transition

from random to non-random properties with a progression of both

the clustering coefficient and the average path length (normalized

by the GCC size) as a function of age (see Fig. 4A). The first

significant result is the simultaneous increase in the clustering

coefficient and decrease in the mean path length, a clear

fingerprint of the emergence of a small-world network configura-

tion. This configuration becomes prominent at DIV 6 and stays

relatively stable through the last two weeks in vitro. To properly

asses the significance of this finding and isolate the influence of the

variable network size and density, we calculated the values of C
and L normalized to the corresponding expected values for

equivalent random (and lattice) null model networks (see Fig. 4B).

In doing so, we follow the approach that was recently used in

similar circumstances for the obtainment of null models [21].

According to Watts and Strogatz’s model [7], a small-world

network simultaneously exhibits short characteristic path length,

like random graphs, and high clustering, like regular lattices. Here,

we found a clear change in the trend at DIV 6 where Lrand=Lƒ1,

where the average path length of the cultured network starts to be

close to that of a random graph and much smaller than that of a

regular graph (Lreg is calculated as Lreg~S1=(2SkT)). At the same

time, the clustering coefficient was much higher (between 30–50

times) than that of the corresponding random graphs.

These results are in agreement with previous morphological

characterizations of in vitro neuronal networks at a single

developmental stage [6], where a similar small-world arrangement

of connections was evidenced at DIV 6. However, to reinforce the

evidence of the emergence of a small-world configuration during

the graph development (as well as the fact that here the small-

world metrics are not influenced by network disconnectedness), we

also measured the global and local efficiency, as introduced by

Latora and Marchiori in [8]. These latter quantities, indeed, are

seen as alternative markers of the small-world phenomenon, in

that small-world networks are those propagating information

efficiently both at a global and at a local scale. The efficiency

curves of the cultured networks are reported in Fig. 4C as a

function of age, and compared to the efficiency of the equivalent

random graphs. Our results indicate that the connectivity structure

of the neuronal networks evolve towards maximizing global

efficiency (making it similar to the value of random graphs), while

promoting fault tolerance by maximization of local efficiency

(which is, instead, larger than the local efficiency of a random

graph), and both properties are realized at a relatively low cost in

terms of number of links (see again Fig. 3A).

Node degree distribution evolution
Turning now our attention to network statistics at the micro-

scale, we investigated how the node degree distributions evolved

during maturation process. At all ages, cultures appeared to belong

to the class of single-scale networks, displaying a well defined

characteristic mean node degree. Figure 5A shows that the

cumulative degree distributions Pcum(k) for DIVs 3, 6, 7, and 12

had a fast decay with a non monotonous increase in the average

connectivity, with most of the nodes having a similar number of

connections and only a few ones with degrees deviating

significantly from such a number.

The data were fitted to an exponential scaling law

y(k)*exp({k=b) with a level of confidence larger than 95%.

Figure 3. Density of the network as a function of culture age. (A) Mean number of nodes (blue circles), including neurons and clusters of
neurons, and links connecting them (red squares), calculated for the 6 cultures vs. age (DIV). Inset: the link density (green triangles) quantifies the
actual number of links divided by that of an all-to-all configuration [N:(N{1)=2, being N the number of connected nodes at each age]. (B) Log-linear
plot of the mean number of nodes having at least one connection (blue circles), of the mean size of the giant connected component (red squares)
and of the second largest connected component (green triangles). In all plots, error bars stand for the standard errors of the mean (sem).
doi:10.1371/journal.pone.0085828.g003
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The values of the scaling parameter b were close, within error, to

the mean degree SkT of the networks at each culture age. It has to

be remarked that the distribution of node connections, although

always homogeneous, shifted during culture maturation toward

much broader distributions, with few highly connected nodes

appearing at DIVs 6 and 7. These ‘‘hubs’’ at the peak days of the

culture evolution result from a branching process, allowing each

single neuron to reach a larger neighborhood. Thus, at variance

with scale-free networks [22,23], our cultured and clustered

networks are identified as a single-scale homogeneous population

of nodes. This is in agreement with reports on many other

biological systems like the neuronal network of the worm

Caenorhabditis elegans [24,25], and suggests the existence of physical

costs for the creation of new connections and/or nodes limited

capacity [26].

While the number of neighbors (the degree) is a quantity

retaining information at the level of a single node, one can go

further to inspect degree-degree correlations, i.e. to quantify

whether the degrees of two connected nodes are correlated. It is

known, indeed, that biological networks feature generally dis-

assortative network structures [27], that is connections are more

likely to be established between high-degree and low-degree nodes.

In our system, we used the assortativity coefficient described in the

Experimental set-up section. Figure 5B shows the age evolution of

the Pearson coefficient r and of the exponent p that characterizes

the scaling behavior of the degree correlation properties

(SknnT~akp). At one hand, as r stays positive during the whole

development we can generally conclude that our networks are

assortative and, on the other hand, the trend of the exponent p

indicates that there is a transition from an almost linear (from DIV

0 to DIV 2) to a sub-linear (p*0:7) degree-degree correlation

regime during the small-world stage.

It is important to remark here that, to the best of our knowledge,

this is the first report of assortativity in an in vitro cultured neuronal

network, and such an evidence actually links to other studies where

assortativity was found in simple in vivo neuronal systems, like the

C. elegans neural network structure [28].

Spatial-growth model
A series of previous studies [15,16] singled out tension along

neurites and adhesion to the substrate as the two main factors

conditioning the neuronal self-organization into a clustered

network. Here we go a step ahead, and propose a simple spatial

model which not only incorporates migration of neurons but also

explicitly considers neurite growth, and the establishment of

synaptic connections.

Our model is schematically illustrated in Fig. 6. We start by

considering a set of N cells. Each cell is a small disk of radius a

randomly distributed in a 2-dimensional circular substrate of area

S. The algorithm then evolves the connections and positions of

such disks at discrete times, each time step t corresponding to a

Figure 4. Network clustering and shortest path properties as a function of culture age. (A) Absolute values of the clustering coefficient C
(blue circles, left axis) and mean path length L (red squares, right axis) normalized to the size of the largest cluster. (B) Semi-log plot of normalized
values of C and L with respect to the expected values for an equivalent random network having the same number of nodes and links and preserving
the degree distribution: Crand=C (blue circles) and Lrand=L (red squares). The average path length is also compared to the value for a regular lattice as
L=Lreg (green triangles) with Lreg~S1=SkT, being SkT the average connectivity and S1 the size of the largest connected component. (C) Local
(upper plot) and global (lower plot) efficiency as a function of culture age and compared to their respective values for the random graphs of the null
model (see text for an explanation). All quantities are averaged for the set of 6 cultures at each day of measure (DIV). As in the Caption of Fig. 3, error
bars represent the standard errors of the mean (sem).
doi:10.1371/journal.pone.0085828.g004

Figure 5. Degree distribution and degree-degree correlation. (A) Cumulative node degree distributions on a semi-log scale for the state of
the same culture at DIVs 3, 6, 7, and 12 (see legend for the symbol coding). Solid lines correspond to the best exponential fitting y(k)*exp({k=b),
with b^SkT the mean degrees at DIV 3, 6, 7, and 12 respectively. (B) Degree correlation exponent (blue circles) measuring the network assortativity
and the corresponding Pearson coefficient (red squares). Both quantities are averaged for the set of 6 cultures at each day of measure (DIV) and error
bars represent the sem.
doi:10.1371/journal.pone.0085828.g005

Small-World Emergence in Cultured Neuron Networks

PLOS ONE | www.plosone.org 5 January 2014 | Volume 9 | Issue 1 | e85828



DIV of the culture. The complex process of neurite growth and

the establishment of synaptic connections is modeled by associat-

ing to each cell a time growing disk in such a way that, two cells

are linked at a given time step if their outer rings intersect as

shown for DIV’s 2 and 3 in Fig. 6A. At each time step t, the radius

ri§a increases by a quantity dri which decays as

drt
i~

V

t
1{

1

Ki

kt{1
i

� �

where V is the neurite growth velocity (the same for all cells), Ki a

random number in the interval ½1,N� and kt
i the degree of the

node (cell) at the time step t. The term kt{1
i =Ki introduces

heterogeneity in the cell population, and represents the fraction of

links acquired by the cell in the previous steps from the initial

randomly assigned endowment Ki. A very large Ki indicates that,

potentially, a cell is very active and could connect many other

cells. The wiring process is iterated up to a given time step Ts, at

which the formation of new connections is stopped.

As for the process of cell migration and clusterization, cells or

clusters whose distance is less than 2a are then merged into the

same new cluster. Furthermore, whenever two cells are connected,

an initial tension ~TTij~0:1~uuij is created between them, and it is

incremented in 0:1 force units at each time step, being~uuij the unit

vector along the direction connecting the two cells. The total force

acting on a cell or cluster i is given by ~FFi~
P

j
~TTij with j running

over the cell indexes connected to i, and not belonging to the same

cluster. Furthermore, each cell is ‘‘anchored’’ to the substrate by a

force Fa~10 force units, and the ith cell can only be detached if

there is a net force Fi acting on it larger than Fa. In the case of a

cluster of cells, the adhesion force to the substrate is considered to

be the sum of the individual adhesions of the cells composing the

cluster. Therefore, cells and clusters move in a certain direction in

all circumstances in which the net force acting on them overcomes

the adhesion force, and an equilibrium point is reached at a new

position in which the new net force balances (or is smaller) than the

adhesion to the substrate (see Fig. 6B).

In order to validate our model, we ran a large number of

simulations for different values of the model parameters N , V and

Ts. Remarkably, when comparing the statistical topological

features of the simulated networks to those measured from the

set of 6 cultures, we found high correlation values exist only in a

very narrow window of V and Ts. For instance, the parameter

values which better fit the experimental observations for N~700
are V~40+5 and Ts~9+1.

Figure 7 shows a typical output of the evolution of a simulated

network. The initial number of cells is taken to be of the same

order as in the experiments, and we chose as parameters V and Ts

those with the highest correlation with experiments. Boundary

conditions mimic the real experimental setup by canceling the

adhesion force to the substrate outside the culture area. The spatial

organization of the network of cells and clusters after 3, 6, and 12

DIV, closely resembles the one observed in the experiments (see

Fig. 1).

Despite its relative simplicity, it is remarkable that the model

offers a rather good qualitative verification of the trends of all the

structural network characteristics measured in the experiments. In

particular, Fig. 8 reports a synoptic comparison of the mean

number of nodes and links, of C and L, of the mean degree and

degree correlation, and of the sizes of the GCC and GCC2,

measured in the experiments and those obtained from the

Figure 6. Growth model. (A) Schematic representation of how cells get connected. At DIV 0, 4 cells of radius a are located at random positions. The
first iteration of the algorithm, DIV 1, assigns to each cell i a disk of radius ri (green shade). At the next iteration, DIV 2, the disk’s growth rate
decreases, ri’, and a link between two cells is established when their disks intersect (DIV 3). This process continues until Ts steps. (B) Force diagram
explaining cell migration and clustering. Tension forces T1 , T2, and T3 are acting on the central cluster composed of two cells, whose vector sum (red
arrow) exceeds the adhesion to the substrate (green arrow). As a result, a new equilibrium state is produced with new tension forces T1

’, T2
’, and T3

’ ,
being the central cluster pulled in the direction of the net force approaching the largest cluster.
doi:10.1371/journal.pone.0085828.g006

Figure 7. Schematic illustration of the network self-organiza-
tion at three different instants of the automata generations. (A)
DIV 3, (B) DIV 6, and (C) DIV 12. Simulation parameters: N~700, V~42,
and Ts~10.
doi:10.1371/journal.pone.0085828.g007
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simulations of the model with N~700, V~42, and Ts~10. The

main observed difference is found in the mean degree, the reason

behind such a slight discrepancy being that the model does not

include any neurite branching process, limiting the size of the

neighborhood encompassed by the nodes.

Though it would have been unrealistic to expect a perfect

quantitative agreement between model and observations, the fact

that the model reproduces the main qualitative scenarios of the

experiments indicates that it captures the main processes

underlying the observed morphological evolution and self-organi-

zation of the cultures.

Discussion

In summary, we provided a large scale experimental investiga-

tion of the morphological evolution of in vitro primary cultures of

dissociated invertebrate neurons from locust ganglia. At all stages

of the culture’s development, we were able to identify neurons’ and

neurites’ location in automated way, and extract the adjacency

matrix that fully characterizes the connectivity structure of the

networking neurons. A systematic statistical analysis of a group of

topological observables has later allowed tracking of the main

network characteristics during the self-organization process of the

culture, and drawing important conclusions on the nature of the

processes involved in the culture’ structuring. At early stages of

development (vDIV 3) characterized by a high neurite growth

rate, homogeneous node degree distribution and low clustering

resulted in a random topology as expected given the fact that

neurons were randomly seeded. Following this immature period,

neurite growth rate diminished and tension along neurites started

to shift the network to a small-world one with path lengths similar

to random configurations but presenting high clustering of

connections. This transition from random to small-world con-

curred with the percolation of the culture and the onset of the

giant connected network component.

Furthermore, the identification of the main physical processes

taking place during the culture’s morphological transformations,

allowed us to embed them into a simple growth model,

qualitatively reproducing the overall scenario observed in the

experiments.

Our results extend previous studies where network properties of

cultures were investigated at a particular developmental stage and

for a lesser number of nodes [6]. These results also systematically

characterize several topological network measures along the entire

culture’s evolution, and unveil many yet unknown self-organiza-

tion properties, such as i) the fact that a small-world configuration

spontaneously emerges in connection to a large increase in both

local and global network’s efficiency, and ii) the evidence that

cultures tend to organize in a regime of non trivial degree mixing

which, in turn, is characterized by assortative degree-degree

correlation features. The evolution from an initial random to a

small-world topology has also been reported recently in the

context of a functional network of a cortical culture [13].

However, although functional connectivity correlates well with

anatomical connectivity, there are studies showing that strong

functional connections may exist between nodes with no direct

physical connection [12]. This suggests that future studies are

needed in which both anatomical and functional networks are

accessible in order to understand their complex entanglement.

Given the absence of external chemical or electrical stimula-

tions, we conclude that such complex network evolution and

morphological structuring is indeed an intrinsic property of

neuronal maturation. Our study therefore contributes to the

understanding of the complex processes ruling the morphological

structuring of cultured neuronal networks as they self-organize

from collections of separated cells into clustered graphs, and may

Figure 8. Comparison between model and experiment. Legends in each panel clarifies on the topological quantities measured in experiments
(dashed curves), and the corresponding trends of the simulated networks (solid curves). Simulation parameters are the same as in the caption of
Fig. 7, and each point is the ensemble average over 50 independent runs of the growth algorithm.
doi:10.1371/journal.pone.0085828.g008
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help identifying culture development stages in new, specific and

targeted, experiments.
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