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All real networks are different, but many have some structural properties in common. There seems to be no
consensus on what the most common properties are, but scale-free degree distributions, strong clustering,
and community structure are frequently mentioned without question. Surprisingly, there exists no simple
generative mechanism explaining all the three properties at once in growing networks. Here we show how
latent network geometry coupled with preferential attachment of nodes to this geometry fills this gap. We
call this mechanism geometric preferential attachment (GPA), and validate it against the Internet. GPA
gives rise to soft communities that provide a different perspective on the community structure in networks.
The connections between GPA and cosmological models, including inflation, are also discussed.

O
ne of the fundamental problems in the study of complex networks1–5 is to identify evolutionmechanisms
that shape the structure and dynamics of large real networks such as the Internet, the world wide web,
and various biological and social networks. In particular, how do complex networks grow so thatmany of

them are scale-free and have strong clustering and non-trivial community structure? The preferential attachment
(PA) mechanism6–8, where new connections are made preferentially to more popular nodes, is widely accepted as
the plausible explanation for the emergence of the scale-free structures (i.e. the power-law degree distributions) in
large networks. PA has been empirically validated formany real growing networks9–12 using statistical analysis of a
sequence of network snapshots, demonstrating that it is indeed a key element of network evolution. Moreover,
there is some evidence that the evolution of the community graph— a graph where nodes represent communities
and links refer to members shared by two communities — is also driven by PA13.

Nevertheless, PA alone cannot explain two other empirically observed universal properties of complex net-
works: strong clustering14 and significant community structure15. Namely, in synthetic networks generated by
standard PA, clustering is asymptotically zero16 and there are no communities17. To resolve the zero-clustering
problem, several modifications of the original PA mechanism have been proposed18–21. To the best of our
knowledge, however, none of these models capture all three fundamental properties of complex networks:
heavy-tail degree distribution, high clustering, and community structure.

In social networks, the presence of communities, that might represent node clusters based on certain social
factors such as economic status or political beliefs, is intuitively expected. A remarkable observation15,22–26 is that
many other networks, including food webs, the world wide web, metabolic, biochemical, and financial networks,
also admit a reasonable division into informative communities. Since that discovery, community detection has
become one of the main tools for the analysis and understanding of network data17,27.

Despite an enormous amount of attention to community detection algorithms and their efficiency, there were
very few attempts to answer amore fundamental question: what is the actualmechanism that induces community
structure in real networks? For social networks, where there is a strong relationship between a high concentration
of triangles and the existence of community structure28, triadic closure29 has been proposed as a plausible
mechanism for generating communities30. It was also shown by means of a simple agent-based acquaintance
model that a large-scale community structure can emerge from the underlying social dynamics31. There also exist
other contributions in this direction, where proposed mechanisms and generative models are specifically tailored
for social networks32–35.

Here we show how latent network geometry coupled with preferential attachment of nodes to this geometry
induces community structure as well as power-law degree distributions and strong clustering.We prove that these
universal properties of complex networks naturally emerge from the new mechanism that we call geometric
preferential attachment (GPA), without appealing to the specific nature (e.g. social) of networks. Using the
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Internet as an example, we demonstrate that GPA generates net-
works that are in many ways similar to real networks.

Results
Geometric Preferential Attachment. In growing networks the
concept of popularity that PA exploits is just one aspect of node
attractiveness; another important aspect is similarity36. Namely,
if nodes are similar (‘‘birds of feather’’), then they have a higher
chance of being connected (‘‘flock together’’), even if they are not
popular. This effect, known as homophily in social sciences37, has
been observed in many real networks of various nature38,39.
The GPA mechanism utilizes the idea that both popularity and

similarity are important. We take the node birth time t5 1,2,... as a
proxy for node’s popularity: all other things being equal, the older the
node (i.e. the smaller t), the more popular it is. The similarity attrib-
ute of node t is modeled by a random variable ht distributed over a

circle S1 that abstracts the ‘‘similarity’’ space. One can think of the

similarity space as an image of a certain projection p : A?S
1 from a

space of unknown or not easily measurable attributes (a1, . . . ,ak) [ A
of nodes. For social networks, these attributes could be political beliefs,
education, and social status, whereas for biological networks, {ai} may
represent chemical properties of metabolites or geometric properties
of protein shapes. While the absolute value of the similarity coordinate

ht~p(a1t , . . . ,a
k
t ) does not have any specific meaning, the angular

distance hst 5 p2 j p2 j hs 2 ht jj quantifies the similarity between
two nodes. Upon its birth, a new node t connects to an existing node s
, t if s is both popular enough and similar to t, that is if sbhst is small,
where b [ 0,1½ � is a parameter that controls the relative contributions
of popularity and similarity.
The described rule for establishing new connections admits a

simple geometric interpretation which is very useful for analytical
treatment of the model. Let us define the radial coordinate of node s
at time s as rs5 2 ln s, and let it grow with time, so that at time t. s it
is rs(t)5 brs 1 (12 b)rt. The distance xst between two points in the
hyperbolic plane of curvature K521 with polar coordinates (rs(t),

hs) and (rt,ht) is approximately40 xst~rs(t)zrtz2 ln
hst

2
~

2 ln
sbt2{bhst

2

� �
. Since for any given t, the sets of nodes s , t that

minimize sbhst and xst are the same, new nodes simply connect to the
hyperbolically closest existing nodes. Note that the increase of the
radial coordinate rs(t) decreases the effective age of the node, and
thus models the effect of popularity fading observed in many real
networks41.
But how do new nodes find their positions in this similarity space?

The main assumption of our model is that the hidden attribute space
A of a growing network is likely to contain ‘‘hot’’ regions (e.g. of
human activity), and that the hotter the region, the more attractive it
is for new nodes. Hot regions can for instance represent some hot
areas in science.When these regions are projected onto the similarity

spaceS1, the hotness manifests itself by a higher node density, more
scientists working in a hot area. The higher attractiveness of a hot
region is then modeled by placing a new node in this region with the
higher probability, the hotter this region is, i.e. the higher the node
density in it. That is, new scientists are expected to begin their careers
working in hot areas where many existing scientists are already
active, versus jumping onto some obscure developments that nobody
understands. Therefore the higher the node density in a particular

section of our similarity space S1, the higher the probability that a
new node is placed in this section. Intuitively we would expect that
this process should lead to heterogeneous distributions of node coor-
dinates in the similarity space. This intuition is confirmed by empir-
ical results: if wemap real networks to their hyperbolic spaces42,43, we
observe that the resulting empirical angular node density is not
uniform (e.g. see Fig. 5(a)), and nodes tend to cluster into tight

communities. In the Internet, for example, these communities are
groups of Autonomous Systems belonging to the same country.
There are many ways to implement this general idea. For a variety

of reasons we found that the most natural and consistent one is as

follows. First we define the attractiveness of any location Q[S
1 for a

new node t with radial coordinate rt as the number of existing nodes
s, t lying in the hyperbolic diskDQ (rt) of radius rt centered at (rt,Q).
The higher the attractiveness of a location Q, the higher the prob-
ability that a new node t will chose this location as its place ht 5 Q in
the similarity space. We refer to this mechanism as the geometric
preferential attachment (GPA) of nodes to the similarity space. This
mechanism is illustrated in Fig. 1.
The exact definition of the GPA model is:

0. Initially the network is empty. New nodes t appear one at a
time, t 5 1,..., and for each t:

1. The angular (similarity) coordinate ht of a new node t is deter-
mined as follows:

(a) Sample Qi , U[0,2p], i 5 1,...,t, uniformly at random. The
set of points t̂1~(rt ,Q1), . . . ,̂tt~(rt ,Qt) in the hyperbolic
plane are the ‘‘candidate’’ positions for the newborn node;

(b) Define the attractiveness At(Qi) of the ith candidate as the
number of existing nodes that lie within hyperbolic distance
rt from it;

(c) Set ht 5 Qi with probability

Pt(i)~
At(Qi)zL

Pt
j~1 (At(Qj)zL)

, ð1Þ

where L $ 0 is a parameter, called the initial attractiveness.

2. The radial (popularity) coordinate of node t is set to rt 5 2 ln t.
The radial coordinates of existing nodes s , t are updated to
rs(t) 5 brs 1 (1 2 b)rt.

Figure 1 | Geometric preferential attachment. At time t, a new node

appears at distance rt from the center of the hyperbolic disk denoted by

cross. Points Q1 and Q2 represent two potential locations of the new node,

and the drop-shaped curves are the boundaries of the hyperbolic disks

DQ1 (rt) and DQ2 (rt) of radius rt centered at Q1 and Q2. Since similarity is

attractive and DQ1
(rt) contains more nodes (five) than DQ2

(rt) (none), the

new node is more likely to appear at ht 5 Q1.

www.nature.com/scientificreports
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3. Node t connects tom hyperbolically closest existing nodes (if t
# m, then node t connects to all existing nodes).

The GPAmodel has thus three parameters: the number of linksm
established by every new node, the speed of popularity fading b, and
the initial attractiveness L. A moment’s thought shows that m con-

trols the average degree of the network, �k~2m.We prove inMethods
that the model generates scale-free networks and b controls the
power-law exponent c. The initial attractiveness L controls the het-
erogeneity of the angular node density, namely, the heterogeneity is a
decreasing function of L. When L R ‘, the GPA model becomes
manifestly identical to the homogeneous popularity 3 similarity
(PS) model36, where the angular coordinate ht of a new node t is
sampled uniformly at random on [0, 2p]. Note, however, that in
GPA, choosing a position in the similarity space is an active decision
made by a node based on the attractiveness of different locations, as
opposed to ‘‘passive’’ uniform randomness in PS. In standard PA,
the initial attractiveness term is used to control the exponent of
the power-law degree distribution7,8. In what follows we show
that in GPA, L controls certain properties of the community size
distribution.

Figure 2 shows the simulation results for networks of size n5 103

generated by theGPAmodel withm5 3 (i.e. each newnode connects
to the three hyperbolically closest nodes), b 5 2/3, and different
values of L. As expected, the smaller the value of L, the more
heterogeneous the distribution of angular coordinates. To quantify
the difference between the empirical distribution of the angular
coordinates and the uniform distribution on [0, 2p], we use the
Kolmogorov-Smirnov (KS) statistic, one of the standard distances
that measures the difference between two probability distributions.
Recall that the KS statistic r is defined as the maximum difference

between the values of the empirical distribution F̂n(h) of the sample
h1,...,hn and the uniform distribution FU[0,2p](h) 5 h/2p,

r~ max
h[½0,2p�

F̂n(h){
h

2p

����

���� ð2Þ

The KS statistic as a function of L is shown in the bottom panel of
Fig. 2. As expected, r(L) is a decreasing function of L.

Degree Distribution. For each of the three networks depicted in
Fig. 2, the statistical procedure for quantifying power-law behavior

Figure 2 | GPA networks. Synthetic networks of size n5 103 generated according to the GPAmodel withm5 3, b5 2/3, andL5 0.1 (first row),L5 1

(second row), andL5 10 (third row). The right column shows the corresponding histograms of the angular nodes densities. The bottom panel plots the

expected KS statistic r (2), as a function of L. For each value of L, r(L) is computed by averaging the KS statistics for 100 independently generated

networks.

www.nature.com/scientificreports
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in empirical data proposed in Ref. 44 accepts the hypothesis that the
network is scale-free. It estimates the lower cutoff for the scaling
region as kmin 5 3, which is consistent with the minimum degree
in the networksm5 3. Figure 3(a) shows a doubly logarithmic plot of
the empirical degree distributions P(k) , k2c along with the fitted
power-law with exponent c 5 2.5.
These empirical results show that the degree distribution of a

network generated by GPA appears to be a power-law. Moreover,
quite unexpectedly, the power-law exponent c remains similar for
different values of L. These results can be proved analytically (see
Methods for details). Remarkably, for any value ofL, the GPAmodel
produces scale-free networks with the power-law degree distribution
identical to the degree distribution in networks growing according to
PA, and having power-law exponent c 5 1 1 1/b.

Clustering Coefficient. The concept of clustering45 quantifies the
tendency to form cliques (complete subgraphs) in the neighborhood
of a given node. Specifically, the local clustering coefficient of node s is
defined as the probability that two nodes s9 and s0, adjacent to s, are
also connected to each other. Figure 3(b) shows the average value of
the clustering coefficient �c(k) for nodes of degree k as a function of
k for the three networks in Fig. 2. Interestingly, clustering does
not depend on L either (a proof is in the Methods), and scales
approximately as k21. This means that, on average, the nodes with
higher degree have lower clustering, which is consistent with empirical
observations of clustering in real complex networks11,46. For all the
three PGA networks, the mean clustering (the average of the local
clustering coefficients) is high, �c~0:88.

Soft Communities. The hyperbolic space underlying a network and
the GPA mechanism of node appearance in that space naturally
induce community structure and allow to detect communities in a
very intuitive and simple way. A higher density of links within a
community indicates that its nodes are more similar to each other
than to the other nodes, because links connect only nodes located
within a certain similarity distance threshold. All such densely linked
nodes are thus close to each other in some area of the similarity space,
meaning that the spatial node density is high in this area. Therefore a
community becomes a cluster of spatially close nodes, and the
community structure is encoded in a non-uniform distribution of
angular (similarity) coordinates of nodes.
Following the approach in Ref. 47, let us consider the angular gaps

Dh between consecutive nodes, and define a soft community as a
group of nodes separated from the rest of the network by two gaps
that exceed a certain critical value Dhc. If a network has a total
number of nnodes, then the critical gapDhc is defined as the expected
value of the largest gap Dh(n) 5 max{Dh1,...,Dhn}, where h1,...,hn are
distributed uniformly at randomon [0, 2p]. The rationale behind this
definition is that if nodes are distributed uniformly in the similarity
space, and there are no communities, then we do not expect to find
any pair of nodes separated by a gap larger than this Dhc. The calcu-
lations in the Methods show that the critical gap is approximately

Dhc~
2p ln n

n
: ð3Þ

Figure 4 shows the statistics of the rescaled gaps Dh/Dhc for three
GPA-generated networks of size n5 104 with L5 0.1,1, and 10. In
the top panel, we can see the organization of nodes on the circle with
many consecutive small gaps (Dhi , Dhc) indicating groups of sim-
ilar nodes (communities) separated by large gaps (Dhi. Dhc) which
constitute boundaries between communities, so-called ‘‘fault lines’’9.
As expected, smaller values of L result into more heterogeneous
distribution of gaps with strong long range correlations. This effect
is clearly visible in the bottom panel, where the sample autocorrela-
tion function is shown: the smaller theL, the slower the autocorrela-
tion decays.
Having a geometric interpretation of the community structure, it

is now easy to quantity how well communities are separated from
each other. For each community C, we define its separation from the
rest of the network S Cð Þ as the rescaled average of two gaps Dh1,Dh2
. Dhc that separate C from its neighboring communities,

S Cð Þ~
Dh1zDh2

2Dhc
ð4Þ

The mean community separation, i.e. the expected separation of a
community that a randomly chosen node belongs to, can then be
computed as follows:

�S~
Xnc

i~1

ni

n
S(Ci), ð5Þ

where ni is the size of community Ci and nc is total number of

communities. The network metric �S can also be viewed as a measure
of narrowness (or specialization) of communities. For example, in
scientific collaboration network, where nodes represent scientists
and communities correspond to groups with similar research inter-

ests, �S quantifies the degree of interdisciplinarity in the network.

When �S is large, the boundaries between communities are sharp
and each community focuses on its narrow, specific topic. On the

other hand, if �S is close to one, then the boundaries are blur, com-
munities are wide spread, and the network is highly interdisciplinary.
The difference in the stochastic behavior of the rescaled gaps in

Fig. 4 suggests that the initial attractiveness L controls the mean

community separation �S in the GPA-generated networks. This is

Figure 3 | Degree distribution and clustering. Panel (a) shows the
empirical complementary cumulative degree distribution functions

(CCDF) Pc(k) 5 Sk95kP(k9) for the networks shown in Fig. 2 versus the

corresponding power-law fit. The average clustering coefficient �c(k) as a

function of node degree k for these networks is shown in panel (b). The

mean clustering �c~0:88 for all networks.

www.nature.com/scientificreports
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confirmed by simulation results shown in Fig. 5(c), where �S is shown

as a function of L. As expected, �S(L) is a monotonically decreasing
function, approaching one when L is large.

The Internet. To demonstrate the ability of the GPA mechanism to
generate graphs that are similar to real networks, and, in particular,
to reproduce real non-uniform distributions of similarity node
coordinates, we consider the Autonomous Systems (AS) Internet
topology48 of December 2009. The network consists of N 5 25910
nodes, ASs, and M 5 63435 links that represent logical relationships
between ASs. We embed the AS Internet into its hyperbolic space, i.
e compute the popularity and similarity coordinates {ri,hi}, using
HyperMap43, an efficient network mapping algorithm that estimates
the latent hyperbolic coordinates of nodes. The network topology has
a power-law degree distribution with c5 2.1 and average node degree
�k<5. This automatically determines two out of three parameters of

the GPA model: m~�k=2 and b5 1/(c2 1). In Methods, we explain
how to infer the value of L from network data using the maximum
likelihood method. Here we consider the snapshot of the AS Internet
based on the first n 5 103 nodes. The corresponding estimated value
of the initial attractiveness is LInt 5 0.7.
Figure 5(a) shows the histogram of the angular node density for

the AS Internet snapshot. We note that it is far from uniform, which
is a direct indication of the presence of soft communities. We quant-
ify the degree of heterogeneity of the angular density by the KS
distance from the uniform distribution (2) and juxtapose it against
the KS distances computed for networks generated by the GPA
model with L 5 0.7 (Fig. 5(b)). The Internet value lies within the
25th and 75th percentiles of the synthetic values, which shows that
the degrees of non-uniformity in the Internet and GPA networks are
comparable. Fig. 5(c) compares the real network with its synthetic
counterpart in terms of the expected mean community separation

(5). The GPA mechanism generates networks with �S that match the
Internet value very well. In Fig. 5(d), we compare the community size
distributions in the Internet snapshot and prediction given by the

GPA model. Whereas �S for the Internet and GPA networks
are essentially identical, the KS statistics and community size

distributions are similar, but the match is not perfect. This effect is
explained by the systematic bias present in the inferred values of the
angular coordinates {hi}. Indeed, the HyperMap method first
assumes that all angular coordinates are uniformly distributed over

the similarity space S1, i.e. L5 ‘, and then perturbs them to max-
imize a certain likelihood function. This ‘‘smoothes’’ the inferred
angular node density and makes it more homogeneous than the true
distribution. Nevertheless, although the inferred value ofL is only an
approximation for the true value, the GPA model still captures well
the degree of heterogeneity in the real network.
Finally we note that GPA defined in Eq. (1) admits an interesting

interpretation that suggests a model extension that may be useful for
real network analysis. The probability of a new node born at time t to
chose the angular position Qi can be written as

Pt(Qi)~pf
At(Qi)Pt
j~1 At(Qj)

z(1{pf )
1

t
, ð6Þ

where

pf~
hAti

hAtizL
and hAti~

1

t

Xt

j~1

At(Qj): ð7Þ

Therefore the event of choosing a position on the circle can be
understood as follows. With probability pf the new node is a follower
and chooses its position according to pure GPA (L 5 0). With the
remaining probability 12 pf the new node chooses its position uni-
formly at random among the t available positions. We note that L
controls pf, since hAti < 1. When L is constant, pf is also constant,
and consequently there is always a fraction of nodes that are placed at
random locations. At long times, these random nodes diminish the
effect of pure GPA, and eventually the angular distribution of nodes
become indistinguishable from a Poisson point process on the circle.
We can then wonder whether a constant value of L is a realistic
assumption for dealing with real networks. In scientific citation net-
works, for example, when a new field of science is being formed, and
notmuch work has yet been done in it, scientists may decide either to
explore a new line of research within the field, or to follow one of the

Figure 4 | Statistics of the rescaled gaps. Top panel shows the values of rescaled gaps Dh/Dhc for three networks of size n 5 104 generated by the GPA

model withL5 0.1 (left),L5 1 (middle), andL5 10 (right). The bottom panel shows the sample autocorrelation function of the series in the top panel.

www.nature.com/scientificreports
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mainstream existing lines. The former case can be modeled by a
random choice of the angular position, assuming that subfields are
homogeneously distributed. The latter is modeled by the pure GPA
term in Eq. (6). However, there is a payoff that does not remain
constant during the evolution of the field. At early times, the chances
to find an interesting result that would be highly cited and followed
by others are very high. At late times, the topic space is crowded and
the chances to find something fundamentally new are very slim.
Therefore, there is a higher incentive for scientists to take higher
risks at early times. This can be modeled by pf increasing with time,
converging to a value close to 1 as time grows to infinity. In turn, this
means thatL is a decreasing function of time, having a large value at
the beginning of network evolution, and decreasing to small values
afterwards.
Unfortunately, measuring the temporal evolution of L in a real

network is not yet possible because there currently exists no

parametric theory describing such evolution that could be used for
statistical inference ofL. However, it is fairly easy to find an approx-
imate value of L as a function of time as follows. If timestamps of a
real complex network are available, we can pretend that L is con-
stant, and infer its value using the MLE techniques described in the
Methods for subgraphs made of nodes that were born before a given

time t, bLMLE(t). This value can be thought of as a (possibly weighted)
average of L(t) in time window (0,t). By increasing the value of t, we

can detect whether L is constant (if bLMLE(t) does not change with
time, beyond statistical fluctuations), or a decreasing function of

time. Figure 5(e) shows bLMLE(t) for the AS Internet where the strong
temporal dependence of L is evident.

Discussion
In summary, hyperbolic network geometry, combining popularity
and similarity forces driving network evolution, and coupled with
preferential attachment of nodes to this geometry (GPA), naturally
yields scale-free, strongly clustered growing networks with emergent
soft community structure. The GPAmodel has three parameters that
can be readily inferred from network data. Using the AS Internet
topology as example, we have seen that the GPA mechanism gener-
ates heterogeneous networks that are similar to real networks with
respect to key properties, including key aspects of the community
size distribution and separation. The mean community separation, a
new metric that quantifies the narrowness of communities in a net-
work, is controlled in GPA by initial attractivenessL, which controls
the power-law exponent in standard PA.
In the context of the asymptotic equivalence between de Sitter

causal sets and popularity 3 similarity (PS) hyperbolic networks
established in Ref. 49, we note that L is conceptually similar to the
cosmological constant L in Einstein’s equations in general relativity
(GR), where it is also an additive term in the proportionality between
the energy-momentum tensor and spacetime curvature. Causal
sets50,51 are random graphs obtained by Poisson sprinkling a collec-
tion of nodes onto (a patch) of a Lorentzian manifold; edges in these
graphs connect all timelike-separated pairs of nodes. If there is no
matter (empty spacetime) but there is only dark energy (positive L),
then the solution of Einstein’s equations is the de Sitter spacetime,
and themain theorem in Ref. 49 states that the ensemble of PS graphs
is asymptotically (n R ‘) identical to an ensemble of causal sets
sprinkled onto de Sitter spacetime, which is one of the three max-
imally symmetric, homogeneous and isotropic Lorentzian manifolds
(the other two are Minkowski and anti-de Sitter spacetimes). In this
context, the GPA model considered here is a model with cosmolog-
ical constant L and matter. Modeled by high node density, this
matter, as in GR, ‘‘attracts more matter’’, thus increasing the space-
time curvature of which the node density is a proxy. Indeed the main
feature of themodel is that the higher the node density in a particular
region of space, the more nodes will appear in this region later. The
main difference with GR is that here we essentially have an analogy
with only the 00-component of Einstein’s equations. One can envi-
sion that other components should describe the coupled dynamics of
the similarity space and nodes in it. In case of scientific collaboration
network, for example, that would be the co-evolution of science
(space) itself, and interests of scientists (node dynamics in this
space). In the model considered here nodes do not move. Finding
the laws of their spatial dynamics that may further strengthen the
analogy with general relativity is a promising but challenging
research direction.
In that context, the decay of initial attractiveness L that we found

in the Internet must be analogous to the decay of cosmological con-
stant L in modern cosmological theories. Cosmic inflation52,53 is
widely accepted as the most plausible resolution of many problems
with the classical big bang theory, including the flatness problem, the
horizon problem, and the magnetic-monopole problem. Inflation is

Figure 5 | AS Internet vs GPA networks. Panel (a) shows the histogram of

the angular (similarity) coordinates {hi} for the snapshot of the AS Internet

consisting of the first n5 103 nodes. All {hi} are inferred by HyperMap43.

Panel (b) compares theKS statistics for the Internet and synthetic networks

generated by the GPA model (box plot) with c 5 2.1 and L 5 0.7. The

central red mark is the median, the blue horizontal edges of the box are the

25th and 75th percentiles, the black whiskers extend to the most extreme

data points not considered outliers. The box plot is obtained from 100

independent generated networks. Panel (c) shows the perfect match

between real and synthetic values of the mean community separation (5).

Error bars represent plus and minus one standard deviation. Panel

(d) juxtaposes the empirical CCDF of the soft community sizes in the

Internet against CCDFs obtained for the three GPA-generated networks.

Panel (e) shows the temporal evolution of the maximum likelihood

estimate bLMLE(t) for the AS Internet, where the node birth times are their

ranks in the decreasing degree order. The yellow star corresponds to the

considered snapshot with n 5 103 nodes and bLMLE~0:7.

www.nature.com/scientificreports
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an initial period of accelerated expansion of the universe during
which gravity was repulsive. Inflation does not last long, and can
be modeled as a time dependent cosmological ‘‘constant’’ L that
initially has a high value and then decays to zero. The analogies
between GPA with decaying L and inflation go even further, pro-
ducing similar outcomes as far as the spatial distribution of events is
concerned. Indeed, cosmic inflation has the effect of smoothing out
inhomogeneities so that once inflation is over, the universe is nearly
flat, isotropic, and homogeneous, except for quantum fluctuations of
the inflaton field. These fluctuations are the seeds of future inhomo-
geneities that we observe in the universe at scales smaller than
100 Mpc. In the GPA context, a high value of L has also a homo-
genizing effect. Indeed, if L is large, then pf is small, and new nodes
chose their angular positions at random, producing a Poisson point
process on the circle. Once L is small enough, we are left with a
random distribution of points with Poisson fluctuations that, as in
the universe, are the seeds of future communities in the network
(galaxies in the universe), because once L is nearly zero, these initial
fluctuations are reinforced by pure preferential attachment.

Methods
Invariance of the degree distribution and clustering.Here we prove that the degree
distribution and clustering coefficient in the networks generated by the GPA model
do not depend of the initial attractiveness L. Moreover, the degree distribution is
power-law with exponent c5 11 1/b. The proof can be reduced to the proof for the
homogeneous PS model36 (Supplementary Information, Section IV). Consider a new
node t, and let Rt be the radius of a hyperbolic disk centered at this node such that t is
connected to all nodes s , t that lie in this disc. Then the probability PGPA(s,t) that
nodes t and s , t in the GPA model are connected can be computed as follows:

PGPA(s,t)~P(xstƒRt)~P hstƒ2e{
rs (t)zrt{Rt

2

� �
, ð8Þ

where xst~rs(t)zrtz2ln
hst

2
is the hyperbolic distance between nodes s 5 (rs(t),hs)

and t 5 (rt,ht) at time t. Using the total probability theorem,

PGPA(s,t)~
Xt

i~1

P hstƒ2e{
rs (t)zrt{Rt

2

���t~t̂i

� �
P(t~t̂i)

~

Xt

i~1

P hŝtiƒ2e{
rs (t)zrt{Rt

2

� �
Pt(i),

ð9Þ

where t̂i are the candidate positions generated at Step 1(a), and Pt(i) are the
corresponding acceptance probabilities (1). Applying the total probability theorem
with respect to node s, we have:

PGPA(s,t)~
Xt

i~1

Xs

j~1

P hŝtiƒ2e{
rs (t)zrt{Rt

2

���s~ŝj

� �
P(s~ŝj)Pt(i)

~

Xt

i~1

Xs

j~1

P hŝj t̂iƒ2e{
rs (t)zrt{Rt

2

� �
Ps(j)Pt(i)

ð10Þ

Since the angular coordinates of the candidate positions ŝj and t̂i are uniformly

distributed on [0, 2p], the probability P(hŝj t̂iƒa) is simply a/p. Therefore,

PGPA(s,t)~
2

p
e{

rs (t)zrt{Rt
2

Xt

i~1

Pt(i)
Xs

j~1

Ps(j)~
2

p
e{

rs (t)zrt{Rt
2 , ð11Þ

where the last equality holds because
Xt

i~1
Pt(i)~

Xs

j~1
Ps(j)~1. We note that

PGPA(s,t) does not depend on L, and that it is exactly the same as the probability
PPS(s,t) of having a link between nodes t and s, t in the homogeneous PSmodel. The
rest of the proof repeats the proof in Ref. 36 without a change. This leads to

PGPA(s,t)~PPS(s,t)~PPA(s,t)~m
s
t

� �
{b

Ð t
1

s
t

� �
{b

ds
, ð12Þ

which means that the resulting degree distribution in GPA is identical to PA: it is the
power-law with exponent c 5 1 1 1/b. Since the connection probability PGPA(s,t)
does not depend on L, neither does clustering.

Critical gap. To obtain a closed-form expression for the critical gap, we note that for
large n, the sequence h1,...,hn,U[0,2p] can be approximately viewed as a realization
of the Poisson point process on the circle of unit radius with density l 5 n/2p.
In this case, the distribution of the angular gaps is approximately exponential
with rate l. The maximum gap Dh(n) has then the following PDF fDh(n) (x)~

n2

2p
e{

n
2px 1{e{

n
2px

� �n{1
, and its expected value can be calculated as follows:

Dhc~
n2

2p

ð
?

0

xe{
n
2px 1{e{

n
2px

� �n{1
dx~{2p

ð1

0

yn{1 ln (1{y)dy

~2p

ð1

0

yn{1
X?

k~1

yk

k
dy~2p

X?

k~1

1

k(nzk)
~

2pHn

n
<

2p( ln nzc)

n
<

2p ln n

n
,

ð13Þ

where Hn is the n
th harmonic number, and c is Euler’s constant.

Inference of L. The initial attractiveness L controls the distribution of angular
coordinates h1,...,hn of the nodes. We therefore first infer hi using the HyperMap
method43. Given the network embedding f(ri,hi)g

n
i~1 into its hyperbolic space, the

likelihood function L(Ljh1, . . . ,hn) can be written as follows:

L(Ljh1, . . . ,hn)~P(h1, . . . ,hnjL)~P(h1jL)P(h2jL,h1) . . .P(hnjL,h1, . . . ,hn{1)

!

ð2p

0

(A2(h2)zL)dQ1
A2(h2)zA2(Q1)z2L

| . . .|

ð2p

0

. . .

ð2p

0

(An(hn)zL)dQ1 . . . dQn{1

An(hn)z
Pn{1

i~1 An(Qi)znL
, ð14Þ

where At(Q) is the attractiveness of location Q [ S
1 , that is the number of existing

nodes at time (t2 1) that lie within distance rt from (rt,Q). The log-likelihood is then
(up to an additive constant):

l(Ljh1, . . . ,hn)~
Xn

t~2

log

ð2p

0

. . .

ð2p

0

At(ht)zL

At(ht)z
Pt{1

i~1 At(Qi)ztL
dQ1 . . . dQt{1 ð15Þ

The multiple integrals in (15) cannot be calculated analytically, since the
attractiveness function cannot be written in closed-form. Nevertheless, the log-
likelihood can be efficiently estimated be the Monte Carlo method. First, generate N

Monte Carlo samples, Q
(j)
1 , . . . ,Q

(j)
n{1*U½0,2p�, j 5 1,...,N. The ‘‘truncated’’ samples

Q
(j)
1 , . . . ,Q

(j)
t{1 will be used for estimating the (t 2 1)-dimensional integral in (15).

Next, precompute all needed attractivenesses, At(Q
(j)
i ), where t 5 2,...n and

i5 1,...,t2 1. Then for each value ofL, the log-likelihood can be estimated as follows
(up to a constant):

l(Ljh1, . . . ,hn)<
Xn

t~2

log
1

N

XN

j~1

At(ht)zL

At(ht)z
Pt{1

i~1 At(Q
(j)
i )ztL

 !
ð16Þ

Computing attractivenesses of the Monte Carlo samples At(Q
(j)
i ) involves com-

putingO(n3N) hyperbolic distances, which is themost computationally intensive part
of the algorithm. Having all attractivenesses computed, we can then estimate l(L) for

any L[ 0 : DL : Lmax½ �, and find the maximum likelihood estimate (MLE) bLMLE . An
important observation that drastically improves the efficiency of the algorithm is that

we do not have to use the entire network to accurately estimate bLMLE, the first n0=n

nodes are often enough. Table 1 shows the MLEs bLMLE(n0) obtained from the first n0
5 100,200,500, and 1000 nodes of the networks generated by the GPA model with L

5 0,0.2,0.5,0.7,1, and 2. The corresponding log-likelihood functions are shown in
Fig. 6. These simulation results show that the smaller the true value of L — and
we expect it to be small in real networks since most of them have community

Table 1 | Maximum likelihood estimates. True values of the initial attractiveness parameter L and its MLEs bLMLE(n0) based on the first n05
100,200,500, and 1000 nodes. In all simulations, N 5 100 Monte Carlo samples were used in (16)

True L 0 0.2 0.5 0.7 1 2

bLMLE(100) 0 0.3 0.4 0.7 0.7 1.4

bLMLE(200) 0 0.2 0.5 0.8 1.3 1.8

bLMLE(500) 0 0.2 0.6 0.7 1.1 1.9

bLMLE(1000) 0 0.2 0.5 0.7 1.1 1.8
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structure— the less network data we need to pin bLMLE down. If, for example, L5 0,
then the MLE of L based on the first n0 5 100 nodes is already zero. The larger the
true value ofL, however, the flatter the log-likelihood is around its maximum, which
makes inference more challenging.
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12. Jeong, H., Néda, Z. & Barabási, A.-L. Measuring preferential attachment in
evolving networks. Europhys. Lett. 61, 567–572 (2003).

13. Pollner, P., Palla, G. & Vicsek, T. Preferential attachment of communities: the
same principle, but a higher level. Europhys. Lett. 73, 478–484 (2006).

14. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks.
Nature 393, 440–442 (1998).

15. Girvan, M. & Newman, M. E. J. Community structure in social and biological
networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002).

16. Bollobás, B. & Riordan, O. M. Mathematical results on scale-free random graphs.
In Bornholdt, S. & Schuster, H. G. (ed.) Handbook of Graphs and Networks, 1–34
(Wiley-VCH, Berlin, 2003).

17. Fortunato, S. Community detection in graphs. Phys. Rep. 486, 75–174 (2010).
18. Dorogovtsev, S. N., Mendes, J. F. F. & Samukhin, A. N. Generic scale of the ‘‘scale-

free’’ growing networks. Phys. Rev. E 63, 062101 (2001).
19. Klemm, K. & Eguíluz, V. Highly clustered scale-free networks. Phys. Rev. E 65,

036123 (2002).

20. Vázquez, A. Growing network with local rules: preferential attachment, clustering
hierarchy, and degree correlations. Phys. Rev. E 67, 056104 (2003).

21. Jackson, M. O. & Rogers, B. W. Meeting strangers and friends of friends: How
random are social networks?’ Am. Econ. Rev. 97(3), 890–915 (2007).

22. Eckmann, J.-P. &Moses, E. Curvature of co-links uncovers hidden thematic layers
in the World Wide Web. Proc. Natl. Acad. Sci. USA 99, 5825–5829 (2002).

23. Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N. & Barabási, A.-L.
Hierarchical organization of modularity in metabolic networks. Science 297,
1551–1555 (2002).

24. Holme, P., Huss,M. & Jeong, H. Subnetwork hierarchies of biochemical pathways.
Bioinformatics 19, 532–538 (2003).

25. Boss, M., Elsinger, H., Summer, M. & Thurner, S. Network topology of the
interbank market. Quantitative Finance 4, 677–684 (2004).
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