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1 Introduction

As a motivating example we consider a population, say of birds or fish, whose
members are moving in IR3. It has been observed that under some initial conditions,
for example on their positions and velocities, the state of the flock converges to one
in which all birds fly with the same velocity. A goal of this paper is to provide some
justification of this observation. To do so, we will postulate a model for the evolution
of the flock and exhibit conditions on the initial state under which a convergence
as above is established. In case these conditions are not satisfied, dispersion of the
flock may occur.

There has been a large amount of literature on flocking, herding and schooling.
Much of it is descriptive, most of the remaining proposes models, which are then
studied via computer simulations, e.g., [3, 7]. A starting point for this paper is the
model proposed in the latter of these references which, for convenience, we will call
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Vicsek’s model. Its analytic behavior was subsequently studied in [4] and this paper,
brought to our attention by Ali Jadbabaie, has been helpful for us.

Vicsek’s model is motivated by the idea that bird i adjusts its velocity towards
the average of its neighbors’ velocities. With (our first modification) IR2 replaced
by Euclidean space IE3 and the heading θ replaced by the velocity v. The model is

xi(t + 1) = xi(t) + vi(t) (1)

vi(t + 1) =
1

ni(t)

∑
j∈Ni(t)

vj(t).

where xi, vi ∈ IE3 for i = 1, . . . , k and time t = 0, 1, 2 . . .. Here Ni(t) = {j ≤ k |
‖xi(t) − xj(t)‖ ≤ r} and ni(t) = #Ni(t) for some r > 0.

Let Ax be the k × k binary matrix given by

aij =
{

1 if ‖xi(t) − xj(t)‖ ≤ r
0 otherwise.

Denoting by Ai the ith row of Ax and by ei the vector (0, . . . , 0, 1, 0, . . . , 0) with the
1 in the ith place, we have

vi(t + 1) − vi(t) =
(

1
ni(t)

Ai − ei

)
v(t) =

1
ni(t)

[Ai − niei]v(t).

The last two expressions should be understood as linear combinations of elements
in IE3. Extending this notation to matrix form,

v(t + 1) − v(t) = −D−1
x Lxv(t) (2)

where Dx is the k × k diagonal matrix whose ith diagonal entry is
∑

j≤k aij and Lx

is the matrix whose ith row is Ai − niei, that is,

Lx = Dx − Ax. (3)

We found it convenient to modify (2) by scaling Lx in a slightly different way,
namely,

x(t + 1) = x(t) + Δtv(t) (4)

v(t + 1) =
(

Id − Lx

‖Lx‖
)

v(t).

Here ‖Lx‖ is the operator norm of Lx (with respect to the norm in (IE3)k induced
by the norm of IE3).

Our third modification proceeds as follows. It is reasonable to assume that birds
influence each other as a function of their distance. We give form to this assumption
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via a non-increasing function η : IR+ → IR+ such that the adjacency matrix Ax has
entries

aij = η(‖xi − xj‖2). (5)

In this paper we will take, for some fixed K,σ > 0 and β ≥ 0,

η(y) =
K

(σ2 + y)β
. (6)

Vicsek’s adjacency matrix is also of this form where, for some r > 0,

η(y) =
{

1 if y ≤ r2

0 otherwise.

Note that, in contrast with the abrupt behavior of this last function, the function
in (6) decreases continuously with y and the rate of decay is given by β > 0.

We also consider evolution for continuous time. The corresponding model can
be given by the system of differential equations

x′ = v (7)
v′ = −Lxv.

Our first two main results give conditions to ensure that the birds’ velocities
converge to a common one and the distance between birds remain bounded for
both continuous and discrete time. They can be stated as follows (more precise
statements are in Theorems 2 and 3 below).

Theorem 1 Let (x(t), v(t)) be a solution of (4) with initial conditions x(0) = x0

and v(0) = v0. If β < 1/2 then, when t → ∞ the velocities vi(t) tend to a common
limit v̂ ∈ IE3 and the vectors xi − xj tend to a limit vector x̂ij , for all i, j ≤ k.
The same happens if β ≥ 1/2 provided the initial values x0 and v0 satisfy a given,
explicit, relation.

The same holds for a solution of (7).

2 Some preliminaries

Given a nonnegative, symmetric, k × k matrix A the Laplacian L of A is defined to
be

L = D − A

where D = diag(d1, . . . , dk) and d� =
∑k

j=1 a�j. Some features of L are immediate.
It is symmetric and it does not depend on the diagonal entries of A. The Laplacian
as just defined has its origins in graph theory where the matrix A is the adjacency
matrix of a graph G and many of the properties of G can be read out from L (see [6]).

The matrix Lx in (4) and (7) is thus the Laplacian of Ax. It acts on (IE3)k and
satisfies the following:
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(a) For all v ∈ IE3, Lx(v, . . . , v) = 0.

(b) If λ1, . . . , λk are the eigenvalues of Lx then

0 = λ1 ≤ λ2 ≤ . . . ≤ λk = ‖Lx‖.

(c) For all v ∈ (IE3)k,

〈Lxv, v〉 =
k∑

i,j=1

aij‖vi − vj‖2.

Note that (b) implies Lx is positive semidefinite.
The quantity Ex(v) =

∑k
i,j=1 aij‖vi−vj‖2 is the energy of the flock (at a position

x ∈ (IE3)k and a velocity v ∈ (IE3)k). Note that Ex(v) = 0 when all birds are flying
with the same velocity. That is, they fly with the same heading and at the same
speed.

The matrix Id − 1
‖Lx‖Lx in (4) acts on (IE3)k. The fixed points for this action

are easily characterized.

Proposition 1 Let v ∈ (IE3)k. The following are equivalent:

(1) v is a fixed point (i.e.,
(
Id − 1

‖Lx‖Lx

)
v = v).

(2) Lx(v) = 0.

(3) Ex(v) = 0.

Proof. The equivalence between (1) and (2) is obvious. The implication (2) =⇒
(3) is trivial. Finally, note that (3) implies that vi = vj for all i �= j and this, together
with (a) above, implies (2). �

The second eigenvalue λ2 of Lx is called the Fiedler number of Ax. We denote
the Fiedler number of Ax by φx.

Remark 1 One difference between Vicsek’s model and (4) lies in the way in which
Lx is scaled. In (2) the scaling used is D−1

x Lx. The product matrix H = D−1
x Lx

satisfies that, for all i ≤ k, ‖Hi‖∞ = 1. Also, the product matrix S = D−1
x Ax is

stochastic (i.e., nonnegative and such that ‖Si‖1 = 1). We note, however, that it
destroys the symmetry of both Ax and Lx.

The scaling in (4) considers instead Lx
‖Lx‖ . This does not lead to stochasticity

but preserves symmetry.

We end these preliminaries introducing some concepts which will be useful in
this paper.

Let Δ be the diagonal of (IE3)k, i.e.,

Δ = {(v, v, . . . , v) | v ∈ IE3}
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and Δ⊥ be the orthogonal complement of Δ in (IE3)k. Then, every point x ∈ (IE3)k

decomposes in a unique way as x = xΔ + x⊥ with xΔ ∈ Δ and x⊥ ∈ Δ⊥. Note
that if x(t + 1) = x(t) + Δtv(t) then x(t + 1)⊥ = x(t)⊥ + Δtv(t)⊥. Similarly, if
v(t + 1) = −

(
Id − Lx

‖Lx‖
)

v(t) then

v(t + 1)⊥ = −
(

Id − Lx

‖Lx‖
)

v(t)⊥

since Lx(Δ) = 0 and Lx(Δ⊥) ⊆ Δ⊥. Finally, note that for all x ∈ (IE3)k the matrices
Ax and Ax⊥ are equal. It follows that the projections over Δ⊥ of the solutions of
(4) are the solutions of the restriction of (4) to Δ⊥. A similar remark holds for (7).

These projections over Δ⊥ are of the essence since we are interested on the
differences xi − xj and vi − vj, for i �= j, rather than on the xi or vi themselves.

We denote Γ = 1
2

∑
i	=j ‖xi − xj‖2 and Λ = 1

2

∑
i	=j ‖vi − vj‖2. To better deal

with these functions consider Q : (IE3)k × (IE3)k → IR defined by

Q(u, v) =
1
2

k∑
i,j=1

〈ui − uj, vi − vj〉.

Then Q is bilinear, symmetric, and, when restricted to Δ⊥ × Δ⊥, positive definite.
It follows that it defines an inner product 〈 , 〉Q on (IE3)k/Δ 
 Δ⊥. Now note that
Λ = ‖v‖2

Q and Γ = ‖x‖2
Q and that Γ(x) = Γ(x⊥) and Λ(v) = Λ(v⊥).

Let ν,ν > 0 be such that, restricted to Δ⊥,

ν‖ ‖2 ≤ ‖ ‖2
Q ≤ ν‖ ‖2.

Note that ν,ν depend only on k. We now show bounds for them in terms of k.

Lemma 1 For all k ≥ 2, ν(k) ≥ 1
3k and ν(k) ≤ 2k(k − 1).

Proof. By definition, ν ≤ max
‖x‖=1

‖x‖2
Q. Since ‖x‖ = 1, ‖xi‖ ≤ 1 for i = 1, . . . , k

and therefore, ‖xi − xj‖2 ≤ 4 for all i �= j. This implies

‖x‖2
Q ≤ 1

2
k(k − 1)4 = 2k(k − 1).

Also by definition, 1
ν ≤ max

‖x‖Q=1
‖x‖2. Let x ∈ Δ⊥ such that ‖x‖Q = 1. We claim

that, for all i ≤ k and � ≤ 3, |xi�| < 1. Assume the contrary. Then there exists i0
and � such that |xi0�| ≥ 1. Without loss of generality, xi0� ≥ 1. Since

∑
xi = 0,

there exists i1 such that xi1� < 0. But then

‖x‖2
Q =

1
2

∑
i	=j

‖xi − xj‖2 ≥ ‖xi0 − xi1‖2 ≥ (xi0� − xi1�)2 > 1
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contradicting ‖x‖2
Q = 1. So the claim is proved. Finally

‖x‖2 =
k∑

i=1

3∑
�=1

x2
i� ≤ 3k

which shows 1
ν ≤ 3k. �

Remark 2 The condition “the velocities vi(t) tend to a common limit v̂ ∈ IE3” in
Theorem 1 is equivalent to the condition “v⊥(t) → 0.” Also, the condition “the
vectors xi − xj tend to a limit vector x̂ij , for all i, j ≤ k” is equivalent to “x⊥(t)
tend to a limit vector x̂ in Δ⊥.” This suggests that we are actually interested on the
solutions of the systems induced by (4) and (7), respectively, on the space Δ⊥×Δ⊥.
Since, as we mentioned, these induced systems have the same form as (4) and (7),
we will keep referring to them but we will consider them on Δ⊥×Δ⊥. Actually, we
will consider positions in

X := (IE3)k/Δ 
 Δ⊥

and velocities in
V := (IE3)k/Δ 
 Δ⊥.

3 Convergence in continuous time

Proposition 2 Let A be a symmetric matrix, L = D−A its Laplacian, φ its Fiedler
number, and μ = mini	=j aij . Then φ ≥ νμ. In particular, if aij = η(‖xi − xj‖2)
then

φ ≥ νη(Γx).

Proof. For all v ∈ V

‖Lv‖‖v‖ ≥ 〈Lv, v〉 =
k∑

i,j=1

aij‖vi − vj‖2 ≥ μ‖v‖2
Q ≥ νμ‖v‖2.

It follows that ‖Lv‖ ≥ νμ‖v‖ and thus the statement. �
In the following we fix a solution (x, v) of (7). At a time t ∈ IR+, x(t) and v(t)

are elements in X and V , respectively. In particular, x(t) determines an adjacency
matrix Ax(t). For notational simplicity we will denote this matrix by At and its
Laplacian and Fiedler number by Lt and φt, respectively. Similarly, we will write
Λ(t) and Γ(t) for the values of Λ and Γ, respectively, at (v(t), x(t)). Finally, we will
write Γ0 for Γ(0) and similarly for Λ0.

Denote Φt = min
τ∈[0,t]

φτ .
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Proposition 3 For all t ≥ 0

Λ(t) ≤ Λ0e
−2tΦt .

Proof. Let τ ∈ [0, t]. Then

Λ′(τ) =
d

dτ
〈v(τ), v(τ)〉Q

= 2〈v′(τ), v(τ)〉Q
= −2〈Lτv(τ), v(τ)〉Q
≤ −2φx(τ)Λ(τ).

Here we have used that Lτ is symmetric positive definite on V . Using this inequality,

ln(Λ(τ))
∣∣∣∣t
0

=
∫ t

0

Λ′(τ)
Λ(τ)

dτ ≤
∫ t

0
−2φτdτ = −2tΦt

i.e.,
ln(Λ(t)) − ln(Λ0) ≤ −2tΦt

from which the statement follows. �

Proposition 4 For T > 0

Γ(T ) ≤ 2
(

Γ0 +
Λ0

Φ2
T

)
.

Proof. We have |Γ′(t)| = |2〈v(t), x(t)〉Q| ≤ 2‖v(t)‖Q‖x(t)‖Q. But ‖x(t)‖Q =
Γ(t)1/2 and ‖v(t)‖2

Q = Λ(t) ≤ Λ0e
−2tΦt , by Proposition 3. Therefore,

Γ′(t) ≤ |Γ′(t)| ≤ 2
(
Λ0e

−2tΦt
)1/2

Γ(t)1/2 (8)

and, using that t �→ Φt is non-increasing,∫ T

0

Γ′(t)
Γ(t)1/2

dt ≤ 2
∫ T

0

(
Λ0e

−2tΦt
)1/2

dt

≤ 2
∫ T

0
Λ1/2

0 e−tΦT dt

= 2Λ1/2
0

(
− 1

ΦT

)
e−tΨ(T )

∣∣∣∣T
0

≤ 2Λ1/2
0

ΦT

which implies

Γ(t)1/2

∣∣∣∣T
0

=
1
2

∫ T

0

Γ′(t)
Γ(t)

dt ≤ Λ1/2
0

ΦT
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from which it follows that

Γ(T ) ≤
(

Γ1/2
0 +

Λ1/2
0

ΦT

)2

.

The statement now follows from the elementary inequality (α + β)2 ≤ 2(α2 + β2).
�

A proof of the following lemma is in [1, Lemma 7].

Lemma 2 Let c1, c2 > 0 and s > q > 0. Then the equation

F (z) = zs − c1z
q − c2 = 0

has a unique positive zero z∗. In addition

z∗ ≤ max
{

(2c1)
1

s−q , (2c2)
1
s

}
and F (z) ≤ 0 for 0 ≤ z ≤ z∗. �

Theorem 2 Assume that there are constants K,σ > 0 and β ≥ 0 and

aij =
K

(σ2 + ‖xi − xj‖2)β
.

Assume also that one of the three following hypothesis hold:

(i) β < 1/2,

(ii) β = 1/2 and Λ0 < (νK)2

2 ,

(iii) β > 1/2 and[(
1
2β

) 1
2β−1

−
(

1
2β

) 2β
2β−1

](
(νK)2

2Λ0

) 1
2β−1

> 2Γ0 + σ2.

Then there exists a constant B0 (independent of t, made explicit in the proof of
each of the three cases) such that Γ(t) ≤ B0 for all t ∈ IR+. In addition, Λ(t) → 0
when t → ∞. Finally, there exists x̂ ∈ X such that x(t) → x̂ when t → ∞.

Proof. By Proposition 2, for all x ∈ X,

φx ≥ νK

(σ2 + maxi	=j ‖xi − xj‖2)β
≥ νK

(σ2 + Γx)β
.
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Let t∗ ∈ [0, t] be the point maximizing Γ in [0, t]. Then

Φt = min
τ∈[0,t]

φτ ≥ min
τ∈[0,t]

νK

(σ2 + Γ(τ))β
≥ νK

(σ2 + Γ(t∗))β
.

By Proposition 4

Γ(t) ≤ 2Γ0 + 2Λ0
(σ2 + Γ(t∗))2β

(νK)2
. (9)

Since t∗ maximizes Γ in [0, t] it also does so in [0, t∗]. Thus, for t = t∗, (9) takes the
form

(σ2 + Γ(t∗)) − 2Λ0
(σ2 + Γ(t∗))2β

(νK)2
− (2Γ0 + σ2) ≤ 0. (10)

Let z = Γ(t∗) + σ2,

a =
2Λ0

(νK)2
, and b = 2Γ0 + σ2.

Then (10) can be rewritten as F (z) ≤ 0 with

F (z) = z − az2β − b.

(i) Assume β < 1/2. By Lemma 2, F (z) ≤ 0 implies that z = (σ2 + Γ(t∗)) ≤ U0

with

U0 = max

{(
4Λ0

(νK)2

) 1
1−2β

, 2(2Γ0 + σ2)

}
.

That is Γ(t∗) ≤ B0 := U0 − σ2. Since B0 is independent of t, we deduce that, for
all t ∈ IR+, Γ(t) ≤ B0. But this implies that φt ≥ νK

(σ2+B0)β for all t ∈ IR+ and
therefore, the same bound holds for Φt. By Proposition 3

Λ(t) ≤ Λ0e
−2 νK

(σ2+B0)β
t

(11)

which shows that Λ(t) → 0 when t → ∞. Finally, for all T > t,

‖x(T ) − x(t)‖ =
∥∥∥∥∫ T

t
v

∥∥∥∥ ≤ ∫ T

t
‖v‖ ≤

∫ T

t

1
ν

Λ1/2

≤
∫ T

t

1
ν

Λ1/2
0 e

− νK

(σ2+B0)β
s
ds =

1
ν

Λ1/2
0

(
−(σ2 + B0)β

νK
e
− νK

(σ2+B0)β
s
) ∣∣∣∣T

t

=
Λ1/2

0 (σ2 + B0)β

ν2K

(
e
− νK

(σ2+B0)β
t − e

− νK

(σ2+B0)β
T
)

≤ Λ1/2
0 (σ2 + B0)β

ν2K
e
− νK

(σ2+B0)β
t
.
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Since the last tend to zero with t and is independent of T we deduce that there
exists x̂ ∈ X such that, x → x̂.
(ii) Assume now β = 1/2. Then (10) takes the form

(σ2 + Γ(t∗))
(

1 − 2Λ0

(νK)2

)
− (2Γ0 + σ2) ≤ 0

which implies that

Γ(t∗) ≤ B0 :=
2Γ0 + σ2

1 − 2Λ0
(νK)2

− σ2.

Note that B0 > 0 since Λ0 < (νK)2

2 . We now proceed as in case (i).
(iii) Assume finally β > 1/2 and let α = 2β so that F (z) = z − azα − b. The

derivative F ′(z) = 1 − αazα−1 has a unique zero at z∗ =
(

1
αa

) 1
α−1 and

F (z∗) =
(

1
αa

) 1
α−1

− a

(
1

αa

) α
α−1

− b

=
(

1
α

) 1
α−1
(

1
a

) 1
α−1

−
(

1
α

) α
α−1
(

1
a

) 1
α−1

− b

=
(

1
a

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]
− b

≥ 0

the last by our hypothesis. Since F (0) = −b < 0 and F (z) → −∞ when z → ∞ we
deduce that the shape of F is as follows:

................

................

z� z∗ zu

.....................
............
...........
...........
..........
..........
...........
...........
...........
.........
...........
...........
...........
..........
...........
...........
............
............
.............
................
..................

........................
......................................................................................................................................................................................................................................................................................................................................................................................................................................................................

Figure 1
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Even though t∗ is not continuous as a function of t, the mapping t �→ Γ(t∗) + σ2 is
continuous and therefore, so is the mapping t �→ F (Γ(t∗) + σ2). This fact, together
with (10), shows that, for all t ≥ 0, F (Γ(t∗) + σ2) ≤ 0. In addition, when t = 0 we
have t∗ = 0 as well and

Γ0 + σ2 ≤ 2Γ0 + σ2 = b

<

(
1
a

) 1
α−1

[(
1
α

) 1
α−1

−
(

1
α

) α
α−1

]

<

(
1
a

) 1
α−1
(

1
α

) 1
α−1

= z∗.

This implies that Γ0 + σ2 < z� (the latter being the smallest zero of F on IR+, see
the figure above) and the continuity of the map t �→ Γ(t∗) + σ2 implies that, for all
t ≥ 0,

Γ(t∗) + σ2 ≤ z� ≤ z∗.

Therefore

Γ(t∗) ≤ B0 :=
(

1
αa

) 1
α−1

− σ2 =
(

(νK)2

2αΛ0

) 1
α−1

− σ2.

We now proceed as in case (i). �

Remark 3 (i) In Theorem 2, the condition that aij = K
(σ2+‖xi−xj‖2)β may be re-

laxed to aij ≥ K
(σ2+‖xi−xj‖2)β .

(ii) The bound β < 1/2 for unconditional convergence in Theorem 2 is essentially
sharp. We will indicate this in Remark 4 below by studying the special case
of a flock with two birds flying on a line.

4 A flock of two birds

We give here a more detailed analysis of the case of two birds flying on a line (i.e.,
we take IR instead of IE3 for both positions and velocities).

We define x = x1 − x2 and v = v1 − v2 and assume that the state (x,v) of the
pair satisfies the system of ODE’s

x′ = v

v′ = − v

(1 + x)α
. (12)

This is not exactly (7) but it is easier to dealt with and, we will see below, it is close
to this system.
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The arguments used in the preceding section show that when α < 1, for all initial
x0 and v0, we have that x is bounded and v → 0 when t → ∞. The next proposition
gives conditions on x0 and v0 for such a convergence to hold when α > 1.

Proposition 5 Let α > 1. Assume that x0 > 0 and v0 > 0 and that

x0 < x̂0 :=
(

α − 1
v0

) 1
α−1

+ 1.

Then x is bounded and increasing. In addition, when t → ∞, v(t) → 0 and

x(t) →
(

α − 1
v0 − α−1

(1+x0)α−1

) 1
α−1

+ 1.

Proof. It follows from the system (12) that, for all t ≥ 0,∫ t

0
v′ =

∫ t

0

x′

(1 + x)α

and therefore, integrating both sides between 0 and t, that

v(t) − v0 =
α − 1

(1 + x(t))α−1
− α − 1

(1 + x0)α−1

or yet, that

v(t) =
α − 1

(1 + x(t))α−1
− γ0 (13)

where γ0 > 0 since x0 < x̂0.
If, for some t∗, v(t∗) = 0 then v′(t∗) = 0. But then the pair (x̃, ṽ) defined by

x̃1(t) = x1(t∗), x̃2(t) = x2(t∗) and ṽ(t) = 0, for all t ≥ 0, is a solution of (12)
satisfying the conditions x̃(t∗) = x(t∗) and ṽ = 0. By the unicity of the solutions
of (12) it follows that ṽ = v and hence that ṽ0 = 0 in contradiction with our
assumptions. We conclude that v(t) > 0 for all t ≥ 0. But then

0 < v(t) =
α − 1

(1 + x(t))α−1
− γ0

implies that

x(t) <

(
α − 1

γ0

) 1
α−1

+ 1.

Thus, x remains bounded on IR+. Furthermore x is increasing since v > 0. This
implies that there exists x∗ > 0 such that x(t) → x∗ and x′(t) → 0 when t → ∞.
It follows from x′ = v and (13) that x∗ is as claimed. �
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Remark 4 It follows from the proof of Proposition 5 that, for all α > 1, v fails to
converge if x ≥ x̂0. Also, since

1
(1 + x)α

≤ 1
(1 + x2)β

≤ 2
√

2
(1 + x)α

the system (7) is tightly bounded in between two versions of (12) differing only by
a constant factor. This indicates that convergence may fail as well in (7) for α > 1.

5 Convergence in discrete time

We now focus on discrete time. The model is thus (4). A motivation to consider
discrete time is that we want to derive (possibly a small variation of) our model
from a mechanism based on exchanges of signals. The techniques to do so, learning
theory, are better adapted to discrete time. Also, we want our model to include
noisy environments and this issue becomes more technically involved in continuous
time.

We assume as before that there are constants K,σ > 0 and β ≥ 0 such that

aij =
K

(σ2 + ‖xi − xj‖2)β
.

Note that, by Proposition 2, this implies that φx > 0 for all x ∈ X. This, in
turn, shows that Lx is a self-adjoint, positive definite linear map, whose smallest
eigenvalue is φx. We denote by κ(x) its condition number, i.e.,

κ(x) =
‖Lx‖
φx

.

Lemma 3 For all x ∈ X,

κ(x) ≤ k(σ2 + Γx)β

νσ2β
.

Proof. By Proposition 2

φx ≥ ν min
i,j

aij ≥ ν
K

(σ2 + Γx)β
.

Also, ‖Lx‖ ≤ Kk
σ2β since all of its entries are bounded by K

σ2β . �
In the following we fix a solution (x, v) of (4). At a time t ∈ IN, x(t) and v(t)

are elements in X and V , respectively. The meaning of expressions like φt, Lt, κ(t),
or Γ(t) is as described in Section 3.

Proposition 6 For all t ∈ IN, ‖v(t + 1)‖ ≤
(
1 − 1

κ(t)

)
‖v(t)‖. In particular, ‖v‖ is

decreasing as a function of t.

13



Proof. The linear map Id − 1
‖Lt‖Lt is self-adjoint and its eigenvalues are in the

interval [0, 1). In addition, its largest eigenvalue is 1 − φt

‖Lt‖ . Therefore

‖v(t + 1)‖ =
∥∥∥∥(Id − 1

‖Lt‖Lt

)
v(t)
∥∥∥∥ ≤

(
1 − φt

‖Lt‖
)
‖v(t)‖.

�

Corollary 1 For all t ∈ IN, ‖v(t)‖ ≤∏t−1
i=0

(
1 − 1

κ(i)

)
‖v(0)‖. �

Theorem 3 Assume that there are constants K,σ > 0 and β ≥ 0 such that

aij =
K

(σ2 + ‖xi − xj‖2)β
.

Assume also that one of the three following hypothesis hold:

(i) β < 1/2,

(ii) β = 1/2 and ‖v(0)‖ ≤ νσ2β

kν1/2Δt
,

(iii) β > 1/2 and(
1
a

) 2
α−1

[(
1
α

) 2
α−1

−
(

1
α

)α+1
α−1

]
> ν

(
V 2

0 + 2V0((αa)−
2

α−1 − σ2)ν−1/2
)

+ b.

Here α = 2β, V0 := Δt‖v(0)‖,

a =
kν1/2

νσ2β
V0, and b = ν1/2‖x(0)‖ + σ.

Then there exists a constant B0 (independent of t, made explicit in the proof of
each of the three cases) such that ‖x(t)‖ ≤ B0 for all t ∈ IN. In addition, ‖v(t)‖ → 0
when t → ∞. Finally, there exists x̂ ∈ X such that x(t) → x̂ when t → ∞.

Proof. For t ∈ IN let t∗ be the point maximizing ‖x‖ in {0, 1, . . . , t}. Then, by
Lemma 3, for i ∈ {0, 1, . . . , t},

κ(i) ≤ k(σ2 + Γ(i))β

νσ2β
≤ k(σ2 + ν‖x(i)‖2)β

νσ2β
≤ H(t∗) :=

k(σ2 + ν‖x(t∗)‖2)β

νσ2β
.
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Using Corollary 1 we obtain

‖x(t)‖ ≤ ‖x(0)‖ +
t−1∑
j=0

‖x(j + 1) − x(j)‖

≤ ‖x(0)‖ + Δt
t−1∑
j=0

‖v(j)‖

≤ ‖x(0)‖ + Δt

⎛⎝‖v(0)‖ +
t−1∑
j=1

‖v(j)‖
⎞⎠

≤ ‖x(0)‖ + Δt

⎛⎝‖v(0)‖ +
t−1∑
j=1

j∏
i=1

(
1 − 1

κ(i)

)
‖v(0)‖

⎞⎠
≤ ‖x(0)‖ + Δt

t−1∑
j=0

(
1 − 1

H(t∗)

)j

‖v(0)‖

≤ ‖x(0)‖ + ΔtH(t∗)‖v(0)‖
= ‖x(0)‖ + Δt

k(σ2 + ν‖x(t∗)‖2)β

νσ2β
‖v(0)‖.

Since t∗ maximizes ‖x‖ in {0, 1, . . . , t} it also does so in {0, 1, . . . , t∗}. For t = t∗,
the inequality above takes then the following equivalent form

σ + ν1/2‖x(t∗)‖ ≤
(
ν1/2‖x(0)‖ + σ

)
+ ν1/2Δt

k(σ2 + ν‖x(t∗)‖2)β

νσ2β
‖v(0)‖

which implies

(σ2 + ν‖x(t∗)‖2)1/2 ≤
(
ν1/2‖x(0)‖ + σ

)
+ ν1/2Δt

k(σ2 + ν‖x(t∗)‖2)β

νσ2β
‖v(0)‖. (14)

Let z = (σ2 + ν‖x(t∗)‖2)1/2,

a =
kν1/2Δt

νσ2β
‖v(0)‖, and b = ν1/2‖x(0)‖ + σ.

Then (14) can be rewritten as F (z) ≤ 0 with

F (z) = z − az2β − b.

(i) Assume β < 1/2. By Lemma 2, F (z) ≤ 0 implies that (σ2 + ν‖x(t∗)‖2) ≤ U2
0

with

U0 = max

⎧⎨⎩
(

2kν1/2Δt

νσ2β
‖v(0)‖

) 1
1−2β

, 2
(
ν1/2‖x(0)‖ + σ

)⎫⎬⎭ .
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Since U0 is independent of t we deduce that, for all t ∈ IN,

‖x(t)‖2 ≤ B2
0 :=

U2
0 − σ2

ν

and therefore, by Lemma 3,

κ(t) ≤ k(σ2 + Γ(t))β

νσ2β
≤ k(σ2 + ν‖x(t)‖2)β

νσ2β
≤ κ∗ :=

kU2β
0

νσ2β
.

By Corollary 1, for t ∈ IN,

‖v(t)‖ ≤
t−1∏
i=0

(
1 − 1

κ(i)

)
‖v(0)‖ ≤

(
1 − 1

κ∗

)t

‖v(0)‖

and this expression tends to zero when t → ∞.
Finally, for T > t, reasoning as above, we have

‖x(T ) − x(t)‖ ≤
T−1∑
j=t

‖x(j + 1) − x(j)‖ ≤ Δt

T−1∑
j=t

‖v(j)‖

≤ Δt
T−1∑
j=t

(
1 − 1

κ∗

)j

‖v(t)‖ ≤ Δtκ∗‖v(t)‖.

Since ‖v(t)‖ tends to zero, we deduce that {x(t)}t∈IN is a Cauchy sequence and there
exists x̂ ∈ X such that x(t) → x̂.
(ii) Assume now β = 1/2. Then (14) takes the form

(σ2 + ν‖x(t∗)‖2)1/2

(
1 − kν1/2Δt

νσ2β
‖v(0)‖

)
−
(
ν1/2‖x(0)‖ + σ

)
≤ 0

which implies that

‖x(t∗)‖2 ≤ B0 :=
1
ν

⎛⎝( ν1/2‖x(0)‖ + σ

1 − kν1/2Δt
νσ2β ‖v(0)‖

)2

− σ2

⎞⎠
which is positive since, by hypothesis, 0 < 1 − kν1/2Δt

νσ2β ‖v(0)‖ ≤ 1. We now proceed
as in case (i).
(iii) Assume finally β > 1/2. Letting α = 2β as in the proof of Theorem 2, the
arguments therein show that the derivative F ′(z) = 1 − αazα−1 has a unique zero

at z∗ =
(

1
αa

) 1
α−1 and F (z∗) =

(
1
a

) 1
α−1

[(
1
α

) 1
α−1 − ( 1

α

) α
α−1

]
− b. Our hypothesis then

implies that F (z∗) ≥ 0. This shows that the graph of F is as in Figure 1.
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For t ∈ IN let z(t) = (σ2 +ν‖x(t∗)‖2)1/2. When t = 0 we have t∗ = 0 as well and

z(0) ≤ ν1/2‖x(0)‖ + σ = b <

(
1
a

) 1
α−1
(

1
α

) 1
α−1

= z∗.

This actually implies that z(0) ≤ z�. Assume that there exists t ∈ IN such that
z(t) ≥ zu and let T be the first such t. Then T = T ∗ ≥ 1 and, for all t < T

(σ2 + ν‖x(t)‖2)1/2 ≤ z(T − 1) ≤ z�.

This shows that, for all t < T ,

‖x(t)‖ ≤
(

z2
� − σ2

ν

)1/2

≤ B0 :=
(

z2∗ − σ2

ν

)1/2

.

In particular,

‖x(T − 1)‖2 ≤ z2
� − σ2

ν

For T instead, we have

‖x(T )‖2 ≥ z2
u − σ2

ν
.

This implies

‖x(T )‖2 − ‖x(T − 1)‖2 ≥ z2
u − z2

�

ν
≥ z2∗ − z2

�

ν
≥ (z∗ − z�)z∗

ν
. (15)

From the intermediate value theorem, there is ξ ∈ [z�, z∗] such that F (z∗) =
F ′(ξ)(z∗ − z�). But F ′(ξ) ≥ 0 and F ′(ξ) = 1 − aαξα−1 ≤ 1. Therefore,

z∗ − z� ≥ F (z∗)

and it follows from (15) that

‖x(T )‖2 − ‖x(T − 1)‖2 ≥ z∗F (z∗)
ν

. (16)

But

‖x(T )‖ − ‖x(T − 1)‖ ≤ ‖x(T ) − x(T − 1)‖
= Δt‖v(T − 1)‖
≤ Δt‖v(0)‖

the last since ‖v‖ is decreasing. Therefore,

‖x(T )‖2 − ‖x(T − 1)‖2 ≤ (Δt)2‖v(0)‖2 + 2Δt‖v(0)‖‖x(T − 1)‖
≤ (Δt)2‖v(0)‖2 + 2Δt‖v(0)‖B0.
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Putting this inequality together with (16) shows that

z∗F (z∗) ≤ ν
(
(Δt)2‖v(0)‖2 + 2Δt‖v(0)‖B0

)
or equivalently,(

1
a

) 2
α−1

[(
1
α

) 2
α−1

−
(

1
α

)α+1
α−1

]
− b ≤ ν

(
(Δt)2‖v(0)‖2 + 2Δt‖v(0)‖B0

)
which contradicts our hypothesis.

We conclude that, for all t ∈ IN, z(t) ≤ z� and hence, ‖x(t)‖ ≤ B0. We now
proceed as in case (i). �

Remark 5 (i) In the system (4) we could have replaced ‖Lx‖ by Kk
σ2β and Theo-

rem 3 would hold as well (with the same B0 proved therein). Interpreting the
latter choice would require less computational capabilities on the birds.

(ii) In the proof of Theorem 3 we could have used the bounds for ν and ν exhibited
in Lemma 1 and, in case (iii) the trivial bound (αa)−

2
α−1 − σ2 ≤ (αa)−

2
α−1 .

Recall, V0 := Δt‖v(0)‖. Denoting as well X0 := ‖x(0)‖ and

g(α) :=

[(
1
α

) 2
α−1

−
(

1
α

)α+1
α−1

]

the sufficiency condition for convergence in case (iii) becomes

g(α)
(

σα

3
√

2k3

) 1
α−1

V
− 1

α−1

0 ≥
√

2kX0 + σ + 2

(
k2V 2

0 + V
α−2
α−1

0

(
σα

3
√

2k3

) 1
α−1

)
.

It is apparent from the expression above that this condition is satisfied when
V0 is sufficiently small. It is also apparent that the larger k is, the smaller V0

needs to be to satisfy the condition.

We note also that, for α > 1, we have 0 < g(α) < 1 and that g(a) → 0 when
α → 1.

6 Language evolution

We now consider a linguistic population with k agents evolving with time. At time
t, the state of the population is given by (x(t), f(t)) ∈ (IE3)k × Hk. Here IE3 is
interpreted as the space of positions and H as the space of languages of [2]. Thus,
unlike the development in Section 3, the functions x and f do not belong to the
same space.
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We model the evolution of the population with the system of differential equa-
tions

x′ = −Lfx

f ′ = −Lxf.

Again, Lx is the Laplacian of the matrix Ax given by aij = ηX(‖xi −xj‖2) for some
function ηX : IR+ → IR+. Similarly with Lf for some function ηH : IR+ → IR+. The
distance between languages in H is defined as in [2].

A rationale for this model could be the following. Agents tend to move towards
other agents using languages close to theirs (and therefore, communicating better).
Hence, the first equation. Also, languages evolve by the influence from other agents’
languages and this influence decrease with distance (for instance, because of a de-
crease in the frequency of linguistic encounters). Hence, the second equation.

Theorem 4 Let ηX , ηH : IR+ → (0,∞) be non-increasing. Then, when t → ∞, the
state (x, f) tends to a point in the diagonal of (IE3 ×H)k.

Proof. We use the ideas and notations from Section 3. Reasoning as in Propo-
sition 3 we obtain, for all t > 0,

Λ′(f(t)) ≤ −2φtΛ(f(t)) and Γ′(x(t)) ≤ −2φf(t)Γ(x(t)).

This shows that both Λ and Γ are decreasing and satisfy

Λ(f(t)) ≤ Λ0e
−2

R t
0

φτdτ and Γ(f(t)) ≤ Γ0e
−2

R t
0

φf(τ)dτ .

But since both η and Γ are non-increasing, by Proposition 2,

φτ ≥ νη(max
i	=j

‖xi(τ) − xj(τ)‖2) ≥ νη(Γτ ) ≥ νη(Γ0).

Thus, ∫ t

0
φτdτ ≥ tνη(Γ0)

and Λ(f(t)) ≤ Λ0e
−2tνη(Γ0). This shows the convergence to 0 of Λ(t). That of Γ(t)

is similar. �

Remark 6 (i) We interpret the convergence of x(t) to a fixed x ∈ ΔX as the
formation of a tribe and the convergence of f(t) to a fixed f ∈ ΔH as the
emergence of a common language as in Examples 2 and 3 of [2]. The first
such example is taken from [5] were models are proposed (and studied via
simulation) for the origins of language. The second, is a modification of it
proposed in [2] for the emergence of common vowel sounds.

19



(ii) The assumption of symmetry is plausible in contexts where (unlike the
Mother/Baby case discussed in [2, Example 4]) there are no leaders in the
liguistic population.

(iii) Detailed learning mechanisms could be introduced by first deriving a result
akin to Proposition 4 for discrete time and then follow [2].

(iv) We have not used any argument as those in the proof of Proposition 4. These
arguments involved expressions like 〈x, f〉 which, in the situation at hand,
would be meaningless.
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