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Emergence of superlattice Dirac points in
graphene on hexagonal boron nitride
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T. Taniguchi3, Pablo Jarillo-Herrero2, Philippe Jacquod1,4 and Brian J. LeRoy1*
The Schrödinger equation dictates that the propagation of
nearly free electrons through a weak periodic potential results
in the opening of bandgaps near points of the reciprocal
lattice known as Brillouin zone boundaries1. However, in the
case of massless Dirac fermions, it has been predicted that
the chirality of the charge carriers prevents the opening
of a bandgap and instead new Dirac points appear in the
electronic structure of the material2,3. Graphene on hexagonal
boron nitride exhibits a rotation-dependent moiré pattern4,5.
Here, we show experimentally and theoretically that this
moiré pattern acts as a weak periodic potential and thereby
leads to the emergence of a new set of Dirac points at
an energy determined by its wavelength. The new massless
Dirac fermions generated at these superlattice Dirac points
are characterized by a significantly reduced Fermi velocity.
Furthermore, the local density of states near these Dirac
cones exhibits hexagonal modulation due to the influence of
the periodic potential.

Owing to its hexagonal lattice structure with a diatomic
unit cell, graphene has low-energy electronic properties that are
governed by the massless Dirac equation6. This has a number of
consequences, among them Klein tunnelling7–10, which prevents
electrostatic confinement of charge carriers and inhibits the
fabrication of standard semiconductor devices. This hasmotivated a
number of recent theoretical investigations of graphene in periodic
potentials2,3,11–15, which explored ways of controlling the propaga-
tion of charge carriers by means of various superlattice potentials.
On the analytical side, one-dimensional potentials render particle
propagation anisotropic2,3,11,14 and generate new Dirac points,
where the electron and hole bands meet, at energies ±h̄vF|G|/2
given by the reciprocal superlattice vectors G (refs 2,3), where vF is
the Fermi velocity. Numerical approaches have extended several of
these results to the case of two-dimensional potentials2,3,14,15. Unlike
for Schrödinger fermions, the periodic potentials generally induce
new Dirac points but do not open bandgaps in graphene, owing to
the chiral nature of the Dirac fermions.

Recent scanning tunnelling microscope (STM) topography
experiments have reported well-developed moiré patterns in
graphene on crystalline substrates, which suggests that the latter
generate effective periodic potentials4,5,16,17. Of particular interest
is hexagonal boron nitride (hBN), because it is an insulator which
only couples weakly to graphene. Furthermore, graphene on hBN
exhibits the highest mobility ever reported for graphene on any
substrate18, and has strongly suppressed charge inhomogeneities4,5.
Hexagonal boron nitride is a layered material whose planes have
the same atomic structure as graphene, with a 1.8% longer lattice
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constant. The influence of the weak graphene–substrate interlayer
coupling on the electronic transport and spectroscopic properties
of graphene is not well understood. In particular, there is to date no
theory for local electronic properties such as those probed in STM
experiments. Below, we show that periodic interlayer couplings
generate new Dirac points at an energy determined by the wave
vector of the periodic potential. The presence of these new Dirac
points is reflected in two dips in the density of states, symmetrically
placed at E =±h̄vF|G|/2 around the E = 0 graphene Dirac point
but generally of asymmetric strength. There is also a periodic
modulation of the local density of states with the same period as
the superlattice topographic moiré pattern.

The fabrication procedure used for creating the graphene on
hBN devices results in a random rotational orientation between
the graphene and hBN lattices. This rotation between the lattices
and the longer lattice constant for hBN leads to topographic moiré
patterns. Given the lattice mismatch δ between hBN and graphene,
the relative rotation angle φ between the two lattices uniquely
determines the moiré wavelength λ as

λ=
(1+δ)a√

2(1+δ)(1−cosφ)+δ2
(1)

where a is the graphene lattice constant. The relative rotation angle θ
of themoiré patternwith respect to the graphene lattice is given by

tanθ =
sinφ

(1+δ)−cosφ
(2)

Figure 1b plots the wavelength of the moiré pattern (black) and
rotation angle (red) as a function of φ. Owing to the lattice
mismatch, there is a moiré pattern for all orientations of graphene
onhBNwith amaximumpossible length of about 14 nm. Figure 1c–
e shows STM topography images of moiré patterns for three
different rotations of the graphene lattice.

We explore how this moiré structure influences the local density
of states (LDOS) ρ(r,E)=

∑
n |ψn(r)|2δ(E − En) in the graphene

layer. This quantity dominates dI/dV STM measurements as long
as the density of states of the STM tip and the tunnelling rate from
the tip to the sample are constant. We take a lattice Hamiltonian
for a graphene monolayer deposited on top of a hBN monolayer,
where the two layers are rotated with respect to one another, and the
spatially dependent interlayer hopping t⊥ is calculated fromnearest-
neighbour and next-nearest-neighbour interlayer coupling4. We
numerically calculate ρ(r,E) for this model using the Lanczos
method19 (see Supplementary Information).
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Figure 1 |Graphene device schematic and STMmoiré images. a, Schematic of the measurement set-up showing the STM tip and an optical microscope
image of one of the measured samples. b, Superlattice wavelength (black) and rotation (red) as a function of the angle between the graphene and hBN
lattices. c–e, STM topography images showing 2.4 nm (c), 6.0 nm (d) and 11.5 nm (e) moiré patterns. Typical imaging parameters were sample voltages
between 0.3 V and 0.5 V and tunnel currents between 100 pA and 150 pA. The scale bars in all images are 5 nm.

Dips in the calculated ρ(r,E) are clearly seen in Fig. 2a. The
energy of these dips changes as a function of the rotation angle φ
and hence the moiré wavelength. We have also observed the dips
in the experimental dI/dV curves as shown in Fig. 2b. The black
curve is for a 9.0 nm moiré pattern and the energy of the dip is
0.28 eV from the Dirac point. The red curve is for a 13.4 nm moiré
pattern and the energy of the dips decreases to 0.22 eV from the
Dirac point. Both experimentally and theoretically, we found that
the relative strength of the dips in the conduction and valence band
are different, with the dip in the valence band being much deeper
than the dip in the conduction band. In our numerical calculations,
we identified that most of this asymmetry arises because of next-
nearest-neighbour interlayer coupling, which effectively induces
modulated hopping between different graphene sublattices and
breaks electron–hole symmetry (see Supplementary Information).
Figure 2c plots |d2I/dV2

| for the 9.0 nmmoiré pattern as a function
of gate voltage and sample voltage. We clearly see the Dirac point in
this measurement crossing the Fermi energy near zero gate voltage.
There is a second dip which moves parallel to it that is offset
by −0.28V in sample voltage. This dip is due to the superlattice
periodic potential induced by the hBN and indicates the emergence
of new superlattice Dirac points.

We have observed these dips in the LDOS for seven different
moiré wavelengths. The energy of the dips from the Dirac
point is plotted (red points) as a function of wavelength in
Fig. 2d. The solid black line plots the expected energy dependence
E = h̄vF|G|/2 = 2π h̄vF/

√
3λ, assuming the linear band structure

of graphene and vF = 1.1× 106 ms−1. For the necessary high-
resolution spectroscopy, our STM is limited to observing dips in
an energy range of ∼±1V, which restricts the moiré wavelengths
to longer than 2 nm. At higher energies, the spectroscopy
tends to be smoothed by interaction effects which modify the

lifetime of the graphene quasiparticles20, making the identification
of dips difficult.

To better understand these dips, we focus on the low-energy
regime and neglect intervalley scattering in graphene. This is
justified by the energy range in our STM experiments and the
long wavelength of the moiré potential. The interlayer hopping
term between the graphene and hBN layers reflects the same
periodic structure as the moiré pattern4. Therefore we model the
influence of the hBNby an effective periodic potential with the same
symmetry as the observed moiré pattern. We accordingly consider
the single-valley Hamiltonian

Ĥ = h̄vFk ·σ+V
∑
α

cos(Gαx) I

where k = (kx ,ky), σ is a vector of Pauli matrices and I is the
identity matrix. The potential strength is estimated as V = 0.06 eV
from numerical second-order perturbation theory, and the Gα

are the reciprocal superlattice vectors corresponding to the
periodic potential generated by the hBN substrate. The reciprocal
superlattice vector G1 = (4π/

√
3λ)(cosθ,sinθ) is determined by

the relative rotation of the graphene and hBN lattices according
to equations (1) and (2). The other superlattice wave vectors are
obtained by two rotations of 60◦. Larger superlattice vectors are not
included in our model, because the corresponding couplings are
smaller bymore than one order of magnitude4.

The dips in ρ(r,E) are due to k→−k processes induced by the
periodic potential for values 2k=Gα corresponding to one of the
reciprocal superlattice vectorsGα . Unlike for Schrödinger particles,
the chirality of the Dirac fermions prevents such processes from
opening a bandgap at the edges of the superlattice Brillouin zone,
as long as the potential does not break sublattice symmetry (see
Supplementary Information).
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Figure 2 |Density of states of graphene on hBN showing new superlattice Dirac points. a, Theoretical LDOS curves for three different rotation angles
between graphene and hBN, red is φ=0.5◦ (12.5 nm), blue is φ= 1◦ (10.0 nm) and green is φ= 2◦ (6.3 nm). The curves have been vertically offset for
clarity. b, Experimental dI/dV curves for two different moiré wavelengths, 9.0 nm (black) and 13.4 nm (red). The dips in the dI/dV curves are marked by
arrows. c, |d2I/dV2

| as a function of gate and sample voltage for the 9.0 nm moiré pattern, showing the shift of the Dirac point and one of the dips.
d, Energy of the dips away from the Dirac point as a function of moiré wavelength. The red points are the experimentally measured values and the black
line is the expected theoretical dependence. The error bars in energy represent the minimum and maximum observed energies. The error bars in
wavelength represent the standard deviation.

The presence of the new superlatticeDirac points can be detected
by examining the gate dependence of the LDOS. As seen in Fig. 2c,
the twoDirac pointsmove in parallel with the gate voltage. Figure 3a
plots dI/dV for a 13.4 nmmoiré pattern over a larger range of gate
voltage than in Fig. 2c. The white dashed lines show the energy of
the two Dirac points as a function of gate voltage. When the Fermi
energy approaches the superlatticeDirac point, the gate dependence
of the Dirac points changes. This is plotted in Fig. 3b, which tracks
the energy of the original Dirac point when the Fermi energy crosses
the superlattice Dirac point at−53V. Both Dirac points movemore
quickly with gate voltage, indicating a reduced density of states at
this energy. The gate dependence for the original Dirac point is
given by the equation

ED= h̄vF
√
2απ(Vg−Vo)/gv (3)

whereVg is the gate voltage,V0 is the offset voltage, α is the coupling
to the gate and gv is the valley degeneracy. When the Fermi energy
is near the original Dirac point, the valley degeneracy is gv= 2 and
from the fit we extract the value of the Fermi velocity at the original
Dirac point to be vF=v0F=0.94±0.02×106 ms−1 for both electrons
and holes. At the new superlattice Dirac points, the valley degener-
acy is gv=6 because the periodic potential creates three superlattice
Dirac points in each of the original Dirac cones corresponding

to the three reciprocal lattice vectors Gα . Furthermore, the Dirac
cones are anisotropic and therefore the constant energy contours
are given by ellipses rather than circles. Therefore, the Fermi velocity
in equation (3) must be modified to vF =

√
v0Fv
∗

F where v0F is the
unmodified Fermi velocity parallel to Gα and v∗F is the reduced
Fermi velocity perpendicular to Gα . From the fit near the energy of
the superlattice Dirac points, we find that v∗F = 0.5±0.1×106 ms−1
for the new electrons and holes. The reduction is in qualitative
agreement with our numerical calculations in the Supplementary
Information. Evidence for the presence of the superlattice Dirac
points can also be seen in the global conductivity as a function of
gate voltage (see Supplementary Information).

Aswell as the formation of superlatticeDirac points, the presence
of the periodic potential also leads to a spatial variation in the
LDOS. Figure 4 shows experimental and numerical images of the
LDOS as a function of energy. Near the Dirac point, (Fig. 4b,e), we
observe a nearly featureless density of states. This is in agreement
with previous STMmeasurements which show a strong suppression
of charge fluctuations in graphene on hBN (refs 4,5). At higher
energies, the presence of the moiré potential manifests itself as a
local variation in the density of states. Figure 4a and d are taken
at a lower energy than the superlattice Dirac points in the valence
band. At this energy the hexagonal pattern of the potential is clearly
visible. On the conduction band side, Figs. 4c and f, the moiré
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Figure 3 |Gate dependence of graphene density of states near the superlattice Dirac points for a 13.4 nmmoiré pattern. a, dI/dV as a function of sample
and gate voltage showing both the Dirac point and the new superlattice Dirac point. The white dashed lines mark the locations of the Dirac point and the
superlattice Dirac point. b, Shift of the Dirac point as a function of gate voltage when the superlattice Dirac point crosses the Fermi energy (black line). The
solid red line is a theoretical fit for the shift of the Dirac point with the presence of the superlattice Dirac points. The dashed red line shows the expected
shift without the superlattice Dirac points. The inset shows the shift of both Dirac points over a large gate voltage range as well as theoretical fits (red and
blue solid lines).
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Figure 4 | Experimental and theoretical images of LDOS for a long wavelength moiré pattern. a–c, Experimental dI/dV maps for a 13.4 nm moiré pattern.
The sample voltages are−0.16 V (a), 0.17 V (b) and 0.44 V (c). The sample voltage in b is near the Dirac point because the gate voltage was 60 V whereas
the other two maps are near the energy of the superlattice Dirac points. d–f, Theoretical dI/dV maps for a 13.4 nm moiré pattern. The energies are−0.3 eV
(d), 0.03 eV (e) and 0.3 eV (f). The energy in e corresponds to the Dirac point and is shifted from the experimental images because of the gate voltage.
The scale bars in all images are 10 nm.

pattern is once again visible but its contrast is inverted. The centres
of the hexagons now correspond to points of increased density of
states. However, the dips in the LDOS from the superlattice Dirac
points occur at the same energy independent of the location on
the superlattice. We observe that the moiré pattern becomes much
more visible in the local density of states at energies above the
superlattice Dirac points. Previous measurements of the LDOS in
graphene on hBN did not observe any variations due to the short
moiré patterns and low energies probed4.

Graphene-on-hBN devices are becoming widely used owing to
their improved mobility and reduced charged impurities. We have
shown that lattice mismatch and relative rotation between the

graphene and hBN leads to a periodic potential for graphene charge
carriers. This potential creates new Dirac points whose energy is
determined by the wavelength of the potential. These superlattice
Dirac points have the potential to control the transport properties
of electrons in graphene as it induces anisotropic velocities for the
charge carriers. Future work is necessary to exploit this periodic
potential for the creation of novel graphene devices.

Methods
Graphene on hBN devices were fabricated using two different methods. In the
first method, mechanically exfoliated graphene was transferred to high-quality
single crystals of hBN which were mechanically exfoliated on a SiO2 substrate4,18.
In the second method, commercially available hBN (Momentive AC6004) was
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exfoliated on SiO2 substrates and then CVD grown graphene was deposited over
the hBN. Both types of devices gave similar results, so we do not distinguish
between the two types. After depositing the graphene on hBN, Cr/Au electrodes
were written using electron beam lithography. The devices were annealed at
350 ◦C for 2 h in a mixture of argon and hydrogen and then at 300 ◦C for 1 h in
air before being transferred to the ultrahigh vacuum low-temperature STM for
topographic and spectroscopic measurements. We have measured a total of 29
samples of which seven had long enough moiré patterns for the observation of a
superlattice Dirac point.

Figure 1a shows a schematic diagram of the measurement set-up used for
imaging and spectroscopy of the graphene flakes. All the measurements were
performed in ultrahigh vacuum at a temperature of 4.5 K. dI/dV measurements
were acquired by turning off the feedback circuit and adding a small (5–10mV)
a.c. voltage at 563Hz to the sample voltage. The current was measured by
lock-in detection.
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