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ABSTRACT

A swarm robotic system is normally characterised by many
individuals, each having a partial/limited knowledge about
the global pattern of which it constitutes an element. In
such a system, decision-making processes may be problem-
atic. However, inspiration can be drawn from insect soci-
eties, in which self-organisation plays a crucial role in most
of the decisions taken by the colony. In this work, we show
how, in a swarm robotic system, a decision can be the re-
sult of a collective process: it emerges from the numerous
interactions among the individuals and between individuals
and environment. We present a task in which a swarm of
physically connected, simulated robots has to take a deci-
sion whether to pass over a trough or change direction of
motion if the gap is too wide to be bridged. We show how
such a decision can be collectively taken, based only on a
self-organising process.

1. INTRODUCTION

Decision-making mechanisms are important features for an
intelligent agent, as they make it possible to display differ-
ent behaviours as a function of the particular environmental
situation the agent perceives and in relation to its beliefs
and its desires. Individually, a decision is often the result of
a process that takes into account information gathered from
the environment. For example, animals collect information
about the quality of a food source while foraging. Depend-
ing on this information, they take the decision to stay in
the same area or to search for a more profitable one. Sim-
ilar behaviours have been studied in robotics, in which a
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robot takes a decision that depends on its past experience.
In these works, decision-making mechanisms are based on
short/long term memory or on the integration over time of
the agent’s perceptions [13, 7, 12].

A more complex case is presented by decisions that have
to be taken at a collective level. Societies may entrust their
decision-making ability to a few leaders that care about the
whole community. This is the case of groups of mammals,
characterised by the presence of a few individuals that lead
the activities of the others. The situation is different in insect
societies, in which decisions are taken collectively. Many
examples of collective choice have been studied so far in
social insects. These decisions are generally the result of
a self-organising process: the decision emerges from the
numerous interactions among the individuals forming the
colony, and from the interactions between individuals and
the environment [4]. Therefore, complex decision-making
processes can be observed at the collective level, notwith-
standing the simple behavioural rules followed by each in-
dividual insect. For example, bees are able to collectively
select the most profitable foraging site between two differ-
ent food sources [9], while ants collectively select the short-
est path from the nest to a food source, thereby optimising
the foraging process [3, 2].

The above examples show how a decision at the col-
lective level can emerge from rather simple behaviours at
the individual level. A similar approach characterises re-
search in swarm robotics, which is a novel approach to the
design and implementation of robotic systems composed
of swarms of robots tightly interacting and cooperating to
reach their goal. The aim of this paper is to demonstrate
how, in a swarm robotic system, complex decision making
abilities can emerge from simple individual behaviours.

We study a swarm robotic system composed of a swarm
of autonomous mobile robots—called s-bots—that have
the ability to connect one to the other forming a physical
structure—called swarm-bot. Therefore, one of the main
features of a swarm-bot is the ability to solve problems a
single individual cannot cope with, due to its limited abili-
ties. In this paper, we study one example of such problems,



that is, how to pass over a trough that would block the nav-
igation of a single s-bot. In this case, physical connections
among s-bots serve as support for those that are suspended
over the gap, so that the swarm-bot as a whole can continue
moving.

In a previous work, we studied collective navigation
strategies for a swarm-bot that had to move in an environ-
ment presenting holes and obstacles [10, 11]. The problem
consisted in how to coordinate the activity of the s-bots for
achieving both a coherent navigation of the swarm-bot as a
whole and an efficient collective avoidance of the hazards,
which could be perceived only by a few individuals within
the group. In this paper, we show how the same controllers
developed for hole avoidance can be used to pass over a
trough, whenever it can be bridged by a swarm-bot. In par-
ticular, we show how a decision is taken collectively by the
swarm-bot, whether to pass over the gap or change direction
of motion and avoid falling. We show how this collective
decision emerges purely from the interactions between the
s-bots and the environment, which enable the swarm-bot to
roughly estimate the width of the trough to be passed.

In the following, we shortly describe the s-bot and its
simulated model. Then, we sketch the results obtained for
the hole avoidance task. Afterwards, we present the ex-
perimental setup used to study the ability of passing over
a trough. Finally, we report on the obtained results.

2. THE S-BOT

An s-bot is a small autonomous mobile robot, shown in the
left part of Figure 1. The s-bot has a traction system com-
posed of tracks and wheels. Above the traction system, a
rotating turret holds many sensory systems and the gripper
for making connections with other s-bots, as shown in the
right part of Figure 1 (for more details, see [6]). In this
paper, however, experiments are performed in simulation,
using a software based on Vortex™, a 3D rigid body dy-
namics simulator. We have defined a simple s-bot model
that at the same time allows fast simulations and preserves
those features of the real s-bot that were important for the
experiments (see Figure 2 left).

The simulated s-bot has a differential drive motion pro-
vided by a traction system composed of four wheels: two
lateral, motorised wheels and two spherical, passive wheels
placed in the front and in the back, which serve as support.
The four wheels are fixed to the chassis, which also holds
the cylindrical rotating turret. The turret can rotate around
its axis, powered by a motorised joint. Connections among
s-bots can be made using a gripper, which is simulated by
dynamically creating a joint between two s-bots. The posi-
tion of the gripper is represented by an arrow painted on the
turret.

Each s-bot is provided with a traction sensor, which de-
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Figure 1. The s-bot. Left: one s-bot. Right: two s-bots
connected through their gripper, therefore forming a small
swarm-bot.

tects the forces that are applied to the junction between the
chassis and the rotating turret. Four variables encode the
traction force information from four different preferential
orientations with respect to the chassis (front, right, back
and left, see [1] for more details). The traction sensors are
responsible for the detection of the interactions among s-
bots, and they also mediate the communication about the
presence of a hazard. In fact, when holes or obstacles are
detected, an s-bot can communicate the hazard simply try-
ing to move away from it, therefore generating a traction
force that is felt by the other s-bots. This force can be ex-
ploited for coordinating the activities of the group: it proved
to be important in order to evolve collective obstacle and
hole avoidance strategies for a swarm-bot [10, 11].

The presence of holes/troughs is detected using four
ground sensors—infrared proximity sensors pointing to the
ground—that are integral with the rotating turret. The prox-
imity sensors are evenly distributed around the s-bot’s tur-
ret, and they are inclined of 30 degrees with respect to
the horizontal plane. In order to account for the rotation
of the turret, we encode the information coming from the
ground sensors in four virtual sensors integral with the chas-
sis. The value taken by the virtual sensors is computed

Figure 2. The simulation model. Left: a simulated s-bot,
where many details not relevant for our experiments have
been omitted. Right: a swarm-bot formed by 9 s-bots in a
square formation.



as the weighted average of the two closest ground sensors
(see [10] for more details). Noise is simulated for all sen-
sors, adding a random value uniformly distributed within
the 5% of the sensor saturation value.

S-bots can control the two wheels, independently set-
ting their speed in the range [—6.5, 6.5] rad/s. The virtual
gripper is used to connect to another s-bot. However, in this
work, the s-bots stay always assembled in a swarm-bot for-
mation, thus connection and disconnection procedures have
not been simulated. Finally, the motor controlling the rota-
tion of the turret is actuated setting its desired angular speed
proportionally to the difference between the desired angu-
lar speed of the left and right wheels. This setting helps the
rotation of the chassis with respect to the turret when s-bots
are connected in a swarm-bot formation [1].

3. HOLE AVOIDANCE

As mentioned above, the work presented in this paper is
based on a previous study, where strategies for hole/obstacle
avoidance have been evolved for a swarm-bot [10]. In this
section, we briefly explain the methodology we used and
the results obtained, as they are necessary to introduce the
results presented in Section 4.

The hole avoidance task is a simple but challenging nav-
igation problem, in which s-bots have to explore an arena
presenting holes in which they risk to fall (see Figure 3,
top). In this situation, a swarm-bot is more efficient than a
single s-bot as it can rely on the cooperation among s-bots,
and on the physical connections among its components.

3.1. Experimental setup

The s-bots are controlled by artificial neural networks,
whose parameters are set by an evolutionary algorithm. We
make use of a simple evolutionary algorithm that works on a
population of 100 binary encoded genotypes. At each gen-
eration, the 20 best individuals are selected for reproduction
and generate each 5 offspring. Four of them are mutated
with a 3% probability of flipping each bit. During the evo-
lution, a genotype is mapped into a neural control structure
that is cloned and downloaded to all the s-bots taking part in
the experiment (i.e., we make use of a homogeneous group
of s-bots). Each genotype is evaluated 5 times—i.e., 5 trials.
In order to evolve the neural controllers, four s-bots are con-
nected in a linear swarm-bot formation, and they are placed
in the arena shown in Figure 3. The initial orientation of the
chassis of each s-bot is randomly chosen. The behaviour
produced by the evolved controller is evaluated according to
a fitness function that takes into account only variables di-
rectly accessible to the s-bots. The fitness function rewards
straight and fast motion of the s-bots, and penalises those
groups of s-bots that do not coordinate their movements or

that spend too much time in the vicinity of a hole. This
last component is computed simply looking at the activa-
tion of the traction and the ground sensors. Additionally, if
the behaviour results in a fall of the swarm-bot into a hole,
the corresponding genotype is penalised (for more details,
see [10]).

3.2. Results

Using the above methodology, we performed 10 different
evolutionary runs, each starting with a different randomly
initialised population. The average fitness values, computed
over all the replications, are shown in the bottom part of Fig-
ure 3. The average performance of the best individual and
of the population are plotted against the generation number.
All evolutionary runs were successful. The average fitness
value of the best individuals approaches 0.4, where a value
of 1 should be understood as a loose upper-bound to the
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Figure 3. The hole avoidance task. Top: The picture shows
the arena used, which presents open borders and contains
two large rectangular holes. A swarm-bot composed of four
linearly connected s-bots is shown, along with their trajec-
tories while avoiding holes. Bottom: The average fitness of
the best individual in the 10 replications of the experiments
and the average fitness of the population are plotted against
the generation number.



maximum value the fitness can achieve.'

The behaviours produced by the evolved neural network
are characterised by an initial coordination phase that leads
to a coherent motion of the swarm-bot. The s-bots start
moving in the direction they were initialised, resulting in
a rather disordered overall motion. Within a few simulation
cycles, the physical connections transform this disordered
motion into traction forces, that are exploited to coordinate
the group. When an s-bot feels a traction force, it rotates
its chassis in order to cancel this force. Once the chassis of
all the s-bots are oriented in a same direction, the traction
forces disappear and the coordinated motion of the swarm-
bot starts (see also [1]). When an s-bot detects an edge, it
rotates the chassis and changes the direction of motion in
order to avoid falling. This change in direction produces
a traction force for the other s-bots, which triggers a new
coordination phase. The s-bots eventually choose a new di-
rection of motion that leads the swarm-bot away from the
edge. In some cases, the reaction of a single s-bor may not
be sufficient to influence the behaviour of the rest of the
group. As a consequence, the s-bot may be pushed out of
the arena. However, physical connections serve as support
for this s-bot, while the rest of the group continues to per-
form hole avoidance and eventually leads the whole s-bot to
a safer location.

These results are mainly based on the properties of the
traction sensor, which proved to be a powerful mechanism
for achieving coordination in the swarm-bot. In fact, it al-
lows the swarm-bot to exploit the complex dynamics aris-
ing from interactions among individual s-bots and between
the s-bots and the environment. It also provides robust-
ness and adaptivity features with respect to environmental
or structural changes of the swarm-bot. Additionally, it pro-
vides a way to exploit the direct interactions among s-bots—
shaped as traction forces—to communicate the presence of
a hazard—the hole to be avoided [10]. Finally, traction
forces are also at the base of the self-organising process that
leads to the collective decision about passing over a trough
or avoiding it when it is too wide. In the following section,
we will detail this process.

4. PASSING OVER A TROUGH

The controller described above bases its functioning on the
perception of holes through the ground sensors, and on the
traction forces applied by one s-bot to the others. Intuitively,
if the perception of holes is masked to the s-bots—for ex-
ample, setting to O the activation of the ground sensors—
then the swarm-bot will sooner or later fall into one of them.

I'This maximum value could be achieved only by a swarm-bot coordi-
nately moving in a flat environment, without holes. In the arena shown
in the top part of Figure 3, the narrow passages result in frequent activa-
tions of the ground sensors, and therefore in frequent re-organisations of
the swarm-bot.

However, whenever the hole is small enough to be bridged,
one could observe the swarm-bot passing on the other side
and continuing its exploration of the arena. Therefore, if
the swarm-bot were able of estimating the size of the hole,
it could decide whether to change direction of motion and
avoid falling, or to try to pass on the other side of the hole.

In this section, we show how such an estimation of the
size of a trough can be collectively performed—and a deci-
sion collectively taken—by the s-bots forming the swarm-
bot. We designed a set of experiments in order to test
the ability of a swarm-bot to bridge a gap of varying size.
This test is intended to demonstrate how the simple con-
trollers developed for hole avoidance generalise to a col-
lective decision-making mechanism for discriminating be-
tween situations that can be faced by a swarm-bot from sit-
uations that could be too hazardous even for a large con-
nected structure.

4.1. Experimental setup

S-bots are controlled by the same neural network evolved
for hole avoidance, described in Section 3. Therefore, the
controller takes as input the traction force perceived by the
s-bot and the readings coming from the four ground sen-
sors. Recall that ground sensors are simple proximity sen-
sors pointing to the ground. These sensors can therefore be
used also to estimate the depth of a hole or the width of
a nearby trough, as they have an inclination of 30 degrees
with respect to a horizontal plane. In fact, if the trough is not
too wide, an s-bot near the border would perceive the oppo-
site edge, having different perceptions with varying width.
However, this applies only for small troughs, having a width
of 2-4 cm. In all the other cases, the opposite edge is not
perceived and therefore the size of the trough cannot be es-
timated by a single s-bot.

The swarm-bot is placed in an arena divided by a trough
(see Figure 4. We test swarm-bots of different size—4, 9,
and 16 s-bots connected in a square formation—that have
to confront with a trough of width varying from 2 to 30 cm.
In each trial, the square structure is rotated choosing every
time a new random orientation, indicated by the vector A
and the corresponding angle « in Figure 4. Independently
from the direction of the swarm-bot’s structure, the s-bots
are initialised with their chassis aligned in a same random
direction, indicated by the vector B and the corresponding
angle 3 in Figure 4. The angle varies in the range [—45, 45]
degrees with respect to the direction perpendicular to the
trough. As a consequence of the initial alignment of the
chassis, no coordination phase is required at the beginning
of the trial, but the swarm-bot can directly move in a coher-
ent way toward the trough. These settings let us focus on
the ability to pass over the trough rather than on the coordi-
nation abilities of the swarm-bot.

We measure the performance of the swarm-bot passing



Figure 4. Experimental setup: a swarm-bot composed of 16
s-bots, represented as grey circles, has to confront with a
trough, represented as a dark rectangle. The initial orien-
tation of the square structure is randomly chosen, and it is
indicated by the vector A and the angle . The s-bots start
with the same random orientation of the chassis, indicated
within each circle by an arrow parallel to the vector B and
the angle 3. The swarm-bot is initially positioned at a dis-
tance D, from the first edge of the trough.

over a trough computing the distance covered by the group
along the x axis, which is perpendicular to the trough (see
Figure 4). In particular, the performance f is given by the
maximum distance covered in the direction of the trough
during the trial, given by the following equation:

maxe[o, 1) dy (t)
g
where x(t) is the position of the swarm-bot centre of mass
on the x-axis at time ¢, 7" is the length of the trial and D is
the maximum distance the swarm-bot can cover in T' sim-
ulation cycles. If the swarm-bot is not able to pass over
the trough, the performance f takes values around D. /D,
where D, is the distance of the first edge of the trough from
the swarm-bot’s starting position (see Figure 4). In fact,
the trough is always reached due to the initialisation of the
swarm-bot, and therefore the maximum distance d(t) is
obtained in the vicinity of the trough. Higher performance
values are obtained whenever the swarm-bot is able to pass
over the trough.

Note that the performance metric f has been explicitly
defined to evaluate the behaviour of passing over a trough.
Consequently, it assigns a high score to those situations in
which the gap is passed, while an avoidance action corre-
sponds to a low value. This low value should not be consid-
ered as a failure, but it should be rather used to distinguish
in which conditions the swarm-bot performs an avoidance
or a passing action, as we show in Sections 4.2 and 4.3.

4.2. Results

A qualitative analysis of the behaviour produced by the con-
trollers evolved for hole avoidance when used in an arena
presenting small holes reveals that: (i) if the width of the
gap is small enough (2-4 cm), an individual s-bot does not
perceive it as a hazard—the activation of the ground sensors
is rather low—and therefore the swarm-bot can pass over
the trough. Here, physical connections provide the support
for the suspended s-bots. (ii) If the width of the gap is big-
ger, the individual s-bot perceives the trough via the ground
sensors and reacts consequently. However, the s-bot may be
pushed out of the borders by the actions of the remaining
s-bots in the formation. In this case, it may reach the op-
posite side of the trough, bridging the gap and letting also
other s-bots pass (see Figure 5, left). (iii) If the gap can-
not be bridged by the swarm-bot, a normal hole avoidance
behaviour is performed and the swarm-bot will move away
from the hole (see Figure 5, right).

Using the performance metric described in equation (1),
we performed a quantitative analysis to evaluate the abil-
ity of a swarm-bot in passing over a trough. We performed
100 evaluation trials per experimental setup, systematically
varying the swarm-bot size and the trough width—i.e., 100
trials for each size/width pair. Each trial lasts 7" = 300 sim-
ulation cycles, that correspond to 30 seconds of real time.
The results of this analysis are plotted in Figure 6. The plot
shows, for each trough width, the performance of the three
studied swarm-bots. The light grey area that spans over the
various trough widths gives an indication of the position of
the trough with respect to the performance metric. The bot-
tom edge of the grey area corresponds to the performance of

Figure 5. Trajectories drawn by a swarm-bot composed of
9 s-bots in a square formation. Left: the swarm-bot is able
to pass over a 10 cm wide trough. Right: the swarm-bot
avoids a 20 cm wide trough, which could be too large to be
bridged.



D, /D achieved when the swarm-bot reaches the first edge
of the trough. Whenever the gap is bridged and the swarm-
bot finds itself on the other side of the arena, the perfor-
mance has higher values than the grey area. If the swarm-
bot is not able to bridge the gap, than the performance ob-
tained is within the grey area or lower.

From the results shown in Figure 6 it is possible to no-
tice how the performance generally decreases as the width
of the gap increases: a good performance can be observed
for small gaps, followed by a transition that leads to poor
performance for large troughs. Looking at the performance
of the 4-individual swarm-bot, we notice that for gaps of 2-
6 cm the performance is always higher than the grey area,
indicating that the swarm-bot is systematically passing over
the trough. An abrupt change in the performance can be ob-
served for a trough 8-12 cm wide. For these sizes, a transi-
tion can be observed, in which the swarm-bot stops passing
over the trough systematically and sometimes avoids it, de-
pending on its orientation with respect to the trough. For the
12 cm trough the swarm-bot is successful only sporadically,
while for bigger sizes—14 cm or more—the avoidance be-
haviour is always performed.

The situation is different for bigger structures. In fact,
the bigger the swarm-bot, the larger the gap that can be
passed. For a 9-individuals swarm-bot, the performance
drops for gaps 10-18 cm wide. For smaller sizes, the swarm-
bot is always able to bridge the gap. For bigger sizes, the
swarm-bot always avoid it. Concerning the 16 individuals
swarm-bot, we can notice that the transition starts with a
width of 12 cm. However, in this case the performance drop
is more graceful, as the structure is large enough to bridge
troughs up to 30 cm. In fact, it is possible to notice that
there are trials in which the performance is above the grey
area for all test conditions.

It should be noticed that in some cases even if the gap is
bridged, the swarm-bot is not able to efficiently coordinate
in order to pass on the other side. In fact, once the gap
is encountered and bridged by some of the s-bots, a new
coordination phase is triggered which generally leads to the
choice of a new direction of motion, that may let the swarm-
bot retrace its steps. Furthermore, the coordination phase
over the trough is time-consuming, and the swarm-bot may
not be able to completely pass over the trough in the limited
available time.

4.3. Discussions

The behaviour presented above can be considered conserva-
tive, as the avoidance is in general preferred to the passing
over the trough. This is not surprising because the behaviour
was evolved explicitly for the hole avoidance task. There-
fore, a trough can be estimated too large to be bridged even
when the swarm-bot is big enough to pass over it. However,
looking at the performance shown in Figure 6, we can notice

that the swarm-bots perform reasonably well with respect
to their physical constraints. In fact, given the size of a 4-
individual swarm-bot, the maximum width of a trough that
can be bridged is about 14 cm. Our results show that from
this width on, the swarm-bot always performs an avoidance
action, while the swarm-bot is able to pass over narrower
troughs, even if not systematically. A similar situation can
be observed for the case of 9 and 16 s-bots, which are re-
spectively characterised by the maximum width of 22 and
30 cm.

Whether a trough is avoided or bridged depends on mul-
tiple factors, among which the orientation of the swarm-bot
and its direction of motion when it first approach the trough.
In fact, the collective behaviour of passing over a trough re-
lies on a delicate balance between the forces exerted by the
s-bots that touch the ground and the missing influence of
those s-bots that are suspended over the gap. The suspended
s-bots cannot influence the behaviour of the group and the
dynamics of the swarm-bot are governed by fewer s-bots.
Every s-bot that perceives a hole will react trying to change
its direction of motion and trying to influence the behaviour
of the whole group by exerting a traction force. However,
the bigger the size of the swarm-bot, the bigger the inertia
of the physical structure. Once the swarm-bot reaches an
edge, its inertia will cause some s-bots to be pushed out,
over the gap. In fact, few s-bots have a small effect on the
overall behaviour of the group. When a sufficient number
of s-bots is suspended out of the arena, the forces exerted
by those s-bots that reach the edge can be perceived by the
whole group, and they will trigger a change in the direc-
tion of motion of the swarm-bot in order to avoid falling.
If some of the suspended s-bots reach the other side of the
trough, they start again to have an influence on the rest of the
group. First, they align with the current direction of motion,
and afterwards they contribute to the gap passing behaviour
pulling the whole structure on the other side of the gap. This
emergent behaviour can be considered self-organised, as it
depends on the interactions among individuals and on clear
feedback loops: the conformist tendency of the s-bots in
following the average direction of the group constitutes a
positive feedback, while the tendency to avoid a hole of the
individual s-bots and the missing influence of the suspended
s-bots constitute the negative feedback.

In conclusion, the collective behaviour of passing over
a trough can be considered an emergent decision-making
mechanism that allows a swarm-bot to discriminate be-
tween those troughs that are small enough to be safely
bridged and those that are not. We observed that the width
of the troughs that can be traversed varies, depending on
the size of the swarm-bot: the bigger the size, the wider the
trough. Therefore, it is possible to conclude that through
a self-organising process, the swarm-bot is able to collec-
tively estimate the width of the trough, and consequently it
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Figure 6. Performance of a swarm-bot passing over a trough.

Performance is defined according to equation (1). Each box-and-

whiskers plot represents 100 evaluation trials. Boxes covers the interquartile range, while whiskers extend to the last data-point

within 1.5 times the interquartile range. The small circles are
distances occupied by the trough.

is able to take the correct decision about the way to move.

5. CONCLUSIONS

Collective decisions are an important issue whenever a
swarm robotic system is taken under consideration. Collec-
tive decisions allow to keep a low complexity of the individ-
ual behaviours, while obtaining more complex behaviours at
the group level. The work presented in this paper shows one
particular case in which a complex decision—such as pass-
ing over a trough or avoiding to confront with it—can be
collectively taken relying only on simple behavioural rules.
These rules followed by each s-bot do not contain any ref-
erence to the behaviour of passing over a trough. However,
they result in a self-organising process that allow an esti-
mation of the size of the trough and therefore an emergent
decision-making process.

We claim that similar self-organised behaviours could
be exploited for other problems requiring a collective
decision-making process. However, designing a self-
organising control system for a swarm robotic system is not

outliers. The dark grey area represents the performance for those

a trivial task. From an engineering perspective, the design
problem is generally decomposed into two different phases:
(i) the behaviour of the system should be described as the
result of interactions among individual behaviours, and (ii)
the individual behaviours must be encoded into controllers.
Both phases are complex because they attempt to decom-
pose a process (the global behaviour or the individual one)
that is a result of dynamical interactions among its sub-
components (interactions among individuals or between in-
dividual actions and the environment) [5]. These dynam-
ical aspects are in general difficult to be predicted by the
observer: referring to the case discussed in this paper, pre-
dicting the collective dynamics of passing over a trough is
difficult, and even understanding them through the observa-
tion of the evolved behaviour requires a considerable effort.

We believe that evolutionary robotics techniques are the
tools to be exploited to obtain self-organising behaviours
in a group of robots. Evolution bypasses the problem of de-
composition at both the level of finding the mechanisms that
lead to the global behaviour and at the level of implement-
ing those mechanisms in a controller for the s-bots. In fact,



evolution relies on the evaluation of the system as a whole,
that is, on obtaining the desired global behaviour starting
from the definition of the individual ones. Moreover, evolu-
tion can exploit the richness of possible solutions offered by
the dynamic agent-environment interactions, that could not
be apparent a priori to the experimenter [8].

In future works, we will continue the research on the
evolution of self-organising behaviours related to collective
decision-making processes. We will study how to obtain
collective decision mechanisms in a swarm robotic system
that is able to take into account not only environmental cues,
but also temporal ones. This will allow the synthesis of be-
haviours that change in relation to the persistence of a per-
ceptual cue for a certain amount of time [12]. A similar
situation can be studied in the context of the behaviour of
passing over a trough: in this case, s-bots should first search
for a passage that could lead them to the opposite side of
the arena. In case such a passage does not exist, the s-bots
should recognise that they have to self-assemble in a swarm-
bot in order to cope with the gap. The absence of a passage
could be discovered only by means of temporal cues, such
as the persistence of the perception of the trough.
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