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Abstract

Background: In February 2016, a new fungal disease was spotted in wheat fields across eight districts in

Bangladesh. The epidemic spread to an estimated 15,000 hectares, about 16 % of the cultivated wheat area in

Bangladesh, with yield losses reaching up to 100 %. Within weeks of the onset of the epidemic, we performed

transcriptome sequencing of symptomatic leaf samples collected directly from Bangladeshi fields.

Results: Reinoculation of seedlings with strains isolated from infected wheat grains showed wheat blast symptoms

on leaves of wheat but not rice. Our phylogenomic and population genomic analyses revealed that the wheat blast

outbreak in Bangladesh was most likely caused by a wheat-infecting South American lineage of the blast fungus

Magnaporthe oryzae.

Conclusion: Our findings suggest that genomic surveillance can be rapidly applied to monitor plant disease

outbreaks and provide valuable information regarding the identity and origin of the infectious agent.
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Background
Outbreaks caused by fungal diseases have increased in

frequency and are a recurrent threat to global food se-

curity [1]. One example is blast, a fungal disease of rice,

wheat, and other grasses, that can destroy enough food

supply to sustain millions of people [1–3]. Until the

1980s, the blast disease was not known to affect wheat, a

main staple crop critical to ensuring global food security.

In 1985, the disease was first reported on wheat (Triti-

cum aestivum L.) in Paraná State, Brazil [4]. It has since

spread throughout many of the important wheat-

producing areas of Brazil and to neighboring South

American countries including Bolivia and Paraguay. In

South America, blast is now a major threat to wheat

production [5–7]. Currently, wheat blast affects as much

as 3 million hectares, seriously limiting the potential for

wheat production in the vast grasslands region of South

America.

Blast diseases of grasses are caused by fungal species

from the Pyriculariaceae [8] and can occur on 50 grass

species [9]. However, a high degree of host specificity ex-

ists among and within these fungal species [8, 10]. In

South America, wheat blast is caused by isolates of Mag-

naporthe oryzae (syn. Pyricularia oryzae) known as

pathotype Triticum [10–12]. The rice-infecting isolates

of M. oryzae are genetically distinct from wheat-

infecting isolates and generally do not infect wheat [11,
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13–20]. Typical symptoms of wheat blast on spikes are

premature bleaching of spikelets and entire heads [21–

23]. Severely infected wheat heads can be killed, result-

ing in severe yield losses [21, 22]. The disease is gener-

ally spread by infected seeds and airborne spores, and

the fungus can survive in infected crop residues and

seeds [14]. Little is known about the physiology and gen-

etics of the wheat blast pathogen, and our understanding

of the molecular interactions of this pathogen with

wheat remains limited.

In February 2016, wheat blast was detected for the first

time in Asia with reports of a severe outbreak in

Bangladesh relayed through local authorities and the

media [24]. Although wheat is not a traditional crop in

Bangladesh, its cultivation has expanded in recent years,

making it the second major food source after rice [25].

The outbreak is particularly worrisome because wheat

blast could spread further to major wheat-producing

areas in neighboring South Asian countries, thus threat-

ening food security across the region. Here, we report

our immediate response to this plant disease outbreak.

To rapidly determine the precise identity and likely ori-

gin of the outbreak pathogen, we applied field pathoge-

nomics, in which we performed transcriptome

sequencing of symptomatic and asymptomatic leaf sam-

ples collected from infected wheat fields in Bangladesh

[26, 27]. To promote the project and recruit experts, we

immediately released all raw sequence data through a

Fig. 1 Geographical distribution and severity of the wheat blast outbreak in eight southwestern districts of Bangladesh. The map depicts the

intensity of the 2016 wheat blast outbreak across Bangladesh. The percentage of affected area and the total area (hectares) under cultivation are

shown for each district based on the color chart
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dedicated website Open Wheat Blast (http://www.wheat-

blast.net). Phylogenomic and population genomic ana-

lyses revealed that the Bangladesh wheat blast outbreak

was probably caused by isolates belonging to the South

American wheat-infecting lineage of M. oryzae. We con-

clude that the wheat blast pathogen was most likely in-

troduced into Asia from South America.

Results and discussion

Geographical distribution of the wheat blast outbreak in

Bangladesh

The total area of wheat cultivation in Bangladesh in

2016 was about 498,000 ha (Department of Agricultural

Extension, Bangladesh). Wheat blast was observed in

eight southwestern districts, viz., Pabna, Kushtia, Meher-

pur, Chuadanga, Jhenaidah, Jessore, Barisal, and Bhola

(Fig. 1). Out of a total 101,660 ha of cultivated wheat in

those eight districts, an estimated 15 % were affected by

wheat blast.

The severity of wheat blast and associated yield losses

varied among districts. The highest percentage of in-

fected wheat fields was observed in Meherpur (70 %)

followed by Chuadanga (44 %), Jessore (37 %), Jhenaidah

(8 %), Bhola (5 %), Kushtia (2 %), Barisal (1 %), and

Pabna (0.2 %) (Fig. 1). Yield losses in different affected

districts varied. The highest average yield loss was re-

corded in Jhenaidah (51 %) followed by Chuadanga

(36 %), Meherpur (30 %), Jessore (25 %), Barisal (21 %),

Pabna (18 %), Kushtia (10 %), and Bhola (5 %). Although

the average yield loss was lower than 51 % across dis-

tricts, yield losses in individual fields were as high as

100 %. Importantly, 100 % of government-owned

Bangladesh Agricultural Development Corporation

(BADC) seed multiplication farms in the affected dis-

tricts (ca. 355 ha) were completely cleared by burning to

destroy pathogen inocula by decision of the Ministry of

Agriculture (see https://www.youtube.com/watch?v=Em-

L5YM0kIok). Farmer wheat fields that were severely af-

fected (~100 %) were also burned.

Wheat blast symptoms in the field

To examine disease symptoms in affected wheat fields,

we collected samples from the affected districts. Major

symptoms associated with the epidemic included com-

pletely or partially bleached (dead) spikes similar to

symptoms reported for Brazilian wheat blast epidemics

[21, 22] and symptoms reported from Bangladesh in

2016 [23]. The pathogen attacked the base or upper part

of the rachis, severely affecting spikelet formation above

the point of infection. Complete or partial bleaching of

the spike above the point of infection with either no

grain or shriveled grain was common in all areas af-

fected by wheat blast (Fig. 2a–c). We commonly ob-

served bleached heads with traces of gray, indicative of

fungal sporulation at the point of infection (arrows in

Fig. 2a–c and g). In severely infected fields, we also

found typical eye-shaped necrotic disease lesions with

gray centers in the leaves of some wheat plants (Fig. 2d)

[21, 28]. Head infections during the flowering stage re-

sulted in no grain production (Fig. 2g), whereas infection

at the grain filling stage resulted in small, shriveled, light

in weight, and discolored (pale) grains (Fig. 2e, f ) [22].

To determine whether the spike and leaf symptoms on

wheat were associated with infection by blast fungi (Pyr-

icularia and related genera from the Pyriculariaceae

sensu; see Klaubauf et al. [8]), we examined infected

plant samples using a light microscope. A hallmark of

blast fungi is the production of asexual spores that have

a specific morphology consisting of three-celled pyriform

conidia [8]. Microscopic analyses revealed that gray col-

ored lesions observed on both spikes and leaves carried

large numbers of three-celled pyriform conidia from aer-

ial conidiophores (Fig. 2h). This indicates that the fungus

present in these lesions belongs to the Pyriculariaceae,

consistent with a previous report [22]. However, molecu-

lar taxonomy tools are needed to determine the species

identity.

Strains isolated from infected wheat samples cause

symptoms of wheat blast on artificially inoculated wheat

To confirm whether the fungus found on infected wheat

leaves is able to cause the observed symptoms, we iso-

lated ten strains (BTJP 3-1, BTJP 3-2, BTJP 3-3, BTJP 4-

1, BTJP 4-2, BTJP 4-3, BTJP 4-4, BTJP 4-5, BTJP 4-

6, and BTJP 4-7) using a single-conidia isolation method

(Fig. 3a). On potato dextrose agar (PDA) plates, the pre-

dominant morphology of the isolates was gray to white

aerial mycelia with an olive or brown center (Fig. 3b).

After 14–21 days of inoculation, the center of the cul-

ture became black (Fig. 3c). Artificial inoculation of

wheat seedling leaves using conidia of two isolates (BTJP

3-1 and BTJP 4-1) produced characteristic symptoms

five days after inoculation (Fig. 3d–h). Initially, a

diamond-shaped, water-soaked lesion in green leaves

was observed (Fig. 3d), which gradually turned into an

eye-shaped lesion, with a tan or gray colored center

(Fig. 3e, f ). At a later stage, the spots enlarged, spread to

entire leaves, and killed the leaves (Fig. 3g, h). No differ-

ence in symptoms was observed on wheat seedlings of

the cultivars Shatabdi and Prodip and between the two

isolates (BTJP 3-1 and BTJP 4-1). Similar disease symp-

toms and sporulation were observed on leaves of artifi-

cially inoculated goosegrass (Eleusine indica) (Fig. 3k)

and barley (Hordeum vulgare) (Fig. 3l). Terminal infec-

tion stages were characterized by a massive production

of hyaline to pale gray, pyriform, and asexual conidia on

aerial conidiophores. Conidia formation was observed

on all infected wheat (Triticum aestivum), barley (H.

Islam et al. BMC Biology  (2016) 14:84 Page 3 of 11

http://www.wheatblast.net/
http://www.wheatblast.net/
https://www.youtube.com/watch?v=EmL5YM0kIok
https://www.youtube.com/watch?v=EmL5YM0kIok


vulgare), and goosegrass (E. indica) leaves (Fig. 3i–l).

Under the same conditions, no visible symptoms or

sporulation of conidia were observed microscopically on

leaves of artificially inoculated rice (Oryza sativa cv.

BRRIdhan 49; data not shown). These results are con-

sistent with those of Castroagudin et al. [29] showing

that wheat-infecting M. oryzae can infect seedlings of

barley but is largely asymptomatic on rice. The patho-

genicity of wheat blast on E. indica is also consistent

with reports that E. indica is a major alternate host in

South America [30, 31]. E. indica is also a common

weed in the highlands of Bangladesh and may similarly

serve as a alternate host of wheat blast. Understanding

the role of alternate hosts in disease cycles and

epidemics of wheat blast will be key in formulating ef-

fective disease management strategies.

Transcriptome sequencing of wheat leaf samples from

Bangladeshi fields

We used field pathogenomics [26] to identify which

blast fungus species was present in infected wheat

fields in Bangladesh. We collected samples of both

symptomatic and asymptomatic leaves from wheat

fields in different regions of Bangladesh, including

Meherpur and Jhenaidah districts, and extracted total

RNA from four pairs of symptomatic (samples 2, 5, 7,

and 12) and asymptomatic samples (samples F2, F5,

F7, and F12) (Additional file 1: Table S1). We

Fig. 2 Symptoms of blast disease in spikes, leaves, and seeds of wheat in a farmer’s field in Jhenaidah in Bangladesh, and a micrograph showing

two conidia of Magnaporthe oryzae. a A completely bleached wheat spike with traces of gray from blast sporulation at the neck (arrow) of the

spike. b Complete bleaching of a wheat spike above the point (arrow) of infection. c Two completely bleached spikes with traces of gray (upper

arrow) and a lesion (lower arrow) from blast sporulation at the base. d Typical eye-shaped lesion (arrow) and dark gray spots on a severely dis-

eased wheat leaf. e Mild blast disease-affected slightly shriveled wheat seeds. f Severe blast-affected shriveled and pale wheat seeds.

g A severely infected rachis with dark gray blast sporulation at the neck (arrow) and severely damaged spikelets. h Micrograph of two conidia

isolated from the infected spike of wheat. Scale bars in e and f = 1 cm and in h = 10 μm
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prepared and sequenced RNA-seq libraries using Illu-

mina technology, yielding 68.8 to 125.8 million 101-

bp pair-end reads with an average insert size of

419 bp. Next, following data trimming, we aligned

high-quality reads to both the M. oryzae wheat blast

fungus BR32 and wheat genomes [19, 32]. Sequence

reads from all samples with disease symptoms aligned

to the BR32 genome, ranging from 0.5–18.6 % of the

total reads (Fig. 4a). By contrast, only a minor pro-

portion of the reads from the asymptomatic samples

aligned to the BR32 genome (range: 0.003–0.037 %,

Fig. 4a–c). Between 37.7 % and 86.5 % of total reads

aligned to the wheat genome sequence (Fig. 4a). We

obtained similar numbers when considering the reads

aligning to M. oryzae and wheat transcriptomes (Add-

itional file 2: Table S2). Variation in percentage

mapped reads of host and fungal transcripts among

symptomatic samples is most likely explained by dif-

ferences in the disease severity and infection stage

among field collected leaves. The finding that on

average 6.8 % reads per sampled transcriptome

aligned to the wheat blast genome BR32 indicated

that M. oryzae is present in symptomatic (infected)

wheat samples from Bangladesh.

Fig. 3 Reinoculation of seedlings with fungal strains isolated from infected wheat seeds. Germinated conidia, growth of mycelia, infection, and

sporulation of strains used to artificially inoculate wheat, barley, and goosegrass. a A germinated three-celled pyriform conidia (arrow) with hyphal

growth on water agar medium. b, c Culture of isolate BTJP 3-1 on PDA plate; upper (left) and reverse side (right). d Photograph showing a

diamond-shaped, water-soaked lesion (initial stage of infection symptom, upper arrow) on a green wheat seedling leaf five days after conidial

inoculation. e, f Development of an eye-shaped lesion with a gray center (arrows in e and f) on wheat leaves. g, h A gradual progression of

symptoms (arrows) on wheat leaves. i–l Light micrographs showing massive conidia production (red arrow) on aerial conidiophores (black arrow)

on artificially infected leaves of wheat cultivars Prodip (i) and Shatabdi (j), goosegrass (k), and barley (l). Photographs were taken by a camera

attached to a microscope at 100× magnification. Scale bars in j, k, and l indicate 50 μm
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Bangladesh wheat blast outbreak was likely caused by a

wheat-infecting South American lineage of M. oryzae

We used phylogenomic approaches to determine how

related the fungal pathogen detected in wheat leaf sam-

ples from Bangladesh is to M. oryzae lineages infecting

cereals and grasses. We also performed population gen-

omics analyses to gain insight into the geographic origin

of these Bangladeshi isolates using a set of sequences

from wheat-infecting M. oryzae isolates collected in

Brazil over the last 25 years. We first determined the

taxonomic affiliation and phylogenetic position of

wheat-infecting Bangladeshi samples. To this aim, we

extracted predicted transcript sequences from the as-

sembled genomic sequences of 20M. oryzae strains iso-

lated from infected rice (O. sativa), wheat (T. aestivum),

foxtail millet (Setaria spp.), Eleusine spp., Lolium spp.,

and Eragrostis spp. [19] (this study; see Additional file 1:

Table S1 for full details). We identified 2193 groups of

sequences with orthologous relationships across the 20

reference transcriptomes and the two Bangladeshi

isolates that had the largest number of genes represented

in their transcriptomic sequences. We aligned ortholo-

gous transcripts, processed alignments, and inferred a

maximum likelihood genealogy based on the

concatenated sequences using RAxML [33]. The Bangla-

deshi isolates clustered with high bootstrap support

(>90 %) with wheat-infecting isolates of M. oryzae

(Fig. 5a), indicating that the emergence of wheat blast in

Bangladesh was caused by isolates belonging to the

known M. oryzae wheat-infecting lineage, and not by an

unknown Pyriculariaceae species or a novel M. oryzae

lineage.

Given that the Bangladesh outbreak was caused by iso-

lates related to known wheat-infecting lineages of M.

oryzae, our next step was to infer genealogical relation-

ships between Bangladeshi and South American wheat

blast samples. We performed population genomics ana-

lyses using transcriptomic single nucleotide polymor-

phisms (SNPs) identified by aligning sequence reads to

the M. oryzae reference genome 70-15 [34]. We

Fig. 4 Transcriptome sequencing of infected leaves from farmer fields reveals Magnaporthe oryzae transcripts in symptomatic samples. a

Comparison of sequence read mapping data from the four sample pairs to the genomes of wheat blast fungus M. oryzae BR32 (in blue) and

wheat (light gray). b, c Scatter plots of fragments per kilobase of transcript per million (FPKM) values from sample pair 7-F7 (b) and 12-F12 (c)

aligned to the combined transcriptomes of wheat and M. oryzae BR32. Transcripts from wheat (100,344) are shown in light gray and transcripts

from M. oryzae BR32 (14,349) are shown in blue

Islam et al. BMC Biology  (2016) 14:84 Page 6 of 11



included all four symptomatic samples from Bangladesh

and a diverse collection of 23M. oryzae wheat-infecting

isolates sampled from Brazil, the main wheat growing

country affected by wheat blast (Additional file 1: Table

S1). As the wheat blast isolates from Brazil were se-

quenced from genomic DNA, we restricted the analyses

to transcriptomic SNPs genotyped at high confidence in

the symptomatic Bangladeshi sample 12, retaining a total

of 15,871 SNPs. Since the reproductive mode of wheat

blast populations can be mixed, including both sexual

and asexual reproduction [18], we chose to build a

Neighbor-Net network that takes into account potential

recombination among genotypes. The network analyses

identified small groups of near-clonal genotypes (e.g.,

isolates 12.1.205 and 12.1.032i), whereas all other iso-

lates appeared genetically distinct and displayed reticu-

late evolution. The Bangladesh outbreak isolates

grouped as a near-clonal genotype that was most closely

related to a group of Brazilian wheat-infecting isolates

from Minas Gerais, São Paulo, Brasília, and Goiás

(strains PY0925, 12.1.053i, 12.1.117, and 12.1.037, re-

spectively). Systematic analyses of recent wheat-infecting

isolates from Brazil and neighboring countries will be

needed to ascertain the most likely infection route from

South America. Also, additional phylogenomic work,

based on deeper sampling of the diversity of grass-

infecting M. oryzae, will provide further insight into the

genealogical relationships among host-specific lineages

and the timing of lineage splitting/merging events.

Conclusion
Our rapid open source genomic surveillance approach

has revealed the precise identity of the infectious

Bangladeshi fungus as the known wheat-infecting M.

oryzae lineage and indicated that it most likely origi-

nated from South America. This finding calls for inten-

sive monitoring and surveillance of the wheat blast

pathogen to limit its further spread outside South Amer-

ica and Bangladesh. In addition, our finding indicates

that the knowledge acquired to manage wheat blast in

Brazil using disease resistant cultivars [35–37] and fungi-

cides [38, 39] can be directly applied to the Bangladeshi

epidemic.

Methods

Field data

The dates of first incidence of disease and areas of wheat

cultivation and blast-infected fields in different districts

of Bangladesh were obtained from the Department of

Agricultural Extension (DAE) of Bangladesh. To verify

the data obtained by the DAE on the severity of the

wheat blast epidemic, a second data set on yield loss was

directly collected from the farmers (n = 100) of the most

severely infected wheat blast district, Meherpur, through

face-to-face interviews of randomly selected farmers

after harvesting the crop. Among 15,471 ha with wheat

blast in Bangladesh, the disease incidence in the Meher-

pur district alone involved 9640 ha, approximately 62 %

of the total wheat blast area in the country.

Isolation of wheat blast strains from infected seeds and

inoculation of wheat seedlings

Fungal strains were isolated from infected and shriveled

wheat seeds collected from the farmers of the Jhenaidah

district of Bangladesh. Infected wheat seeds were surface

sterilized successively with 95 % ethanol followed by

Fig. 5 The origin of the Bangladesh wheat blast fungus. a Maximum likelihood genealogy inferred from the concatenation of aligned genomic

data at 2193 orthologous groups of predicted transcript sequences. Scale bar represents the mean number of nucleotide substitutions per site. b

Population genomic analyses of transcriptomic single nucleotide polymorphisms among M. oryzae isolates from wheat in Brazil and Bangladesh.

The network was constructed using the Neighbor-Net algorithm. The scale shows the number of informative sites
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10 % sodium hypochlorite and 95 % ethanol [28]. The

seeds were kept in a Petri dish laid with sterilized filter

paper maintaining abundant moisture. Samples were

checked every day under the microscope to monitor the

production of conidia and conidiophores on wheat

seeds. After 3 days of incubation at room temperature

(ca. 30 °C), abundant conidia on aerial conidiophores

were observed. Seeds with conidia were transferred to

an Eppendorf tube containing 1 ml of sterilized water

and vortexed for 1 min at 700 rpm. A conidial suspen-

sion was separated from the seed, diluted 100-fold with

sterilized water, and then spread on 1.5 % water agar

medium and incubated for 2 days [40]. Each plate was

observed under a microscope at 100× magnification to

identify germinated single conidia with hyphal growth.

Germinated conidia were transferred on an agar block

and placed on a PDA plate for 7 days of incubation. Re-

peated cultures were established from the tip of growing

hyphae for further purification. For the production of

conidia, hyphal blocks from a fully grown plate were

transferred into water agar containing sterilized wheat

leaves 40 g L−1, streptomycin 50 mg L−1, tetracycline

50 mg L−1, and chloramphenicol 50 mg L−1 [28]. Co-

nidia were harvested from 14-day-old culture plates

flooded with sterilized water containing 0.01 % Tween

20 and gently scraped with an inoculation loop to dis-

lodge conidia from conidiophores [41]. The conidial sus-

pension was then filtered through two layers of

cheesecloth and adjusted to 5 × 103 conidia per ml. Seed-

lings of two wheat varieties, Prodip and Shatabdi, were

grown from surface sterilized seeds in autoclaved soils

and in plastic trays. Seedlings were sprayed with a conid-

ial suspension of two purified isolates, BTJP 3-1 and

BTJP 4-1, until full wet. Non-inoculated controls were

sprayed with a solution of sterilized water and Tween

20. Inoculated plants were immediately covered with

sterilized transparent polyethylene bags to maintain hu-

midity. Plants were kept under natural light conditions

at 30–32 °C for the development of blast symptoms. For

the production of conidia on aerial conidiophores on

symptomatic wheat leaves, excised plant leaves were

placed on wet filter paper in a Petri dish. Sterilized pip-

ette tips were used to support the diseased tissues so

that they were in contact with wet filter paper to prevent

desiccation. The Petri dish was covered with a lid and

placed at room temperature (30–32 °C). After incubation

for 24 h, infected leaves were examined under a light

microscope to confirm sporulation and then photo-

graphed. Strains were reisolated and preserved on dried

filter paper at 4 °C for further examination. Seedlings of

barley (H. vulgare), rice (O. sativa), and goosegrass (E.

indica) were also inoculated by conidia produced by the

strains BTJP 3-1 and BTJP 4-1 following the protocols

described for wheat seedlings.

Transcriptome sequencing of field collected samples

Leaf blades from wheat displaying blast symptoms and

those with no symptoms were harvested from the same

fields, cut into thin strips (approximately 0.5 × 1.0 cm),

and immediately stored in 1 ml RNAlater solution

(Thermofisher Scientific, Basingstoke, UK). Total RNA

was extracted from the samples using the RNeasy Plant

Mini kit (Qiagen, Manchester, UK) following the manu-

facturer’s instructions. The amount and the quality of

RNA samples were determined using the Agilent 2100

Bioanalyzer (Agilent Technologies, Edinburgh, UK).

cDNA libraries were prepared using the Illumina TruSeq

RNA Sample Preparation Kit (Illumina, Cambridge, UK).

Library quality was confirmed before sequencing using

the Agilent 2100 Bioanalyzer (Agilent Technologies, Ed-

inburgh, UK). The libraries were sequenced on the Illu-

mina HiSeq 2500 system (Illumina) operated by The

Genome Analysis Centre, UK, producing 101-bp paired-

end reads. The reads were mapped to the genomes of

wheat and wheat blast strain M. oryzae BR32 using the

TopHat software, version 2.0.11 [42], and fragments per

kilobase of transcript per million (FPKM) values of

mapped reads to the transcriptomes were calculated

using Cufflinks, version 2.1.1 [43]. De novo assembly of

transcriptomes was performed using sequence reads

from each sample with Trinity software, version 2.06

[44]. Within days of sequencing, the data were made

public on Open Wheat Blast (http://www.wheatblast.-

net). A timeline from sample collection to population

and phylogenomic analysis is provided on the Open

Wheat Blast website (http://s620715531.websitehome.-

co.uk/owb/?p=485).

Population and phylogenomic analyses

We used predicted transcript sequences extracted from

the assembled genomic sequences of 20M. oryzae iso-

lates collected on infected leaves of rice (O. sativa),

wheat (T. aestivum), foxtail millets (Setaria spp.), Eleu-

sine spp., Lolium spp., and Eragrostis spp. (Additional

file 1: Table S1) [18, 19, 45–47]. We used Proteinortho

[48] to identify groups of sequences with orthologous re-

lationships across the 20 reference transcriptomes and

each of the Bangladeshi transcriptomes. We identified

983, 3250, 501, and 3413 groups of orthologous se-

quences across the reference transcriptomes from sam-

ples 2, 5, 7, and 12, respectively. Only the two

Bangladeshi isolates that had the largest number of

orthologous sequences were retained for further analysis

(samples 5 and 12). The consensus set of orthologous

transcripts across the 22 transcriptomes included 2193

groups of sequences. We aligned orthologous groups of

sequences using MACSE, with default parameters [49].

We removed codons with missing data or alignment

gaps. We excluded transcript alignments for which
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>0.5 % of sites corresponded to singletons or doubletons

exclusive to the Bangladeshi isolates, suggesting errone-

ous assignment of predicted sequences to M. oryzae

BR32 transcripts or sequencing errors in transcript as-

semblies. We also excluded the regions corresponding to

the first 30 and last 16 codons and treated ambiguities

as missing data. Maximum likelihood phylogenetic infer-

ence was performed on the concatenated sequence of

1923 orthologs (2,676,792 bp in total), using the

GTRGAMMA model in RAxML version 8.1.17 with 100

bootstrap replicates [33]. The maximum likelihood ge-

nealogy was mid-point rooted along the longest branch,

which was the branch connecting the foxtail millet- and

rice-infecting lineages to other lineages.

For population genomic analyses, we identified tran-

scriptomic SNPs based on short read alignments against

the M. oryzae reference genome 70-15. We mapped

quality-trimmed Illumina short read data generated from

RNA using TopHat version 2.0.14 [43]. For all com-

pletely sequenced genomes, we aligned quality-trimmed

Illumina short read data against the reference genome

70-15 using Bowtie version 2.2.6 [50]. For all strains col-

lected from the Bangladesh outbreak, transcriptomic se-

quences were aligned using TopHat version 2.0.14. We

identified variants in the genomes of the different strains

using the Genome Analysis Toolkit (GATK) version 3.5

from the Broad Institute [51]. We used a two-step vari-

ant calling according to the GATK best practice guide-

lines. We first called raw variants with local reassembly

of read data using Haplotype caller. All raw variant calls

were jointly genotyped using GenotypeGVCF. We used

SelectVariants to subset the variant calls to contain only

SNPs. Then, the SNPs were hard-filtered using the fol-

lowing criteria: QUAL ≥ 5000.0, QD ≥ 5.0, MQ ≥ 20.0, –

2.0 ≤ ReadPosRankSum ≤ 2.0, –2.0 ≤MQRankSum_up-

per ≤ 2.0, –2.0 ≤ BaseQRankSum ≤ 2.0. Furthermore, we

only retained SNPs genotyped in at least 90 % of all

strains and genotyped the Bangladeshi sample 12 (Add-

itional file 1: Table S1). We used SplitsTree version

4.14.2 to generate a Neighbor-Net network from Brazil-

ian and Bangladeshi wheat blast strains [52]. To build

the network, we used uncorrected p distances calculated

from the SNP supermatrix. The network was drawn

based on equal angle splits.

Additional files

Additional file 1: Table S1. Samples included in the phylogenomic and

population genomic analyses. (XLSX 15 kb)

Additional file 2: Table S2. Short read coverage of Magnaporthe oryzae

and wheat transcriptomes in Bangladeshi samples. (PDF 66 kb)
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