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Abstract—This paper describes a clustering process taking
inspiration from the cemetery organization of ants. The goal of
this paper is to show the importance of the local interactions
which allow to produces complex and emergent behaviors in
the field of swarm robotics. A series of simulations enables us
to discuss and validate the fact that the changes of rules allow
generating other emergent behaviors for the achievement of tasks.
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I. INTRODUCTION

The behaviors exhibited by ants are known to be the

most mature among swarm intelligence techniques. Indeed,

the observation of ant colonies led to so called ant colony

algorithms [1]. These algorithms revolve around a key concept

called stigmergy which is an indirect coordination activity in

an unknown environment: Ants are attracted to each other by

a chemical material called pheromone. The Ant algorithms

provide powerful methods for the design of algorithms and

optimization of distributed problems involving a collaborative

swarm behavior [2], [3], [4], [5], [6]. It seems that in an

unknown environment, one of the most important problems

related to multi-robots systems is to decide how to coordinate

actions in order to achieve tasks in an optimal way [7]. It is

also very important to know what needs to be accomplished

and the number of robots required for the task. In addition

to this, it is important to know how to make the multi-robot

systems self-organized.

It is clear that execution of a cargo pushing task for

example is more natural if it is accomplished by a multi-robot

system. Though the introduction of ant algorithms, based

on the modification of environment used as a minimal

communication tool into the world of robotics, improves

the communication quality between robots. We start really

to speak about swarm robotics[7], [8], [9], [10], [11], [12],

[13]. In fact, when an ant tries to move a cargo (e.g., food)

alone, it spends moments to test the resistance of the cargo

to forces applied by varying the orientation of the ants

body.Changing the direction of the applied strength can be

enough to result in actual movement of the cargo. Should

the realignment be inadequate, the ant releases the cargo

and tries another position or direction from which to seize

and move the cargo.If multiple adjustment attempts are not

successful, the ant recruits other ants [7]. In the same area

Kazuhiro Ohkura present in [14] an evolutionary robotics

approach, in which robot controllers are designed by evolving

artificial neural networks. Many works such as those cited by

Kube and Zhang [9] employ ant algorithms to solve object

transportation problems.

Other research as consist of changing the ant algorithm

using a new technique for multi-robot pheromone placement.

This technique enables robots to place more pheromones

in the tasks that are about to be fulfilled: A very large

amount of pheromone is placed on the cargo items that are

close to successfully being moved or close to reaching their

destinations, hence requiring a great force to move them.

A small amount of pheromone is otherwise placed on the

cargo. This strategy helps to attract additional robots to

complete the task when needed [11]. In fact, the amount of

pheromone is constant whereas in [12], [13] it is variable

and depends on task difficulty and on the robots strength.

Dasgupta describe also in [15] an emergent algorithm inspired

by stigmergy in insect colonies, to solve the n-collaborative

pursuit-evasion game. The problem of task allocation in the

field of cooperative robotics is addressed by several studies

especially in the context of unknown environments. Each

robot has to adapt to its environment without any training

stage. Moreover, the materialization of pheromone into real

robots remains problematic in spite of the various attempts

[16], [17].Lets consider another view of swarm intelligence

inspired from ant colony optimization called Counter-Ant

Algorithm (CAA) [18], [19]. The robots collaborative

behavior is based on repulsion instead of attraction to

pheromone that represents the core of ants cooperation. The

robots reaction consists, henceforth, of avoiding paths covered

by this chemical substance. The modified version includes a

solution for stagnation recovery using pheromone positions.

In recent years, research has been oriented more towards



the development of real-time systems and particularly the

study of hybrid methods to ensure scalability of behavior

with respect to the dynamic nature of the environment, in

[20] the authors present a fuzzy system for avoiding the

collaboration stagnation and to improve the counter-ant

algorithm . The robots collaborative behavior is based on a

hybrid approach combining the CAA and a fuzzy system

learned by MAGAD-BFS (Multi-agent Genetic Algorithm for

the Design of Beta Fuzzy System).

To improve the uses of swarm robotics, we show in this

paper how we can generate an emergent behavior allowing the

realization of different tasks. In particular, our work deals with

the problem of controlling a colony of agents moving objects.

Indeed, we begin to study a basic level where the capacity of

agents is limited to a level more complex achieved by the use

of cognitive agents. The remainder of this paper is organized as

follows. Section II overviews the use of emergent proprieties.

Sections III and IV present and discuss the proposal: the local

rules to achieve the clustering of objects and the clustering of

resources. Finally, the last section concludes the paper.

II. THE USE OF EMERGENT PROPRIETIES

Emergent behavior is one of the main topics of research

in the field of swarm robotics. The stigmergy is the factor

that allows the creation of many emergent structures through

the collaboration between robots. Indeed, interaction between

agents needs not to be complex to produce global emergent

behavior. We need just the use of a limited vision and a simple

local interaction without the need of the capacity for spatial

orientation or memory; the robots are able to achieve tasks and

to create an emergent behavior. Holland presents in [10]the

operation of stigmergy and the self-organization. Mataric in

[21] describes the way to understand the types of simple

local interactions which produce complex group behaviors. So

we tried to understand the types of simple local interaction

allowing the process of organization of cemetery of ants.

A. The organization of ants’ cemetery

The phenomenon that is observed in ants’ cemetery is

the aggregation of dead bodies by workers. If dead bodies

are randomly distributed in space at the beginning of the

experiment, the workers will form clusters within a few hours.

The basic mechanism underlying this type of aggregation

phenomenon is an attraction between dead bodies mediated

by the ant workers: small clusters of dead bodies grow by

attracting workers to deposit more items. It is this positive

feedback that leads to the formation of larger and larger

clusters. In this case it is therefore the distribution of the

clusters in the environment that plays the role of stigmergic

variable [2]. If we observe on closer, we see that ants behavior

is to amplify local deposits: more there was a dead body

in a cluster more the probability of deposits is important.

Moreover, more the cluster is voluminous more the probability

of taken is low. For taken, ant will want to take a dead body

when the cluster is small, because its easy to take it. For

deposit, ant will want to deposits the dead body when the

cluster is large [22].

B. Related works

By exploiting the self-organized clustering of objects in a

closed arena taking inspiration from the cemetery organization

of ants, researchers have been able to design a number of

successful algorithms: Deneubourg in [4] have proposed a

model relying on biologically plausible assumptions to account

for the phenomenon of dead body clustering in ants. Gaussier

[23] show that acting on objects simplifies the reasoning

needed by a robot and allows clustering of scattered objects.

The robots are programmed to move randomly and to take an

object if they find one and to deposit it if they find another

object. The result shows that the heaps built are linear and

long, and this is due to an interpretation error: tow objects

together can be perceived as a wall and the robots then

avoids them. So the operation depends on the robot orientation

with regard to the heap. Becker et Holland [24], [10]studied

the clustering and sorting of colored frisbees by a group of

real robots. Martinoli [25] studied the clustering of small

cylinders by a group Khepera robots, the rules are based on

the perception sensors: if all the four sensors of Khepera are

very active, this indicates that there is a large obstacle in

front of it and has to avoid it. And stays in this mode until

none of the proximity sensors notice any obstacle. Now if the

two lateral proximity sensors are not saturated, it indicates to

Khepera that there is a small object in front of it. Lan in [26]

presents a multi-robot system for collective clustering task. It

consists of homogenous robots with only local sensing ability

and four simple reactive behaviors. M.Martin [27] shows that

the observed clustering of corpses can be explained by a

statistical effect. So we will try to use the same phenomenon

for dead bodies but we will change the locale rules to achieve

an emergent behavior allows the clustering of objects.

III. OBJECTS CLUSTERING BASED ON LOCAL DISTANCES

The phenomenon observed in ants cemetery represents our

inspiration source for realizing the clustering of objects by

agents. The behavior of agent in the environment is very

simple; it allows the search of objects either for taking or

for deposit. The agents move in the environment randomly

looking for objects. When agent finds them in her proximity,

it chooses the nearest object for transport when it is on mode

taking. If it is on mode deposit, the agent chooses the distant

object to deposit inside. It should be noted that agents are

equipped by a limited field of vision which allows them to

detect objects for participate in operation of transport, and to

avoid the other agents.

A. The local taking-deposit rules

The mode of taking is based on the fact to choose the nearest

object based on (1): In the instant of detection of objects, each

agent calculates the minimum distance D between its position

Pi and the position of the objects Oj detected in the field of

vision.



D(Taking) = min(d(Pi, Oj)) (1)

An agent starts on deposit mode, and tries to look for the

distant object to deposit to beside. As seen in (2), for each

transported object, the agent calculates the maximum distance

D between its position Pi, and the position of other objects Oj

detected in the field of vision.

D(Deposit) = max(d(Pi, Oj)) (2)

With d is the Euclidian distance of the environment.

B. StagnationRecoveryusing the Same Rules

By analyzing the behavior of agents, we note a stagnation

situation [28]: when agent accomplishs an operation of deposit

in an area containing only one other object, it enter in infinite

operations of taking-deposits the same objects. However, with

the repeated use of the same local taking-deposit rules, agent

arrives to make transition into the environment, and thus move

by varying the positions of objects. With the phenomenon of

emergent transition the probability to find other objects is big,

what allows the agent to take and deposit other objects. The

Fig.1 presents the flowchart of the collaborative transportation

task based on simple rules.

Fig. 1. Collaborative transportation task based on simple rules

C. Simulation

Collaboration between robots is done in a completely un-

known environment. It is made up mainly by objects and

robots which are implemented and generated by the simulation

platform Madkit. These robots are provided by a field of

vision enabling them to detect the objects. Fig. 2a presents

a scenario of our simulation environment at the starting time

t=0, containing two robots with a field of vision equal 80cm

to strengthen the use of locals rules, and 85 objects. The

agents start to move randomly in the environment using the

rules of taking and deposit. In Fig.2b and Fig.2c we note

that the global behavior of our system emerges to create a

large number of clusters scattered in the environment. These

clusters are builded through the collaboration of agents across

the stigmergy embodied in the objects into the environment.

Fig.2d and Fig.2e show that the number of clusters continues

to decrease and their density increases. Finally, Fig.2f shows

that the emergent behavior of our system based on simple

locals rules allows to reduce the number of clusters and

move them with an emergent and collaborative manner to

create a single cluster. As Dorigo says in [2] that if the

experimental arena is not sufficiently large, or if it contains

spatial heterogeneities, the clusters will be formed along the

borders of the arena, so we note that the cluster is formed

along the border of our environment.

Fig. 2. Creation of emerging clusters

D. The physical emerging phenomenon

It is noted from the Fig. 3, that the rate of occupancy of 85

objects in the environment is equal 2.95%. Thus, our system

was able to reduce this rate with the creation of clusters of

objects: the rate goes up by 2,04% until it reaches 0,69%

where we have one cluster of objects. So we reduce 4 times

the rate of occupancy of objects. Fig.3, shows all the rate of

occupancy over the time. In other side, the use of two robots

allowed us to vary the number of clusters from 19 to 1 in the

same environment. The curve 4, shows the change in cluster

size over time. From 60 to 235 steps of time, we notice the

temporary creation of small clusters whose size varies between



0 and 10, which end to disappear. The disappear is due to the

transition phenomenon: the destruction of certain clusters can

sustain or create other in the environment. From 235 until 487

steps of time we can see the creation of large clusters whose

size varies between 10 and 20. After 653 steps of time we

see the destruction of the majority clusters and finally 827

step of time, we see the destruction of all the clusters and

the construction of a single cluster that brings together all

the objects in the environment. We can say that the transition

phenomenon allows to optimize the rate of occupancy of

objects and to create just one cluster in the arena.

Fig. 3. The rate of occupancy of objects over the time

Fig. 4. The evolution of the clusters size

E. The temporal emerging phenomenon

Fig. 5, shows (from 1 to 2 robots) that in spite of the fixed

field of vision, the convergence time is improved, from 1722s

with only one robot to 827s with two robots. This emphasizes

the effectiveness of swarm robotics in the collaboration works.

With 2 to 6 robots the convergence time continues to decrease

to 553s, which shows that increasing the number of robots

strengthens the emergent behavior of the creation of clusters

and accelerates the process. However with more than 6 robots,

the convergence time increases, thats confirms that the uses

of the local rules allows to give in all cases an emergents

proprieties independently of the number of robots but that will

affect the convergence time . The question that arises is to

know why the convergence time increased when we added

the robots while the goal was to strengthen the emerging

behavior! When we observe the simulation we noticed that

there is another ermerging behavior which was created: its

the destructive behavior. Its a purely emergent: A number of

agents in the taking mode can frequently be met next to a

cluster, so instead of strengthening it by filing of other objects,

the agents will take all the objects of the cluster which leads

to its destruction. This emergent phenomenon will slow down

the convergence time of our system because that slows down

also the creation of clusters. The curve 6, shows the number of

clusters over time. We note that the number and size of clusters

increases with increasing number of robots which increases

also the convergence time of our system. Indeed, the transition

of large clusters with the use of 9 robots will take a long time

compared to clusters whose size is less than 20 (with two

robots).

Fig. 5. The evolution of the convergence time

Fig. 6. Evolution of the number of clusters

IV. THE EMERGING CLUSTERING RESOURCES

We have study a basic level where, the capacity of agents

is limited and we have shown the effectiveness of local

rules to generate emergent behaviors allowing performing

the task. If we continue to exploit the phenomenon of dead

body by varying the taking-deposit rules in a more complex

level achieved by the use of cognitive agents, to solve an

optimization problem called resources transportation.



A. The problematic situation

In the simulation environment, we suppose three initial

types of sources: water, food and nest , wich are scattered.

We seek in this part, to solve the transportation problem: This

means of taking resources and put them in relevant places to

optimize the planning agents to search resources, to achieve

the survival of other agents, and to have a dynamic stable

system. We use three motivations for agents (eating, drinking,

and resting). Each one associated with a satisfaction level that

decreases over time and increases when the agent is on the

proper source. When a level of satisfaction falls bellows a

given threshold, the corresponding motivation is trigged so

that the robot has to reach a place allowing to satisfy this

need [29].

B. The internal architecture of agents

The work of OKeefe [30] shows a special cells in the

rats hippocampus that fire when the animal is at a precise

location. These neurons have been called place cells. We do

not directly use them to plan or construct a map, we rather

use neurons called transition cells. During exploration these

transition cells are created and allow to learn cognitive map

[31]. The cognitive map allows to avoid planning problem

when trying to use the map before a complete exploration

of the environment has been reached and to allow also a

single merging of action between sensor-motor and the plan-

ning strategies. The cognitive map acts as internalization of

pheromone traces coupled with an imitative behavior, it allows

the same results without the need to leave a physical trace

in the environment. At the individual level, agents can rely

on an on-line continuous building of a cognitive map whose

structure depends on their own experience and discovery of

the environment in which they live. The cognitive map aims

at making agents learn the news positions of resources and

evolve in a dynamically changing environment, where some

sources can disappear when intensively visited for a long time

and other can appear somewhere in the environment.

C. The local taking-deposit rules

To keep a fixed number of resources deposited in relevant

places we try to use local rules. The condition of taking

computed by (3) is as follows: The probability that agent want

to take increase when he realizes that a source is abandoned

by other agents. So, more agents are near a source, more the

probability of taking decreases and vice versa.

Pr(Taking) = e−(NRN+var1) (3)

Equation (4) presents condition of deposits as follows: The

agent has want more to deposit, if he realizes that the place is

frequented by other agents and it is far on the original source

where he conducted the transaction of taking, this ensures the

relevance of the location of resources.The deposit operation is

built on the concept of reinforcement: the agent puts in the

resources that already exist

Pr(Deposit) = (1 − e−NRN/var2) ∗ (1 − e−t/var3) (4)

Where NRN is number of robots in the neighbor, t is the time

from the taking and var1,var2 and var3 are numbers which

makes it possible to control the rules.

D. The preliminary results of the global behavior

To better analyze the behavior of our system, we run

simulations by varying the initial number of agents in the

environment, then we obtain the following results. It is noted

that var1=1,var2 = 2 and var3=1000. Fig.7 and Fig.8 show that

the number of persistent taking and of deposits increases with

the increase of the number of agents in the environment. Fig.9

shows also that agents try to strengthen the existing ressources.

The number of reinforcments increases with the increases

of the number of agents in the environment. This limits the

number of deletions ressources and allows to maintain a fixed

number resources in the environment. Indeed, each resource

has its own life, and once it reaches 0 the resource disappears

(see Fig.10). Fig.11 shows that the average of convergence

time also increases with increasing the number of agents to

reach 30 326 time steps, which is considered as high. In Fig.

8, the number of persistent deposits varies between 3 and 13,

also the Fig.11 shows that the average of convergence time

varies between 8737 and 30326 steps time.

Fig. 7. Influence of the number of robots on the number of taking

Fig. 8. Influence of the number of robots on the number of persistants
deposits



Fig. 9. Influence of the number of robots on the number of reinforcements

Fig. 10. Influence of the number of robots on the number of suppressions

Fig. 11. Influence of the number of robots on convergence time

E. Emergence improvement by refinement rules

To improve performance by controlling the number of

persistent deposition and by limiting the convergence time we

try to refine the local rules. We integrate in deposit rule, two

environmentals factors α et β expressed by (5).

Pr(Deposit) = (1−eα(−NRN/var2))∗((1−eβ(−t/var3))) (5)

By varying the values of α and β, we notice that increasing

the values of environmental factors increases the convergence

time and the number of persistent deposits and vice versa.

To focus on changes in the number of persistent deposits and

the convergence time of our system over time, we perform

different simulations with α = β = 0.3 when variying the

number of agents.

Fig. 12. The average of persistent deposit and convergence time

Fig. 12 shows that the refinement rules allows us to control

the convergence time and the number of persistent deposits.

We also note that until 4500 steps of time, the number of

persistent deposits is not stable. From 6000 steps of time,

the number of deletions decrease that’s allows increases the

number of reinforcements. For 10 agents, the number of

persistent deposits =0, this shows that the cooperation between

agents is not succeeded in order to locate relevant locations

in the environment. The average time of convergence for 40

and 50 agents in the area is equal 7000 step of time. For 10

and 20 agents it’s equal to 9000 steps of time. However, it’s

13000 steps of time for 30 agents. We also note that increasing

number of agents from 40 to 50 does not change the number

of persistent deposits. We can then say that the number of

persistent deposits does not depend on the number of agents in

the environment, and the agents just make the reinforcements

of the emergent behavior.

F. The emergent Behavior of agents

Fig. 13a presents the simulation environment at t= 0 where

the original sources are scattered. The Agents move randomly

in the environment with a taking mode, with a field of

perception that can minimize the ability of agents to perceive

the environment. When passing of the resources (nest, food

or water) agent increases its level of satisfaction and executes

the locale rule of taking, to transporting a quantity of this

resource: the probability of take increases when the agent

does not detect other agents next to the source. If an agent

transports successfully, it continues its travel but in the deposit

mode: the probability of deposits increases more when agent

detects other agents and it moves away from the source.

Once deposited, the new resources allow to agents to increase

their satisfactions level (see Fig.13b, Fig.13c and Fig.13d). If

the agent passes through a resource deposited and it carries

a similar resource it reinforces it, otherwise it increases its

level of satisfaction and decreases the amount of the resource.

Each resource has its own life once it reaches 0 the resource



disappears. If we consider (Fig.13c and Fig.13d) or (Fig.13f

and Fig.13e), we notice the disappearance of resources.

Fig. 13. Emergent transportation of resources

The behavior of agents based on local rules allows the

creation of emerging resources in relevant places frequented

by the population of agents. The same behavior also allowed to

keep a fixed number of resources through the environment and

to remove by an emerging way other resources located in not

relevant places: hence the stability of the environment (Fig. 13f

and Fig. 13g), we note in this case that the number of persistent

deposits does not change. The final resources that exist in the

environment are the emergence of an individual decision of

an agent (when creating the resource) to a collective decision

of the entire population (through the maintain of resource via

the reinforcement). Fig.13f represents the environment at the

stability of our system (at 7932 step of time); we note that

the emergent behavior of cognitive agents helped create 6

dispersed clusters allowing the survival of the other and the

optimization of planing to find resources. We see also that

the clusters are not formed along the borders of the arena.

This experiment confirms that acting on objects simplifies the

reasoning needed by a robot and allows clustering of scattered

objects [23]. The Fig. 14 shows the average number of the

agents passages on resources. We see that resources deposited

by agents are exploited which proves they are well placed in

areas frequented by other agents. The initial sources are poorly

operated favoring reinforcement operation.

Fig. 14. Number of the agents passages

V. CONCLUSION

This paper describes a clustering process taking inspiration

from the cemetery organization of ants. We aim to show how

we can generate an emergent behavior based on local rules,

allowing the realization of different tasks. Indeed, we studied

a basic level where the capacity of agents is limited and

we have shown the effectiveness of local rules to generate

emergent behaviors that allow performing the task. By varying

the taking-deposit rules in a more complex level achieved

by the use of cognitive agents, we show that we can solve

the optimization problem of resources transportation and we

have highlighted the role of the cognitive map to manage

the complexity of the environment via recovering emergent

behaviors.
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