
Emergency Neurological Life Support: Intracranial Hypertension 
and Herniation

Robert D. Stevens1, Michael Shoykhet2, and Rhonda Cadena3

Robert D. Stevens: rstevens@jhmi.edu
1Departments of Anesthesiology and Critical Care Medicine, Neurology, Neurosurgery, and 
Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

2Pediatric Critical Care Medicine, Department of Pediatrics, Washington University in St. Louis 
School of Medicine, St. Louis, MO, USA

3Departments of Neurology, Neurosurgery, and Emergency Medicine, University of North 
Carolina School of Medicine, Chapel Hill, NC, USA

Abstract

Sustained intracranial hypertension and acute brain herniation are “brain codes,” signifying 

catastrophic neurological events that require immediate recognition and treatment to prevent 

irreversible injury and death. As in cardiac arrest, a brain code mandates the organized 

implementation of a stepwise management algorithm. The goal of this emergency neurological life 

support protocol is to implement an evidence-based, standardized approach to the evaluation and 

management of patients with intracranial hypertension and/or herniation.
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Introduction

The ENLS-suggested algorithm for the initial management of intracranial hypertension or 

herniation is shown in Fig. 1.

The sum of intracranial contents—brain, blood, and cerebrospinal fluid (CSF)—represents a 

fixed volume determined by the invariant constraints of the cranial vault [1, 2]. Relative 

volumes of these contents will change to accommodate an acutely developing, space-

occupying mass; however, this compensation is lost once a critical volume change has 

occurred, as demonstrated by the inflection point of the pressure–volume relationship (Fig. 

2). Intracranial hypertension and cerebral herniation are “brain codes”—life-threatening 

neurological emergencies indicating that intracranial compliance adaptive mechanisms have 

been overwhelmed.
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Although frequently linked, elevations of intracranial pressure (ICP) and brain herniation 

can occur independently. Intracranial hypertension is defined as a sustained (>5 min) 

elevation of ICP above 20 mmHg [3]. Detection requires invasive monitoring, but certain 

clinical and physiological signs may suggest elevated ICP prior to instrumentation. 

Herniation syndromes result from intracranial compartmental pressure gradients leading to 

parenchymal tissue shifts that compress or displace the brainstem, cranial nerves, or cerebral 

vasculature. Ischemia or infarction from vascular compression may cause edema and further 

deterioration in compliance.

The etiologies of brain codes are classified anatomically as extra-axial, focal, or diffuse 

intraparenchymal processes (Table 1). In the emergent setting of a brain code, resuscitative 

measures are pursued even if the etiological mechanism has not been fully characterized.

Presentation

Clinically, symptoms of increased ICP include headache, nausea, and vomiting, or altered 

mental status with physical signs of hypertension, bradycardia, and irregular respirations or 

apnea (Cushing’s triad), although the concurrence of these three signs is less frequent [4]. 

Common sites for herniation are the cingulum (subfalcine herniation), medial temporal lobe 

(uncal herniation), and inferior cerebellum (tonsillar herniation).

The cardinal signs of transtentorial (uncal) herniation are an acute loss of consciousness 

associated with ipsilateral pupillary dilation and contralateral hemiparesis, resulting, 

respectively, from compression or displacement of ascending arousal pathways, oculomotor 

nerve (III), and corticospinal tract [5, 6]. In a subset of patients, herniation-associated shift 

of the midbrain compresses the contralateral anterior cerebral peduncle (crus cerebri) against 

the tentorium, resulting in hemiparesis that is ipsilateral to the lesion (Kernohan’s false 

localizing sign) [7]. Transtentorial herniation may cause ipsilateral cerebral infarction due to 

occlusion of the posterior cerebral artery.

Neuroimaging

In the emergent setting of a brain code, a cranial computed tomography (CT) scan should be 

obtained to identify a process that may require surgical intervention. Initial resuscitative 

measures and stabilization, including airway interventions, circulatory and ventilatory 

support, and initial hyperosmolar therapy, must be initiated prior to transport to the 

radiology suite. Cranial CT is preferred over magnetic resonance imaging (MRI) due to 

availability and speed of imaging. In the majority of cases, CT will identify the underlying 

process (see Table 1), although MRI may subsequently be needed for characterization. MRI 

should only be sought if the imminent risk of an additional brain code has been addressed by 

medical and/or surgical intervention.

ICP Monitoring

ICP monitors are invasive and are of several different types, including intraventricular 

catheters as well as intraparenchymal, subdural, and epidural devices. The decision to 

proceed with ICP monitoring is determined by the underlying process and the likelihood of 
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its progression. In traumatic brain injury (TBI), neurosurgical guidelines recommended 

placement of an ICP monitor in patients with severe TBI who are comatose after 

resuscitation [Glasgow Coma Scale (GCS) of 3–8] and have either (1) abnormalities on 

cranial CT scan or (2) meet at least two of the following three criteria: age >40 years; 

systolic blood pressure <90 mmHg; or abnormal posturing [8]. Indications for ICP 

monitoring are less well established in nontraumatic coma. However, a recent international 

multidisciplinary consensus conference recommended that ICP and CPP should be 

monitored in patients at risk for ICP elevation based on clinical and/or imaging features to 

guide medical and surgical interventions [9].

Cerebral perfusion pressure (CPP), used as a surrogate for global cerebral blood flow (CBF), 

is approximated by the equation:

CPP = Mean arterial pressure (MAP) – ICP.

In patients with TBI, available data support maintaining CPP >50–60 mmHg in adults to 

prevent cerebral ischemia [3]. Efforts to augment CPP greater than 60 mmHg may elevate 

the risk of systemic complications, including acute respiratory distress syndrome [10]. CPP 

targets for patients with non-traumatic intracranial hypertension have not been adequately 

studied.

Tier Zero

Brain code resuscitation begins with an assessment of circulation, airway patency, and 

ventilation. The head of the bed should be elevated to >30° and the head kept midline to 

facilitate cerebral venous drainage [11, 12]. Stimuli such as tracheal suctioning, that may 

elevate ICP, should be minimized. If hyperthermia is present, measures should be taken to 

normalize body and brain temperature. Only iso- or hyperosmotic fluids should be used as 

intravenous solutions. If hyponatremia is present, steps should be initiated for correction. 

High-dose corticosteroid therapy is initiated for vasogenic edema resulting from brain 

tumors, abscesses, or non-infectious neuroinflammatory conditions [13, 14]. If the brain has 

not yet been imaged, a non-contrast head CT scan should be performed when the patient can 

be transported safely.

Tier One

For acute elevations in ICP, hyperosmolar therapy with either mannitol or hypertonic saline 

(HTS) has shown equivalent efficacy in lowering of ICP [15–18]. Mannitol is administered 

as 0.5–1 g/kg intravenous (IV) bolus through a peripheral intravenous line and may be 

repeated every 4–6 h if serum osmolality is monitored [19]; no therapeutic benefit is 

appreciable with osmolality >320 mOsm/kg. HTS is available in concentrations from 2 to 

23.4 % and can be administered as a bolus alone or in addition to mannitol. HTS 

concentrations boluses C7.5 % should be given via a central venous catheter; when using 

concentrations lower than this, peripheral lines may be used, but the infusion should be in a 

large vessel, and the IV site should be carefully monitored for infiltration. Since two pre-

hospital trials using 7.5 and 3 % NaCl solutions via peripheral catheters had no negative 

effects, in the brain code setting these treatments should not be withheld simply because 
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central access is yet be available [20, 21]. Bolus 23.4 % NaCl has been associated with ICP 

reduction and reversal of transtentorial herniation [22]. When infusing HTS, target serum 

sodium concentration should be determined and serum sodium level checked every 4–6 h. 

When acute obstructive hydrocephalus is present as determined by neuroimaging, an 

external ventricular drainage (EVD) system should be placed emergently. If an EVD system 

is already in place, drain 5–10 mL of CSF [23] for acute rises in ICP. As a temporizing 

measure, a brief course (<2 h) of hyperventilation to a PaCO2 of 30–35 mmHg may be 

considered, while definitive treatment is provided [24, 25]. If ICP is not controlled, and/or 

clinical signs of herniation do not resolve with Tier One interventions, review 

decompressive surgical options [26, 27]. If surgery is not appropriate or not undertaken, 

move to Tier Two. If ICP is controlled with Tier One interventions, consider repeating the 

head CT scan to rule out new processes.

Head CT

After Tier One or Tier Two (below), if brain imaging has not yet been performed, a head CT 

scan should be performed to determine the cause of herniation or intracranial hypertension, 

for the reasons explained in the neuroimaging section above.

Tier Two

If Tier One interventions have failed to control ICP, Tier Two should be engaged. If 

hyperosmolar therapy with HTS has been administered, serum sodium goals should be 

increased, although sodium levels >160 mmol/L are unlikely to provide additional benefit. 

The target for serum sodium is controversial and it depends on pathophysiological state. If 

the patient is continuing to have increased ICP (and needs to advance to Tier Two), one 

needs to maintain a gradient between brain and serum in order to promote the egress of 

water from the brain. Once the ICP has stabilized, one needs to maintain sodium at the 

current high level until the brain edema process is waning. Sedation should be increased to 

aid in ICP management. Propofol has been shown to reduce CMRO2 and CBF volume and, 

consequently, ICP [28]. It is administered as a bolus of 1–3 mg/kg and may be continued as 

an infusion (titrate to maximum 200 µg/kg/min) in ventilated patients. Propofol, especially 

when given as a bolus dose, is associated with circulatory depression, which should be 

corrected with IV fluids and/or vasopressors to maintain CPP goals. A small subset of 

patients receiving propofol may develop a propofol infusion syndrome characterized by 

metabolic acidosis, cardiac dysfunction, rhabdomyolysis, and hypertriglyceridemia, often 

with a fatal outcome [29, 30]. Propofol infusion syndrome is more likely to develop at doses 

>100 mcg/kg/min administered for >48 h; so if propofol is increased to these extreme ranges 

(200 µg/kg/min), it should only be done temporarily, while other measures are put in place.

If ICP is not responsive to Tier Two interventions, rescue decompressive surgery should be 

considered. If the patient is ineligible for surgery, Tier Three (below) should be engaged.

Decompression

Surgery is considered for brain code patients who have failed medical management. 

Decompressive surgical interventions for the management of brain code include (a) 
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placement of a ventricular drain, (b) evacuation of extra-axial lesion (e.g., epidural 

hematoma), (c) resection of intracerebral lesion (e.g., lobar hemorrhage), (d) removal brain 

parenchyma (e.g., cerebellar mass), and (d) uni- or bilateral craniectomies.

Selected patients with rapid neurological deterioration from focal space-occupying lesions 

may benefit from surgical decompression. This includes patients with brain tumors, brain 

abscesses, and parenchymal hemorrhages, particularly when the hemorrhages are lobar [31] 

or cerebellar [32, 33] in location. Decompressive craniectomy may also be considered in 

patients with diffuse brain swelling associated with TBI [34–37]; stroke with brain edema, 

the process in which hemicraniectomy has been most extensively studied [38, 39]; 

meningoencephalitis; or non-infectious neuroinflammatory conditions (e.g. acute 

demyelinating encephalomyelitis).

Tier Three

Tier Three measures represent the most aggressive level of management and carry the 

highest risk of adverse effects. Rigorous randomized prospective studies are lacking, and 

recommendations are driven by consensus. This tier includes administration of pentobarbital 

(bolus 10 mg/kg over 30 min–2 h, then 5 mg/kg/h × 3 h; maintenance infusion of 1–4 

mg/kg/h) titrated to ICP goal. Some patients may not tolerate pentobarbital at these doses 

because of hypotension and arterial vasopressors may be necessary. The 

electroencephalogram (EEG) should be continuously monitored and pentobarbital titrated 

either to ICP or to EEG burst suppression of 5–20 s. The pentobarbital infusion is continued 

for 24–96 h, while the underlying processes driving ICP are treated [40–42]. Pentobarbital is 

associated with respiratory depression, cardiovascular instability, immune suppression, and 

paralytic ileus; neurological examination is limited to an assessment of pupillary reactivity. 

Pentobarbital plasma clearance may take days after discontinuation of infusion; however, it 

redistributes out of the CNS more rapidly.

Moderate hypothermia (target core temperature 32–34 °C) is associated with a predictable 

reduction in ICP. It may be induced with external cooling devices or with IV infusion of 

cooled fluids [43–48]. Hypothermia may be associated with shivering, cardiac arrhythmias, 

sepsis, and electrolyte disturbances and protocols for induction, maintenance, and 

rewarming should be used to optimally manage these complications.

Hyperventilation to achieve mild to moderate hypocapnia (PaCO2 25–35 mmHg) and 

cerebrovascular constriction may be considered in selected patients who have failed other 

interventions in the acute period. Prolonging hyperventilation for more than 6 h is unlikely 

to be beneficial and may cause or exacerbate ischemic injury [25]. Hence, hyperventilation 

should ideally be accomplished in conjunction with a cerebral oxygenation monitor (e.g. 

jugular venous oximetry and brain tissue oxygen probe), in order to detect cerebral ischemia.

Consider Additional Monitoring

Patients who have had or are at risk for a brain code may benefit from additional 

neuromonitoring, including jugular venous oximetry, brain tissue oxygenation, and cerebral 

microdialysis. Treatment based on ICP and CPP overlooks significant information on the 
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physiologic and metabolic state of the injured brain. Moreover, assumptions regarding CPP 

may not hold if CBF autoregulation is impaired. Complementary neuromonitoring 

techniques should be considered to optimize medical management in selected patients with 

severe brain injury.

Studies using brain tissue oxygen sensors indicate that significant parenchymal hypoxia may 

occur even when ICP and CPP are normal [49, 50]. Cerebral microdialysis measures brain 

interstitial lactate, pyruvate, glucose, and glutamate, indicators of cerebral metabolic activity 

whose levels may be altered independently of ICP and CPP [51]. Dynamic indices of 

cerebral autoregulation express the correlation between a systemic hemodynamic parameter 

(arterial blood pressure or CPP) and an intracranial physiological parameter such as ICP 

(PRx), transcranial Doppler-derived CBF velocity (Mx), or brain tissue PO2 (Orx). High 

degrees of correlation suggest a failure of autoregulation and an increased risk of injury due 

to hypo or hyperperfusion [52, 53].

Revise ICP/MAP Goals

Depending on the specific circumstances and the invasive or noninvasive monitoring that 

are available, the standard goals of MAP and ICP should be re-considered and customized to 

the patient. For example, a patient who is awake, without symptoms, and in whom ICP is in 

excess of 20 mmHg, or a CPP below 50 mmHg, may not require any intervention.

Pre-hospital

Recognition of a brain code in the pre-hospital setting is important because life-saving 

therapies can be initiated prior to arrival in the Emergency Department. Clinical signs of 

herniation may be apparent and include unilateral dilated pupil, loss of consciousness, 

posturing, as well as hypertension and bradycardia. Resuscitation begins with the 

management of circulation, airway patency, and ventilation. If capnography is available 

after intubation, a goal of end-tidal CO2 of 30–35 mmHg should be targeted. The head of the 

bed should be elevated to facilitate cerebral venous drainage; although these patients are 

typically backboarded, it may be possible to place a rolled blanket or towel beneath the 

board during transport to elevate the head. Hyperventilation can be initiated using BVM 

ventilation. Pre-hospital notification is also important so that resources are available upon 

arrival.

Pediatric Considerations

Management for intracranial hypertension in the pediatric population should follow 

analogous tiers of treatment and indications for monitoring as in adults. Importantly, the 

presence of an open fontanel in infants does not preclude the development of intracranial 

hypertension and cerebral herniation [54]. In children with TBI <5 years old, CPP should be 

maintained >40 mmHg, whereas in children 6–17 years of age a target of >50 mmHg is 

appropriate [55, 56]. Establishment of optimal CPP may require advanced neuromonitoring 

(i.e., brain tissue oxygen tension) due to the lack of well-defined age-dependent CPP 

thresholds and the risk of abnormal cerebrovascular autoregulation [57].
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Hyperosmolar therapy with either mannitol or 3 % HTS may be administered for ICP 

elevations >20 mmHg or for suspected herniation. Mannitol bolus dose is 0.5–1 g/kg. 

Mannitol can be administered every 4 h as needed for ICP >20 mmHg as long as the 

osmolar gap is less than 20 mOsm. A Foley catheter should be placed in children receiving 

mannitol to prevent bladder overdistention due to mannitol-induced diuresis. Such diuresis 

should be anticipated and additional boluses of normal saline provided to prevent 

hypotension.

Hypertonic 3 % saline may be given as a bolus dose of 5–10 mL/kg for acute elevations in 

ICP or signs of brain herniation. HTS may then be administered as a continuous infusion at 

0.5–1.5 mL/kg/h [55]. The expected serum sodium rise is 1 mEq/L for every 1 mL/kg bolus 

dose given and 1 mEq/L/h for every 1 mL/kg/h continuous infusion. Levels of serum sodium 

>160–165 mEq/L are unlikely to provide additional benefit in reducing intracranial 

hypertension. Compared to mannitol, HTS has the added benefit of improved hemodynamic 

stability, an important consideration given the deleterious effect of hypotension in patients 

with acute brain injury.

Brain herniation is potentially reversible with appropriate and timely therapy. Reversal of 

transtentorial herniation has been observed in 50–75 % of adult patients with either TBI [58] 

or with supratentorial mass lesions [59]. Long-term outcomes after successful treatment for 

herniation may be more favorable in children than in adults [58].

A special category of children at risk for increased ICP and brain herniation are children 

with diabetic ketoacidosis (DKA). Approximately 0.5–1 % of children with DKA will have 

severe cerebral edema, which carries a mortality rate of 20–25 % [60, 61]. Factors thought 

to be associated with increased risk of neurologic complications in pediatric DKA are young 

age, duration and severity of symptoms, low pCO2, overly aggressive fluid resuscitation, 

administration of hypotonic fluids, administration of sodium bicarbonate, and decreases in 

serum glucose >100 mg/dL/h [61, 62]. Hence, initial resuscitation should be administered 

with caution. Boluses of sodium bicarbonate must be avoided. Mental status should be 

checked at least hourly. Children with DKA will often become somnolent with initiation of 

treatment, possibly due to subtler cerebral edema, but they should remain arousable with 

stimulation. Children who are unarousable, those with papilledema and those with warning 

signs of cerebral herniation (Cushing’s triad) should receive hyperosmolar therapy and be 

hyperventilated to prevent further deterioration. HTS may be preferred to mannitol, since in 

DKA osmolality is already high due to elevated glucose concentrations and mannitol-

induced diuresis may aggravate dehydration.
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Fig. 1. 
ENLS intracranial hypertension or herniation protocol
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Fig. 2. 
Intracranial compliance is biphasic

Stevens et al. Page 12

Neurocrit Care. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stevens et al. Page 13

Table 1

Etiologies of brain code

Extra-axial processes

  Epidural hemorrhage

  Subdural hemorrhage

  Subdural empyema

  Extra-axial brain tumor

  Pneumocephalus

Focal brain processes

  Brain tumor (primary, metastatic)

  Ischemic stroke

  Primary intracerebral hemorrhage

  Brain abscess

  Traumatic brain injury

  Hydrocephalus

Diffuse brain processes

  Traumatic brain injury

  Aneurysmal subarachnoid hemorrhage

  Infectious meningitides and encephalitides

  Non-infectious neuroinflammatory disorders

  Hepatic encephalopathy

  Toxic-metabolic encephalopathies
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