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Synchronization is a collective phenomenon occurring in systems of interacting units, and is ubiquitous in
nature, society and technology. Recent studies have enlightened the important role played by the interaction
topology on the emergence of synchronized states. However, most of these studies neglect that real world
systems change their interaction patterns in time. Here, we analyze synchronization features in networks in
which structural and dynamical features co-evolve. The feedback of the node dynamics on the interaction
pattern is ruled by the competition of two mechanisms: homophily (reinforcing those interactions with
other correlated units in the graph) and homeostasis (preserving the value of the input strength received by
each unit). The competition between these two adaptive principles leads to the emergence of key structural
properties observed in real world networks, such as modular and scale-free structures, together with a
striking enhancement of local synchronization in systems with no global order.

n a synchronized state, the units of a system are in the same (or similar) dynamical states at every time" 2. The

interest of scientists in understanding the relationship between the emergence of such a collective behavior and

the physical mechanisms governing the transfer and processing of information in a system of networking
units, motivated the first studies of synchronization in oscillator networks with complex topologies™*. Since then,
synchronization phenomena and complex networks have been extensively studied hand in hand, highlighting the
crucial role of the network topology in the emergence and stability of the synchronous motion® . For instance, it
has been found that synchronization can emerge more easily in networks with highly heterogeneous degree
distribution, due to the presence of nodes sharing a large number of connections (the hubs) that may act as
pacemakers for the rest of the oscillators™'* *. On the other hand, the presence of hubs reduces considerably the
stability of fully synchronized states". In addition to this, since densely interconnected sets of oscillators syn-
chronize more easily than those with sparse connections'® ", the analysis of synchronization has also been used as
a tool to detect the presence of modules at different topological scales® ' *°.

All the works mentioned above consider synchronization on static complex networks. However, fixed inter-
action patterns turn out to be inadequate for the description of many real-world networks, which are intrinsically
time-varying®*->*. More importantly, the stationary hypothesis must be abandoned when modeling the situations
where the very same network topology emerges as a result of the dynamical interaction between its constituents.
For these reasons, the interest has moved to adaptive networks™, i.e., to graphs where topology co-evolves with the
dynamical process taking place on top of them, thus creating a feedback loop between structure and dynamics.

Such an interplay between structure and dynamics is a rather general principle that spans different contexts,
ranging from interpersonal relationships in society to neuronal networks in the brain. In these two latter settings,
the ties between connected elements are known to be strongly favored by the similarity of their dynamical states,
the latter being described as individual opinions or firing rates. This similarity-driven interaction principle is
nowadays widely accepted in both sociology and neuroscience under the terms of homophily>> and Hebbian
learning®, respectively. The homophily principle is, for instance, at the core of the internal mechanisms governing
the transfer and processing of information at the level of individual and, at higher scales, it plays a leading
role in the development of cultural consensus® in society and cognitive tasks in the brain*®. In both cases, the

| 1:99 | DOI: 10.1038/5rep00099 1



latter macroscopic behaviors can be described as the emergence
of a synchronized state in which individuals start to behave in a
coherent way.

Models considering the effects of synchronization on the structure
of a network have been recently proposed®*~*>. In these works, the ties
between units (or groups of them) strengthen as their dynamical
states become more and more similar. However, in order to describe
the structure and dynamics of real systems, such as social or neural
ones, we need to add a further constraint to the reinforcing mech-
anism acting on each single link. In fact, it is reasonable to introduce
the effects of homeostasis, i.e. a competition mechanism by which the
enhancement of some connection from a node is counter-balanced
by the weakening of other connections of the same node to the
network. In practice, this second ingredient considers that the avail-
able resources devoted to sustain interactions, i.e. the local wiring
around each node of the network, are finite. Once again, this com-
petition mechanism is observed in real social and neural systems. In
the former case, the time invested for establishing social relationships
is always limited, thus imposing a careful choice of the acquaintances.
Moreover, the value of the number of social relationships that a
person is able to sustain in a stable way is widely known as
Dunbar’s number®. On the other hand, in neural systems, competi-
tion appears in combination with Hebbian learning in the develop-
ment of nerve connections as an essential ingredient of their
physiological plasticity™* **.

We here introduce a simple model of an adaptive network of phase
oscillators, in which both mechanisms of homophily and homeosta-
sis are taken into account. The dynamics of the oscillators is regulated
by the Kuramoto model®* *” which is a paradigmatic framework for
the study of synchronization processes in many systems** *. We
show that the feedback mechanism provided by the combination
of homophily and homeostasis leads to the emergence of structural
and dynamical features observed in many real systems, such as scale-
free distribution of interaction weights, strong modularity, and a
striking enhancement of local synchronization in the absence of
global dynamic order.

We consider a weighted and directed network of N coupled phase-

oscillators, where the phase of the i-th unit (i = 1, ..., N) is denoted by
0,(1), and evolves in time according to:
N

j=1

where ; stands for the natural frequency of i, 4 is the coupling
constant and W;; = Wj(t) are non-negative quantities representing
the strength at tlme t of the links pomtlng from nodes j to i. The
specific case in which the weights W;; are the same for all pairs of
nodes i and j, and do not depend on time, was introduced by
Kuramoto as a simple model to describe how a synchronized state
(a state in which 0i(t) = 0;(f) Vi, j and Vt) emerges in a system of
interacting dynamical unlts for large enough values of 1°¢*>*'.,

In our model, the weights of the interactions Wj;(¢) in equation (1)
co-evolve with the system dynamics as:

Wi (1) = Wi(t) [S: p; (1) ZW:l pat } (2)

=1

where s; is the total incoming strength of node i, s; = Z _1 Wy, and
P I(t) is the degree of local synchronization between oscillators i and

j» averaged over time in the interval [t — T, f]'> '

ot
lJ (il -
T)ir

In the above equations, T'is a control parameter that quantifies the
amount of memory used by each oscillator in the updating process,
and the quantities pg(t) take values in [0, 1], with plg (t)=1 meaning

Ph(t)= "lde 3)

that oscillators i and j have been perfectly synchronized along the last
T time units.

The adaptive scheme in equation (2) has the form of the replicator
equation of evolutionary dynamics** and is inspired to the need of
retaining the main characteristics of both homophily and homeosta-
sis. The inputs j which in the last T time units have been highly
synchronized with the target node i (p;; > >~ Wapir), will enhance
their strength, according to homophily. On the other hand, as a
consequence of homeostasis, the weights of the remaining inputs
(those with p;; < >~ Wapi) will be depressed to keep constant the
total incoming strength, s;, of oscillator i, that is initially set equal to
s; = 1Vi. In this way, b homeostasis naturally arises from equation (2)
by checking §;= Z _, W;j=0. As a consequence, all the links
pointing to the same Coscillator compete for the available resources.

Results

In the top panels of Fig. 1 we report the typical time-evolution of the
order parameter r for different values of the two control parameters A
and T. For t < 0, we integrated numerically equation (1) on a homo-
geneous network in which all the nodes have k neighbors, and the
weights W;; do not change in time and are fixed to 1/k for all links.
Then, for t = 0 we considered the full dynamics of the adaptive model
by switching on the weights’ evolution governed by equation (2).
When the weights co-evolve with the oscillators” dynamics, a clear
enhancement of synchronization is observed for any values of 4
and T. However, in some cases, as in those panels corresponding
to 4 = 0.50 and 0.65, the order parameter r exhibits quasi-periodic
oscillations in time.

The different phases of the oscillators’ dynamics in the 4 — T plane
are characterized by the contour-plots in Fig. 1. The diagrams report
the values of the degree of global, r (left), and local, 7y, (right),
synchrony obtained in the stationary state of the dynamics (see the
Methods section). By looking at the contour-plot of the global order
parameter, r, we can identify three different dynamical regimes,
whose boundaries are highlighted by dashed curves. In particular,
going from small to large values of 4 we move from an incoherent
phase (phase I) to a totally synchronized region (phase III), passing
by a partially ordered phase (phase II). On the other hand, the con-
tourplot of 7y, describes the local degree of synchronization within
the network. When the system is ordered at a global scale, both
partially or totally, it also attains a perfect local synchronization.
Conversely, different areas in the region of global incoherence corre-
spond to different local regimes. We will now discuss in detail each of
the three phases.

We start from phase III which, as shown in the contour plots of
Fig. 1, appears for relatively large values of the coupling strength 4. In
this phase the dynamics of the system ends up in a perfectly syn-
chronized state (r~ 1), and the resulting network is very similar to
the initial network i.e., a regular structure in which all the links share
roughly the same value of the weights. This result indicates that, for
values of / close to the critical point of the non-adaptive network, the
adaptive system simply needs a weak reorganization of the weights to
achieve full synchrony. However, this perfect synchronization is dif-
ferent from what observed in real scenarios: full opinion consensus
and complete neural synchronization are quite unusual in social and
neural settings. Therefore, in the remainder of this paper we will
rather focus in describing the emergent behavior in the dynamical
regimes where a local synchronization appears while a perfect global
dynamical order is absent, i.e. in phases I and II of the parameter
space.

We turn first our attention to phase II. Here, the system exhibits
partial global order, with a value of (t) oscillating in time, together
with an almost perfect local degree of synchronization. In Fig. 2 (a)
we report a typical case in which the order parameter r(f) behaves
harmonically. A careful analysis of the network structure points out
that, as an effect of the adaptive dynamics, a large fraction of the links
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Figure 1| Time evolution of the global order parameter and phase diagrams. In the top panels the time evolution of the Kuramoto order parameter ris

reported for T=

100, 130 and A = 0.15, 0.50, 0.65. The dynamics of the oscillators is initially implemented on a fixed network, while for # > 0 the weights

evolve according to equation (2). We observe that the network behavior leads to an enhancement of the order parameter for each value of 2 and T. We also
notice the quasi-periodic behavior of r(#) for the top panels corresponding to 2 = 0.50 and 0.65. The two contour-plots in the bottom panels report,

respectively, the average value of r (left) and 7y, (right) in the stationary state of the system as a function of Z and T. Three different dynamical regimes,
whose boundaries are highlighted by dashed lines, clearly emerge from the contour-plot of rand ;... From left to right, they correspond respectively to an
incoherent (phase I), a partially ordered (phase II) and a totally synchronized region (phase III). In particular, the oscillatory evolution of r(f) shown in the

top panels corresponds to phase II.

have been suppressed, i.e. are left with a weight which is practically
zero. This behavior is very different from what we have observed
found in phase ITI, where all the links survive, slightly modifying their
original weights. Here the network splits into two clusters, practically
two separate components, which are clearly visualized by plotting the
weight matrix, after an opportune relabeling of the nodes. Each of the
two components displays a large degree of internal synchrony. In
fact, if we evaluate r(t) separately for each of the two clusters, we find
in both cases a value of r which is close to 1 and constant in time.
Hence, the clusters can be regarded as two almost non-interacting
oscillators with different natural frequencies w;, ®,. The interference
between such frequencies produces the harmonic behavior of r(f)
with frequency Q;, = ®; — ;. In Fig. 2 (b) we also report a case
in which the network splits into three components, each one exhi-
biting an almost perfect degree of internal synchronization. Again,
the modules can be regarded as three independent oscillators with
natural frequencies w;, ®,, w3 and, as expected, the order parameter
r(t) of the whole network oscillates periodically with leading fre-
quencies QI,Z = W) — Wy 91)3 = w; — W3 and 92)3 = Wy — Ws.
The spontaneous break up of the initial network into separate

components is the typical situation we have found for all values of
Aand T'in phase II. However, the partitions can be far more complex
than the two cases described above, and multiple components of
different sizes can coexist in the asymptotic network state.
Moreover, we have also observed that a further community structure
may appear inside one of the components of the network (as we
will later show in Fig. 3) pointing out a highly nontrivial modular
structure.

To better characterize the modularity of the networks produced,
we have computed the modular cohesion, MC, of the resulting par-
tition (see the Methods section). As shown in Fig. 2 (c), the MC takes
its maximal value, MC = 1, in phase II, indicating a partition of the
network into separated frequency components. Notice that the value
of MC remains rather large also in phase I, where the network still
displays a modular structure, while some weak links connecting
different modules appear, thus making the overall network con-
nected. The appearance of different connected modules in phase I
reveals the emergence of meso-scale features from the dynamical
reorganization of the weights. Modular structures frequently appear
in large social and neural systems. In particular, in the brain of
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Figure 2 | Emergence of cluster structures in the partially ordered phase II. (A) For 2 = 0.5 and T = 150, the network splits into two components of
similar size, while the global order parameter r oscillates harmonically in time. However, if 7(f) is evaluated separately for the two clusters, a stationary
value close to 1 is found in both cases. (B) For 2 = 0.5 and T = 180, the network splits into three components and the global order parameter displays a
periodic behavior with three frequencies. Again, each component has an almost perfect degree of internal synchronization. The contour-plot in panel (C)
reports the value of the modular cohesion MCas a function of A and T. The large values of MC correspond to the high modular character of the network in

phase II, and to the presence of a modular structure also in phase I.

mammals, they efficiently describe the organization of the cortico-
cortical pathways into anatomical-functional modules***. In a social
context, modular patterns are identified with those densely intercon-
nected groups of individuals sharing similar opinions and cultural
interests. In phase I of our model, a modular structure emerges
spontaneously altogether with other key features empirically found
in large scale cortical networks*’. Namely, for large values of T the
internal synchrony of each module is remarkably large, while the
global order parameter is very close to zero, as indicated by 7y,
and r shown in Fig. 1. Even more striking, the network structure
obtained in phase I displays scale-free architectures for the local
connectivity patterns. In particular, in Fig. 3 we report the distri-
bution of link weights, P(W;)), obtained at T = 100 for different
values of 1. For low values of 4 (corresponding to phase I and the
beginning of phase II), our model produces a hierarchical distri-
bution of weights at all scales, which can be fitted by a power-law
distribution, P(Wj) = W,; %, with an exponent « ranging in [0.85,
1.2]. These scalefree architectures coexist (see the network snapshots
in the right part of Fig. 3 corresponding to 4 = 0.1 and 0.2) with a
highly modular architecture in which networks are composed of
several communities of different sizes. The different modules are
connected by small weight links, while internal links have strong
weights. As 4 increases (see A = 0.3 and 0.4), the intra-modules links
increase their weight, as can be observed from the increase in the
peak of P(W;;) at large values of Wj;. The enhancement of intra-
module ties occurs at the expense of the weakening of the weights
of inter-module links, and the eventual break up of the network
into several components with independent dynamical behaviors.
However, as can be observed from the network snapshots, each of
the components may contain several modules of smaller sizes, thus

leading to networks with hierarchical modular behavior. Finally,
when phase III approaches (see 4 = 0.5 and 0.6), the topology of
the network turns to be more compact, and link weights tend to be
rather homogeneous.

Discussion

The emergence of highly modular structures altogether with scale-
free interaction patterns in our adaptive network model reproduces,
respectively at the mesoscopic and microscopic level, two universal
properties of real networks. In addition to this, the two structural
properties occur when the system displays a large degree of local
synchronization in the absence of global dynamical order. Our find-
ings are thus in agreement with either dynamical and structural
features observed in real neural and social systems. In such systems,
on one hand, local synchronization and consensus coexist with a
lack of global order while, on the other hand, modularity and
scale-free interaction patterns are core features of their backbone.
In particular, regarding the scaling of edge weights, recent quantitat-
ive studies on the wiring of fibers in large cortical brain networks
have reported power-law distributions for axon fiber densities** *’
in agreement with those displayed by our adaptive network model.
Concerning social systems, the recent development of large scale
online social networks and the burst of data about social commu-
nications through mobile networks is allowing to monitor the
degree of friendship between connected users through the analysis
of the load of communication between connected users. Recent
research in this direction points out that the load of information in
this one-to-one communication channels follows a power-law dis-
tribution**° corroborating again the scale-free patterns of the inter-
action weights.
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Figure 3 | Network structure, and corresponding distribution of the link weights. In the left panels we report the distribution of the weights, P(W;), for
the case T'= 100, and for different values of / (increasing from A = 0.1 to A = 0.6). Notice that the regime of small 2 (1 = 0.1, A = 0.2 and 1 = 0.3) displays
a power law distribution of weights, P(W;;) = W, *. In the right part of the panels we show different snapshots of the network structure for the
corresponding values of 1. Note that as / increases from A = 0.1 to 4 = 0.4 the modules increase in size and tend to be less overlapping until the network
breaks up into several unconnected components.

SCIENTIFIC REPORTS | 1:99 | DOI: 10.1038/srep00099 5



Summing up, in the present work we have introduced and ana-
lyzed a simple model of an adaptive network of oscillators, where
the evolution of the topology is regulated by the synchronization
dynamics through the competing mechanisms of homophily and
homeostasis. The adaptive nature of the interactions produces a
better synchronization both at global and local scale with respect
to the non-adaptive case. At the same time, the link weights evolve
towards non-trivial stationary states. The model presents three main
phases as a function of its control parameters. In the first phase, an
enhancement of global and local synchronization is achieved by a
coordinated finetuning of the link weights. In the second phase,
partial global order is attained together with an almost perfect degree
of local synchronization. In practice, the network spontaneously
splits into a number of components, each formed by perfectly syn-
chronized oscillators. In particular, the model produces a modular
architecture, with highly reciprocal links. Moreover, the link weights
W, follow a scale-free distribution, while that for the outgoing node
strengths, §; = ZJN: | Wj;, is homogeneous with a fast (exponentially)
decaying tail (see Fig. 4). From a dynamical perspective, such a
structure supports a high degree of local synchronization, although
no global order is achieved, in agreement with observations in real
systems. To better visualize the final topologies of the system in the
different phases, in the right plots of Fig. 3 we have also reported the
snapshots of networks typically produced in a single realization for
the values of /4 and T leading to the corresponding weight distribu-
tions. It is remarkable to notice how the modules in the networks on
the left become more and more pronounced as A increases, until the
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system breaks up into different components (4 = 0.3). Our results are
consistent with many observed properties of the relationships
between structure and dynamics during the formation of synchro-
nized clusters®, indicating how network adaptation can actually be
the mechanism at work in many real complex systems.

Methods

The network. The model has been implemented on weighted and directed random
regular graphs, i.e. graphs where all the nodes have the same number of incoming and
outgoing links, ki, = kou = k, and the connections are purely random. The size of
the graph is N = 300. For each simulation, we initially assign to each link of the
network a constant weight Wjj(to) = 1/k. This ensures that the constraint

> Wii(t) =1 (i = 1,...,N) is satisfied. We have checked that the results are
almost independent of the connectivity k, provided that its value is sufficiently high
(k = 20). Hence, in all results presented here we fixed the initial connectivity at the
value of k = 20.

Numerical integration. Equations (1) and (2) are solved by a 4" order Runge-Kutta
algorithm with time-step & = 0.02, considering a uniform distribution of natural
frequencies g() in the interval [—1/2, 1/2] and choosing at random the initial phases
0i(to) in the range [—n, m]. The changes in topology from time f—1 to time ¢ are

quantified by measuring the quantity 4(t) = \/EiJ [Wiy(t)— Wy (t— 1)]2. The

system is considered to be in a stationary state when the condition A < 107° holds.
The corresponding oscillators’ dynamics is characterized by the time-averages of the
values of r(t) and r;,x(t). The values reported in the figures for each value of A and T

are calculated as averages over 100 independent network realizations. Time is
expressed in steps of Runge-Kutta algorithm.

Order parameters. The original Kuramoto model assumes static and all-to-all
interactions of equal strength. The key quantity to understand the dynamics of the
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Figure 4 | Distribution of the node strengths. In the plots we report the distribution of the outgoing strength of the nodes, P(S;), for T = 100and A = 0.1,
0.2,0.3, 0.6. Notice that the for all / values the distributions P(S;) are homogeneously distributed around the corresponding mean values (S;). The insets of

each plot report the cumulative distributions, P~ (§;) =

> x>, P(x), to show the exponential decay of the tails of P(S)).
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system turns out to be a complex order parameter, which quantifies the extent of
synchronization of the N oscillators*:

r(t)e? Z £/ (4)

The magnitude r(f) € [0, 1] measures the phase coherence, while P(¢) is the
average phase of the system. In particular, the value r = 1 describes a perfectly
synchronized state, while for the incoherent solution r = 0. The long-time value of r,
taken as a function of the coupling strength £, displays a second order phase transition
with a critical coupling /. = 2/mg(w = 0), where g(®) is the distribution of the natural
frequencies o, assumed to be uni-modal and even*’. Besides, it has been numerically
shown that r displays a second order phase transition also when a non-trivial inter-
action pattern is considered, with the critical coupling depending on the topological
properties of the network’.

Apart from the global synchronization parameter (4), it is also interesting to
consider the average degree of local (phase) synchronization between connected pairs
of nodes, which can be quantified by the local order parameter introduced in'> *,
slightly modified to take into account the weights of the links:

ik = zz

where I'; is the set of all the nodes pointing to i. Notice that, in spite of the resemblance
with the definition of pé(t) in equation (3), 7y;,x directly depends on this quantity only

ei[lh(t)—()l(t)] dt (5)

A At J

when the limit T — < is considered. In particular, in this case r;, turns out to be
proportional to the weighted average of all the pg In our simulations we took At = 750
time units after checking that (for the distribution of internal frequencies {w;} used in
this work) a larger value of At does not change the values obtained for 7.

Community structures. As for the structural properties of the emerging networks in
the stationary state, we focus on both their microscopic and mesoscopic description.
Microscopically, we analyze the distribution of the link’s weights, P( W,j) (i.e. the
probability of finding a link with weight W), and that of the nodes’s outgoing
strength, P(S;) (i.e. the probability of finding a node with outgoing strength

S;= Z;V:l W;;). On the other hand, for the mesoscopic description, we focus on the
modular structure of the networks. In particular, we apply a standard community
detection algorithm: the extremal optimization of modularity, proposed by Duch and
Arenas in®. The extremal optimization algorithm gives us a partition of the network into
M non-overlapping communities or modules, so that each node of the network belongs
to one community only. Once the modules of the network are found, we evaluate the
modularity of the partition of the network by measuring its modular cohesion:

M M
Zz:l Ziex.jeac Wi _ 21:1 Ziez,jei Wi
M M =
> Z/{:l Z[Ea‘jeﬁ Wi N
Indexes o and f§ in formula stand for the modules, while i and j are node labels,

as usual. The modular cohesion MC takes values in the range [0, 1], and is equal to 1
when the network is partitioned into non-interacting modules (separate components).
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