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Abstract. An important metric for temperature projections is the equilibrium climate sensitivity (ECS), which is
defined as the global mean surface air temperature change caused by a doubling of the atmospheric CO2 concen-
tration. The range for ECS assessed by the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment
Report is between 1.5 and 4.5 K and has not decreased over the last decades. Among other methods, emergent
constraints are potentially promising approaches to reduce the range of ECS by combining observations and
output from Earth System Models (ESMs). In this study, we systematically analyze 11 published emergent con-
straints on ECS that have mostly been derived from models participating in the Coupled Model Intercomparison
Project Phase 5 (CMIP5) project. These emergent constraints are – except for one that is based on temperature
variability – all directly or indirectly based on cloud processes, which are the major source of spread in ECS
among current models. The focus of the study is on testing if these emergent constraints hold for ESMs partici-
pating in the new Phase 6 (CMIP6). Since none of the emergent constraints considered here have been derived
using the CMIP6 ensemble, CMIP6 can be used for cross-checking of the emergent constraints on a new model
ensemble. The application of the emergent constraints to CMIP6 data shows a decrease in skill and statistical
significance of the emergent relationship for nearly all constraints, with this decrease being large in many cases.
Consequently, the size of the constrained ECS ranges (66 % confidence intervals) widens by 51 % on average
in CMIP6 compared to CMIP5. This is likely because of changes in the representation of cloud processes from
CMIP5 to CMIP6, but may in some cases also be due to spurious statistical relationships or a too small number
of models in the ensemble that the emergent constraint was originally derived from. The emergently- constrained
best estimates of ECS also increased from CMIP5 to CMIP6 by 12 % on average. This can be at least partly ex-
plained by the increased number of high-ECS (above 4.5 K) models in CMIP6 without a corresponding change
in the constraint predictors, suggesting the emergence of new feedback processes rather than changes in strength
of those previously dominant. Our results support previous studies concluding that emergent constraints should
be based on an independently verifiable physical mechanism, and that process-based emergent constraints on
ECS should rather be thought of as constraints for the process or feedback they are actually targeting.
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Figure 1. Assessed ECS ranges (blue bars) from the Charney report
(Charney et al., 1979) and the different Assessment Reports (ARs)
of the Intergovernmental Panel on Climate Change (IPCC). The
numbers correspond to individual CMIP5 and CMIP6 models; see
Tables A1 and A2 for details. Adapted and updated from Meehl et
al. (2020).

1 Introduction

A bulk measure of the sensitivity of the climate system to
carbon dioxide in the atmosphere (CO2) is commonly ex-
pressed by the equilibrium climate sensitivity (ECS), an ide-
alized metric defined as the mean global surface air temper-
ature change that results from a doubling of the atmospheric
CO2 concentration over pre-industrial levels once the climate
system reached equilibrium. In 1979, the Charney report de-
termined an ECS range of 1.5 to 4.5 K for the Earth system
(Charney et al., 1979). This range had not changed substan-
tially by the time of the Intergovernmental Panel on Climate
Change (IPCC) Fifth Assessment Report (AR5) (Collins et
al., 2013) and is close to the range of the Earth system models
participating in the Coupled Model Intercomparison Project
Phase 5 (CMIP5, Taylor et al., 2012).

This large range of model climate sensitivity values can be
largely attributed to differences in cloud feedbacks (Boucher
et al., 2013). In particular, model differences in the change in
shortwave reflection of low-level clouds changes in response
to climate change dominate the uncertainties in the global
warming projections, particularly in the tropics but also at
midlatitudes (Brient and Schneider, 2016; Vial et al., 2013).
Over the years, various lines of evidence have been exploited
to constrain the range of ECS, including paleoclimate data
and analysis of the current observed warming trend (Knutti
et al., 2017a). A new assessment using this evidence has nar-
rowed the 66 % range (17 %–83 %) to 2.6–3.9 K (Sherwood
et al., 2020), but in the meantime CMIP6 models are display-
ing a wider range of ECSs (see below).

The use of emergent constraints is another promising ap-
proach to reduce the uncertainty in ECS (Eyring et al., 2019).
Originally applied to the hydrological cycle and the snow–
albedo feedback (Allen and Ingram, 2002; Hall and Qu,
2006), emergent constraints offer the possibility to constrain
future projections of Earth system model (ESM) ensembles
with observations. Their theoretical basis is an emergent
relationship between an observable quantity in the past or
present-day climate and a quantity related to the future cli-
mate (such as ECS). Typically, the observable quantity is
related to a climate feedback, allowing the emergent rela-
tionship to be physically motivated by some key processes
driving this feedback. Such a physical mechanism is a cru-
cial prerequisite for the plausibility of an emergent con-
straint: due to large number of possible observables and
small number of models, spurious emergent relationships
are possible just by chance, which was shown by statistical
tests (Caldwell et al., 2014). Caldwell et al. (2018) evalu-
ated the credibility of several published emergent constraints
on ECS. Using a feedback decomposition analysis, they as-
sessed whether the published emergent relationship could be
explained by the proposed mechanism. Out of 19 emergent
constraints on ECS, only 4 of them were considered credible,
while the rest of them were either considered not plausible or
could not be tested using this approach. In addition, Caldwell
et al. (2018) performed out-of-sample tests on five emergent
constraints originally trained on older CMIP versions, by ap-
plying them to the CMIP5 ensemble. They found that out
only one of the five passed this test.

In this paper, we follow up on the work of Caldwell et
al. (2018) by analyzing 11 published emergent constraints
on ECS, which are summarized in Table 1, and assessing
whether they still hold for the new CMIP6 model ensem-
ble (Eyring et al., 2016). We first calculate these emergent
constraints for the most recent ensemble used to derive all
but one of them – CMIP5 (Taylor et al., 2012) – and then
test whether they still hold in the CMIP6 ensemble. The
one exception is the emergent constraint of Volodin (2008),
which was derived on CMIP3 data. While the model range
of ECS in CMIP5 is between 2.1 and 4.7 K, the CMIP6
model range is considerably larger, 1.8 to 5.6 K (Meehl et
al., 2020); see Fig. 1. Possible reasons for this increased
ECS range are changes in the extratropical cloud parameter-
izations and microphysics in the CMIP6 models (Zelinka et
al., 2020). However, despite including more detailed cloud
physical processes, further analyses suggest that the high-
sensitivity models might overestimate the future warming
trend (Tokarska et al., 2020). The large ECS range in CMIP6
emphasizes the need for reliable methods to constrain the
uncertainty range of future climate projections with obser-
vations. The CMIP6 ensemble can be used for an indepen-
dent testing of the constraints on previously unknown data.
If the proposed underlying physical mechanisms are robust,
i.e., targeting a key feedback mechanism controlling most of
the observed CMIP6 spread, the emergent constraints would
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Table 1. Overview of the 11 emergent constraints on the ECS used in this study. Observations marked with an asterisk (∗) are identical to
the ones used in original publication.

Label Reference Short description of x axis Variables Observations

BRI Brient and Response of shortwave cloud – Surface temperature (ts) HadISST (tos)
Schneider (2016) reflectivity to changes in sea – Relative humidity (hur) (Rayner et al.,

surface temperature [% K−1] – Top-of-atmosphere (TOA) 2003), ERA-Interim
outgoing shortwave radiation (hur) (Dee et al.,
(rsut) 2011), CERES-
– TOA outgoing shortwave EBAF (rsut, rsutcs,
radiation assuming clear sky rsdt) (Loeb et al.,
(rsutcs) 2018) [2001–2005]
– TOA incoming shortwave
radiation (rsdt)

COX Cox et al. (2018) Temperature variability metric – Surface air temperature (tas) HadCRUT4
[K] (Morice et al.,

2012) [1880–2014]

LIP Lipat et al. (2017) Southern Hemisphere Hadley cell – Northward wind (va) ERA-Interim (Dee
extent [◦] et al., 2011)

[1980–2005]

SHD Sherwood et al. D index (large-scale lower- – Vertical velocity (wap) ERA-Interim (Dee
(2014) tropospheric mixing) [1] et al., 2011)

[1989–1998]

SHL Sherwood et al. Lower tropospheric mixing index – Relative humidity (hur) ERA-Interim (Dee
(2014) (LTMI) [1] – Air temperature (ta) et al., 2011)

– Vertical velocity (wap) [1989–1998]

SHS Sherwood et al. S index (small-scale lower- – Relative humidity (hur) ERA-Interim (Dee
(2014) tropospheric mixing) [1] – Air temperature (ta) et al., 2011)

– Vertical velocity (wap) [1989–1998]

SU Su et al. (2014) Error in vertical profile of – Relative humidity (hur) AIRS (below
relative humidity [1] 300 hPa) (Aumann

et al., 2003), MLS-
Aura (above
300 hPa) (Beer,
2006) [2005–2010]

TIH Tian (2015) Tropical mid-tropospheric – Specific humidity (hus) AIRS (Aumann et
humidity index [%] al., 2003)

[2003–2005]

TII Tian (2015) Southern ITCZ index [mm d−1] – Precipitation (pr) GPCP (Adler et al.,
2003) [1986–2005]

VOL Volodin (2008) Difference in total cloud fraction – Total cloud area fraction ISCCP D-2
between tropics (28◦ S–28◦ N) (clt) (Rossow and
and southern midlatitudes Schiffer,
(56–36◦ S) [%] 1991) [1980–2000]∗

ZHA Zhai et al. (2015) Response of seasonal marine – Cloud area fraction (cl) CloudSat/CALIPSO
boundary layer cloud fraction to – Sea surface temperature (tos) (Mace et al., 2009),
change in sea surface temperature – Vertical velocity (wap) AMSRE SST
[% K−1] (AMSR-E, 2011),

ERA-Interim (Dee
et al., 2011)
[1980–2004]∗
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Table 2. List of CMIP5 models alongside the index used in the figures of this study and a reference.

Index used Model Reference
in plots

1 ACCESS1-0 Dix et al. (2013)
2 ACCESS1-3 Dix et al. (2013)
3 BNU-ESM Ji et al. (2014)
4 CCSM4 Gent et al. (2011), Meehl et al. (2012)
5 CNRM-CM5 Voldoire et al. (2013)
6 CNRM-CM5-2 Voldoire et al. (2013)
7 CSIRO-Mk3-6-0 Rotstayn et al. (2012)
8 CanESM2 Arora et al. (2011)
9 FGOALS-g2 Li et al. (2013)
10 GFDL-CM3 Donner et al. (2011)
11 GFDL-ESM2G Dunne et al. (2012)
12 GFDL-ESM2M Dunne et al. (2012)
13 GISS-E2-H Schmidt et al. (2006)
14 GISS-E2-R Schmidt et al. (2006)
15 HadGEM2-ES Collins et al. (2011)
16 IPSL-CM5A-LR Dufresne et al. (2013)
17 IPSL-CM5A-MR Dufresne et al. (2013)
18 IPSL-CM5B-LR Dufresne et al. (2013)
19 MIROC-ESM Watanabe et al. (2011)
20 MIROC5 Watanabe et al. (2010)
21 MPI-ESM-LR Giorgetta et al. (2013)
22 MPI-ESM-MR Giorgetta et al. (2013)
23 MPI-ESM-P Giorgetta et al. (2013)
24 MRI-CGCM3 Yukimoto et al. (2012)
25 NorESM1-M Bentsen et al. (2013), Iversen et al. (2013)
26 bcc-csm1-1 Wu et al. (2014)
27 bcc-csm1-1-m Wu et al. (2014)
28 inmcm4 Volodin et al. (2010)

be expected to hold when applied to CMIP6 data. In this
analysis we thus test the robustness of the constraints to new
models and models with advances in model design over time.

Section 2 provides an overview of the data and meth-
ods used. Section 3 gives a discussion of the 11 emergent
constraints on ECS and their results when derived from the
CMIP5 or CMIP6 ensemble, including an analysis of their
statistical significance. The paper ends with a discussion and
summary in Sects. 4 and 5.

2 Data and methods

2.1 Equilibrium climate sensitivity (ECS)

In this study we use the output from climate models partic-
ipating in CMIP5 and CMIP6, shown in Tables 2 and 3, re-
spectively. Traditionally, ECS is defined as the global mean
surface air temperature change after an instantaneous dou-
bling of the atmospheric CO2 concentration once the climate
system reaches radiative equilibrium. Since running a fully
coupled ESM into equilibrium is computationally expensive
(this would require thousands of model years; see Rugenstein
et al., 2020), ECS is typically approximated by a so-called

“effective climate sensitivity”, which is derived from the first
150 years that follow an instantaneous quadrupling of the at-
mospheric CO2 concentration (4×CO2 run). Since the ESMs
are not in radiative equilibrium during these 150 years, a re-
gression of the top-of-atmosphere net downward radiation N

versus the global mean surface air temperature change 1T

extrapolated to N = 0 gives an estimate of the equilibrium
warming (Gregory et al., 2004). In this paper, we use the
term “ECS” to denote this effective climate sensitivity de-
rived from the Gregory regression method. In this calcula-
tion, the linear fit of a corresponding pre-industrial control
run is subtracted from the 4 × CO2 run to account for energy
leakage and remove any model drift that is present in the con-
trol climate without adding noise (Andrews et al., 2012).

Even though it is widely used in literature, this Gregory
regression method is known to be only an approximation
of the true climate sensitivity. As shown by Sherwood et
al. (2020), the effective climate sensitivity is 6 % lower than
the best estimate of the true equilibrium warming obtained
from integrating the climate models until a new equilibrium
is reached. This number is a model-based estimate of the
compensation between changing feedbacks with time and the
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Table 3. As in Table 2 but for CMIP6 models included in this study.

Index used Model Reference
in plots

29 ACCESS-CM2 Bi et al. (2013)
30 ACCESS-ESM1-5 Law et al. (2017), Ziehn et al. (2017)
31 AWI-CM-1-1-MR Rackow et al. (2018), Sidorenko et al. (2015)
32 BCC-CSM2-MR Wu et al. (2019)
33 BCC-ESM1 Wu et al. (2019)
34 CAMS-CSM1-0 Rong et al. (2018)
35 CAS-ESM2-0 Wang et al. (2020)
36 CESM2 Danabasoglu et al. (2020)
37 CESM2-FV2 Danabasoglu et al. (2020)
38 CESM2-WACCM Danabasoglu et al. (2020), Gettelman et al. (2019b)
39 CESM2-WACCM-FV2 Danabasoglu et al. (2020), Gettelman et al. (2019b)
40 CMCC-CM2-SR5 Cherchi et al. (2019)
41 CNRM-CM6-1 Voldoire et al. (2019)
42 CNRM-CM6-1-HR Voldoire et al. (2019)
43 CNRM-ESM2-1 Séférian et al. (2019)
44 CanESM5 Swart et al. (2019)
45 E3SM-1-0 Golaz et al. (2019)
46 EC-Earth3-Veg Wyser et al. (2020)
47 FGOALS-f3-L Guo et al. (2020), He et al. (2019, 2020)
48 FGOALS-g3 Li et al. (2020)
49 GISS-E2-1-G Rind et al. (2020)
50 GISS-E2-1-H Rind et al. (2020)
51 HadGEM3-GC31-LL Kuhlbrodt et al. (2018)
52 HadGEM3-GC31-MM Williams et al. (2018)
53 INM-CM4-8 Volodin et al. (2017a, b)
54 INM-CM5-0 Volodin et al. (2017a, b)
55 IPSL-CM6A-LR Boucher et al. (2020)
56 KACE-1-0-G Lee et al. (2020a)
57 MCM-UA-1-0 Delworth et al. (2002)
58 MIROC-ES2L Hajima et al. (2020)
59 MIROC6 Tatebe et al. (2019)
60 MPI-ESM-1-2-HAM Mauritsen et al. (2019)
61 MPI-ESM1-2-HR Muller et al. (2018)
62 MPI-ESM1-2-LR Mauritsen et al. (2019)
63 MRI-ESM2-0 Yukimoto et al. (2019)
64 NESM3 Cao et al. (2018)
65 NorCPM1 Counillon et al. (2016)
66 NorESM2-LM Seland et al. (2020)
67 NorESM2-MM Seland et al. (2020)
68 SAM0-UNICON Park et al. (2019)
69 TaiESM1 Lee et al. (2020b)
70 UKESM1-0-LL Sellar et al. (2019)

differences introduced by considering a 4 × CO2 run instead
of a 2 × CO2 run. However, only a few ESMs provide sim-
ulations long enough to assess the true climate sensitivity.
The CMIP endorsed LongRunMIP (Rugenstein et al., 2019)
could be a promising way to estimate the true climate sensi-
tivity that can then be used to reevaluate emergent constraints
and their proposed underlying physical mechanisms.

2.2 Calculation of emergent constraints on ECS

An overview of the 11 emergent constraints analyzed in this
study including the variables required for their calculations
is given in Table 1 and the following section. We chose these
particular emergent constraints since these were already im-
plemented in the ESMValTool (see Sect. 2.4) at the time of
writing this study, which greatly facilitated this analysis. For
all emergent constraints, we use the historical simulations of
CMIP5 and CMIP6 in order to ensure maximum agreement
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with the observational data. If necessary, the historical simu-
lation of CMIP5 is extended after its final year 2005 with data
from the RCP8.5 scenario (Riahi et al., 2011). Note that we
only use data through 2014, during which time all RCP sce-
narios behave similarly and the choice of the scenario is not
expected to affect results considerably. Such an extension is
not needed for CMIP6 models as their historical simulations
cover a longer time period until 2014.

To evaluate the resulting constrained probability distribu-
tion of ECS, we use the following nomenclature: let xm be
the x axis variable (i.e., the observable, constraining variable)
of climate model m and ym its corresponding target variable
(ECS in our case). Following Cox et al. (2018), we use ordi-
nary least-squares regression to fit the linear model

ŷm (xm) = a + bxm, (1)

where ŷm is the predicted target variable for predictor xm,
a the intercept of the linear regression line and b the slope
of the linear regression line. Fitting the regression model in-
cludes minimizing the standard error of the estimate

s2 = 1

M − 2

M
∑

m=1

(

ym − ŷm

)2
. (2)

where M is the total number of climate models.
In the standard emergent constraint approach, the con-

strained target variable y (here ECS) is given by the regres-
sion ŷ(x) evaluated at an observed or observationally based
(in case of using reanalysis data) value x that has not been
used to fit the regression line. In that case, the correspond-
ing uncertainty in the prediction of ŷ is given by the standard
prediction error

σ 2
ŷ

(x) = s2











1 + 1

M
+ (x − x)2

M
∑

m=1
(xm − x)2











. (3)

Here, x is the arithmetic mean of x over all models. As-
suming Gaussian errors, this equation defines the conditional
probability density function (PDF) for predicting a value of y

given x, i.e., the posterior distribution:

P (y|x) = 1
√

2πσ 2
ŷ

(x)
exp

(

−
(

y − ŷ(x)
)2

2σ 2
ŷ

(x)

)

. (4)

This distribution can be interpreted as the posterior distribu-
tion in the regression model based on climate model output
but constrained by matching the observable x. However, the
observation of x (referred to as x0) is not error free and has
uncertainties associated with it. Assuming again an unbiased
Gaussian, the resulting observational probability density for
observing x0 given the true value x is given by

P (x0|x) = 1
√

2πσ 2
x

exp

(

− (x0 − x)2

2σ 2
x

)

, (5)

where σ 2
x is the variance of the observation about the true

value. Assuming a uniform prior P (x) ∝ 1 with no cut-offs
(i.e., the cut-offs are positive and negative infinity, which
forms an “improper” prior) and using Bayes’ theorem im-
plies P (x|x0) = P (x0|x). In a final step, numerical integra-
tion is used to calculate the marginal probability density for
the constrained prediction of the target variable y dependent
on the observation x0:

P (y|x0) =
+∞
∫

−∞

P (y|x)P (x|x0)dx. (6)

By assuming a uniform prior in x, we also assume a uni-
form prior in y (the true ECS), since x and y are linearly
related (see Eq. 1); in other words, an ECS near 8 K would
be deemed just as probable as one near 4 K if both are equally
consistent with the observational best estimate x0. We do this
for simplicity. The PDFs would shift somewhat lower with a
broad prior on processes instead (see Sherwood et al., 2020),
but we are concerned here with how outcomes compare us-
ing CMIP5 versus CMIP6 data, rather than the exact ranges
obtained. Such comparisons are not sensitive to the prior.

As typically done in other studies proposing a single emer-
gent constraint on ECS, we do not explicitly take model inter-
dependency into account when applying the linear regression
model (see Eq. 1) to the model ensemble data. We simply
assume that the individual data points (i.e., climate models)
are independent. As some modeling groups provide output
from multiple ESMs and some ESMs from different model-
ing groups share components and code, this is clearly not the
case. Duplicated code in multiple models is expected to lead
to an overestimation of the sample size of a model ensem-
ble and may result in spurious correlations (Sanderson et al.,
2015). Possible approaches could be to stop treating all mod-
els equally by either applying a model weighting based on
a model’s interdependence with the other models or by sim-
ply reducing the ensemble size considering models only that
are above a given (yet to be defined) interdependence score.
Promising approaches to quantify the model interdependency
that could be followed include, for example, the studies of
Sanderson et al. (2015, 2017) and Knutti et al. (2017b).

Another limitation of our approach is the statistical model
itself. Similar to many other emergent constraint studies,
we use an ordinary least-squares linear regression model for
each emergent constraint. However, in some cases this might
not be appropriate, e.g., when we expect nonlinear behav-
ior or when physical constraints can be used to derive further
constraints for the regression model like a zero intercept (An-
nan et al., 2020; Jimenez-de-la-Cuesta and Mauritsen, 2019;
Renoult et al., 2020).

We further note that observational uncertainties can also
play a role, as using different observational datasets for a
given variable as a proxy for observational uncertainty might
lead to different emergent constraints. As this study uses
only one combination of observational datasets to calculate
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the emergent constraints, as was the case in the original
published emergent constraint studies, the error estimations
given by our analysis are expected to underestimate the true
error. This could be investigated by systematic tests using
different observational datasets and/or combinations thereof
as a proxy for observational uncertainty. Where available,
additional observational uncertainty estimates could be used
to give better estimates of the constrained range of ECS. A
major challenge associated with this is, however, to deter-
mine how observational uncertainties propagate to the spa-
tial scales and timescales represented by the models because
of the not typically well-known correlation of observational
errors in space and time (e.g., Bellprat et al., 2017).

2.3 Statistical significance of emergent relationships

To evaluate the statistical significance of the different emer-
gent relationships, we use a two-sided t test to determine how
likely the correlation found between the predictors and ECS
would be to appear by chance. The null hypothesis for this
test is that the predictor and ECS are not linearly correlated,
i.e., the true underlying Pearson correlation coefficient of the
population is zero. In that case, the variable

t = r
√

M − 2√
1 − r2

, (7)

has a Student’s t distribution with M −2 degrees of freedom;
r is the Pearson correlation coefficient evaluated on the sam-
ple (xm, ym). In this study, we indicate the statistical signif-
icance with the p value, which describes the probability of
obtaining an absolute sample Pearson correlation coefficient
greater than |r| if the null hypothesis is true, i.e., the pre-
dictor and ECS are not linearly correlated. Smaller p values
indicate higher significance. Although threshold values such
as p < 0.05 are often used to declare “significance,” here we
focus mainly on how p values are affected by the change
from CMIP5 to CMIP6, noting that they may be biased low
anyway by the assumptions discussed in Sect. 2.2.

2.4 ESMValTool

All figures in this paper are produced with the Earth System
Model Evaluation Tool (ESMValTool) version 2 (Eyring et
al., 2020; Lauer et al., 2020; Righi et al., 2020). The ESM-
ValTool is an open-source community diagnostics and per-
formance metrics tool for the evaluation of Earth system
models (https://www.esmvaltool.org/, last access: 18 Decem-
ber 2020). An ESMValTool recipe (configuration file defin-
ing input data, preprocessing steps and diagnostics to be ap-
plied) is available that can be used to reproduce all figures in
this paper. This also allows redoing the analysis presented in
this study once new model simulations from CMIP6 or other
model ensembles become available.

3 Comparison of emergent constraints on ECS for

CMIP5 and CMIP6

In this section we describe and discuss the 11 emergent con-
straints on ECS summarized in Table 1 using CMIP5 and
CMIP6 data (Sect. 3.1 to 3.11) and provide a best estimate
for ECS and statistical significance of the 11 emergent con-
straints in Sect. 3.12. While most of these emergent con-
straints have been derived using data from the CMIP5 and/or
CMIP3 ensembles, to our knowledge none of them has been
evaluated on the CMIP6 ensemble so far. The results for the
individual emergent constraints described in the following
are shown in Figs. 2 to 5. The left columns in these figures
show the emergent relationships, including the uncertainty
of the linear regressions (blue and orange shaded areas; see
Eq. 3) and the uncertainty in the observations (gray shaded
area; see Eq. 5). The right columns show the probability dis-
tributions of ECS in the original model ensemble (histogram)
and the constrained distribution given by the emergent con-
straints (blue and orange line; see Eq., 6). Table 4 shows
the corresponding 66 % confidence intervals (i.e., 17 %–83 %
intervals) of ECS derived from the probability distributions
given by Eq. (6) and the p values used to assess the signifi-
cance of the emergent relationships.

3.1 Response of shortwave cloud reflectivity to changes

in sea surface temperature (BRI)

In this emergent constraint proposed by Brient and Schnei-
der (2016), ECS is correlated with the tropical low-level
cloud (TLC) albedo, i.e., using the covariance of clouds with
changes in sea surface temperatures (SSTs). Differences in
the TLC albedo account for more than half of the variance
of the ECS in the CMIP5 ensemble. Following Brient and
Schneider (2016), TLC regions are defined as grid points
that are in the driest quartile of 500 hPa relative humidity
of all grid cells over the ocean between 30◦ S and 30◦ N.
The albedo of the TLC is obtained by calculating the ratio
of TOA shortwave cloud radiative forcing and solar insola-
tion averaged over the TLC region. The regression coeffi-
cients of deseasonalized variations of TLC shortwave albedo
and SST (in % K−1) are then used as an emergent constraint
for ECS. Here, we use observational data from HadISST for
SST (Rayner et al., 2003), ERA-Interim for 500 hPa rela-
tive humidity (Dee et al., 2011) and CERES-EBAF (Loeb
et al., 2018) for the TOA radiative fluxes over the time
period 2001–2005. In the original publication, Brient and
Schneider (2016) use similar observation-based datasets with
the exception of SST, where they take data from the Ex-
tended Reconstructed Sea Surface Temperature (Smith and
Reynolds, 2003) as reference instead. Our analysis yields
a 66 % confidence range for ECS of 3.72 K ± 0.59 K for
CMIP5 (R2 = 0.38) and 4.32 K ± 1.07 K for CMIP6, with
much lower R2 = 0.12. The original publication stated a best
estimate of 4.0 K, with a very low likelihood of values below
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Figure 2. Emergent constraints BRI, COX, and LIP applied to the CMIP5 ensemble (blue) and CMIP6 ensemble (orange). (a–c) Emergent
relationships (solid blue and orange lines) for the CMIP models (numbers for individual models are specified in Tables A1 and A2). The
shaded areas around the regression lines correspond to the standard prediction errors (Eq. 3), which defines the error in the regression model
itself. The vertical dashed black line corresponds to the observational reference (see Table 1 for details on the individual observational
datasets used) with its uncertainty range given as standard error (gray shaded area). The horizontal dashed lines show the best estimates
of the constrained ECS for CMIP5 (blue) and CMIP6 (orange). The colored dots mark the CMIP5 (blue) and CMIP6 (orange) multi-model
means. The p value in the legend corresponds to the hypothesis test introduced in Sect. 2.3 and describes the probability to obtain an absolute
correlation coefficient |r| or higher under the null hypothesis that the true underlying correlation coefficient between the predictor and ECS is
zero. (d–f) Probability densities for the constrained ECS following Eq. (6) (solid lines) and the unconstrained model ensembles (histograms).
Note that for each individual emergent constraint, a different subset of climate models is used due to the availability of data (see Tables A1
and A2 for details). Thus, these histograms may differ for the different constraints.
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Figure 3. As in Fig. 2 but for the constraints SHD, SHL, and SHS.

2.3 K (90 % confidence). The statistical significance of the
emergent relationship dropped from p = 0.0005 for CMIP5
to p = 0.0355 for CMIP6.

3.2 Temperature variability (COX)

The emergent constraint on ECS proposed by Cox et
al. (2018) uses a temperature variability metric 9 that is
based on the interannual variation of global mean temper-
ature calculated from its variance (in time) and 1 year lag
autocorrelation. In contrast to the majority of emergent con-

straints that focus on cloud-related processes, this constraint
is based on the fluctuation–dissipation theorem, which re-
lates the long-term response of the climate system to an
external forcing (ECS) and short-term variations of the cli-
mate system (climate variability). This arguably places the
constraint on a more solid theoretical foundation, although
several questions were raised on the robustness of the re-
sults to choices made in the analysis (Brown et al., 2018;
Po-Chedley et al., 2018; Rypdal et al., 2018). For example,
Annan et al. (2020) showed that the assumed linear rela-
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Figure 4. As in Fig. 2 but for the constraints SU, TIH, and TII.

tionship between 9 and ECS does not hold when adding a
deep ocean to the model. As observational data, here we use
the HadCRUT4 dataset (Morice et al., 2012) over the time
period 1880–2014. Under the COX constraint we thus as-
sess a 66 % ECS range of 3.03 K ± 0.73 K for CMIP5 (R2 =
0.31) and 3.71 K ± 1.09 K for CMIP6 (R2 = 0.01). Cox et
al. (2018) derived a 66 % range of 2.8 K ± 0.6 K from a dif-
ferent subset of CMIP5 models but the same observations.
When moving from CMIP5 to CMIP6, the significance of

the emergent relation drops massively from p = 0.0032 to
p = 0.5415, respectively.

3.3 Southern Hemisphere Hadley cell extent (LIP)

The results of Lipat et al. (2017) show that the multi-year
average extent of the Hadley cell correlates with ECS in
CMIP5 models. The Hadley cell edge is defined as the lat-
itude of the first two grid cells from the Equator going south
where the zonal average 500 hPa mass stream function calcu-
lated from December–January–February means of the merid-
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Figure 5. As in Fig. 2 but for the constraints VOL and ZHA.

Table 4. Overview of the constrained ECS ranges and p values for all 11 analyzed emergent constraints. If not further specified, the un-
certainty ranges correspond to the 66 % confidence intervals (17 %–83 %). For CMIP5 and CMIP6, these are evaluated from the probability
distribution given by Eq. (6) (see also the right columns of Figs. 2 to 5). Note that even though CMIP5 models were used for some con-
straints in the original publications, the constrained ranges in column 2 and column 3 might differ due to the use of different models (in this
paper, we use output from all CMIP models that is publicly available; see the data availability section for details). The p values describing
the significance of the emergent relationships are defined as the probability to obtain an absolute correlation coefficient |r| or higher under
the null hypothesis that the true underlying correlation coefficient between the predictor and ECS is zero. Smaller p values point to higher
significance and vice versa (for details see Sect. 2.3).

Label ECS (original publication) ECS ECS p p

(CMIP5) (CMIP6) (CMIP5) (CMIP6)
[K] [K]

BRI most likely 4.0 K, < 2.30 K very unlikely (90 % confidence) 3.72 ± 0.59 4.32 ± 1.07 0.0005 0.0355
COX 2.8 K ± 0.6 K 3.03 ± 0.73 3.71 ± 1.09 0.0032 0.5415
LIP no best estimate given 2.97 ± 0.75 3.75 ± 1.11 0.0228 0.6791
SHD none – see SHL 3.65 ± 0.64 3.77 ± 1.06 0.0037 0.2805
SHL most likely 4 K with lower limit 3 K 3.42 ± 0.65 3.67 ± 1.06 0.0002 0.0138
SHS none – see SHL 3.07 ± 0.73 3.48 ± 1.07 0.0647 0.0396
SU most likely 4 K with lower limit 3 K 3.30 ± 0.88 3.77 ± 1.35 0.1676 0.1935
TIH most likely 4.0 K 3.88 ± 0.75 4.15 ± 1.10 0.0089 0.1348
TII most likely 4.0 K 3.87 ± 0.67 3.84 ± 1.09 0.0013 0.8236
VOL 3.6 K ± 0.4 K (standard deviation) 3.74 ± 0.64 4.21 ± 1.04 0.0004 0.0056
ZHA 3.90 K ± 0.45 K (standard deviation) 3.35 ± 0.74 3.79 ± 0.67 0.2567 < 0.0001
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ional wind field changes sign from negative to positive. Li-
pat et al. (2017) explain this correlation by tying it to the
observed correlation of the interannual variability in midlat-
itude clouds and their radiative effects with the poleward ex-
tent of the Hadley cell. For the calculation of the emergent
constraint, we use reanalysis data from ERA-Interim (Dee
et al., 2011) for the meridional wind speed over the time
period 1980–2005. Our application of this emergent con-
straint gives ECS 66 % ranges of 2.97 K ± 0.75 K for CMIP5
(R2 = 0.18) and 3.75 K ± 1.11 K for CMIP6 (R2 < 0.01).
The original publication does not specify an ECS range. For
CMIP6, the emergent constraint shows a much lower statisti-
cal significance (p = 0.6791) than for CMIP5 (p = 0.0228).

3.4 Large-scale lower-tropospheric mixing (SHD)

Sherwood et al. (2014) proposed that the degree of mixing in
the lower troposphere determines the response of boundary-
layer clouds and humidity to climate warming, as the associ-
ated moisture transport would increase rapidly in a warmer
atmosphere due to the Clausius–Clapeyron relationship. The
large-scale component D of this mixing is defined as the ra-
tio of shallow to deep overturning. D is calculated from the
vertical velocities averaged over two height regions: 850 and
700 hPa for shallow overturning and 600, 500, and 400 hPa
for deep overturning. Both quantities are averaged over parts
of the tropical ocean region away from the regions of highest
SST and strongest mid-level ascent, specifically the region
30◦ S–30◦ N, 160◦ W–30◦ E, wherever air is ascending at low
levels. As observationally based data, we use vertical veloc-
ities from ERA-Interim (Dee et al., 2011) over the time pe-
riod 1989–1998 similar to the original publication. We derive
ECS 66 % confidence ranges of 3.65 K ± 0.64 K for CMIP5
(R2 = 0.28) and 3.77 K ± 1.06 K for CMIP6 (R2 = 0.03).
Sherwood et al. (2014) do not give a best estimate for ECS
based on the large-scale component of mixing D or its small-
scale counterpart S (Sect. 3.5) but instead for the sum of
D + S only (see Sect. 3.6). The regression shows a much
lower significance for CMIP6 (p = 0.2805) than for CMIP5
(p = 0.0037).

3.5 Small-scale lower-tropospheric mixing (SHS)

The small-scale mixing S (Sherwood et al., 2014) is calcu-
lated from the differences in relative humidity and temper-
ature between 700 and 850 hPa. The differences are aver-
aged over all grid cells within the upper quartile of the an-
nual mean 500 hPa ascent rate (within ascending regions) in
the tropics. The tropics are defined as region between 30◦ S
and 30◦ N. In the Cloud Feedback Model Intercomparison
Project models (CFMIP, Webb et al., 2017), for which con-
vective tendencies were available, upward moisture transport
by parameterized convection was shown to increase more
rapidly with warming for higher values of S. We use reanal-
ysis data from ERA-Interim (Dee et al., 2011) for temper-

ature and relative humidity to calculate the observationally
based constraint (1989–1998). Our analysis shows a 66 %
range of ECS of 3.07 K ± 0.73 K for CMIP5 (R2 = 0.13)
and 3.48 K ± 1.07 K for CMIP6 (R2 = 0.12). The correla-
tion of S and ECS shows a slightly higher significance in the
CMIP6 ensemble (p = 0.0396) than in the CMIP5 ensemble
(p = 0.0647). The SHS constraint is one of the two analyzed
emergent constraints (ZHA being the other exception) that
shows a higher statistical significance for the CMIP6 than
for the CMIP5 ensemble.

3.6 Lower tropospheric mixing index (SHL)

The lower tropospheric mixing index (LTMI) formulated by
Sherwood et al. (2014) is defined as the sum of the small-
scale mixing S (see Sect. 3.5) and the large-scale mixing D

(see Sect. 3.4), which are supposed to capture complemen-
tary components of the total mixing phenomenon. Sherwood
et al. (2014) argue that the increase in dehydration depends
on initial mixing linking it to cloud feedbacks and thus also
to ECS. For this constraint, we derive an ECS 66 % con-
fidence range of 3.42 K ± 0.65 K for CMIP5 (R2 = 0.41)
and 3.67 K ± 1.06 K for CMIP6 (R2 = 0.16). Sherwood et
al. (2014) give a best estimate of about 4 K with a lower
limit of 3 K. Similar to both other constraints by Sherwood
et al. (2014), SHD and SHS, the statistical significance of
the SHL emergent relation decreased in CMIP6 (p = 0.0138)
compared to CMIP5 (p = 0.0002).

3.7 Error in vertical profile of relative humidity (SU)

Another emergent constraint on ECS that targets uncertain-
ties in cloud feedbacks was proposed by Su et al. (2014).
They show that changes in the Hadley circulation are physi-
cally connected to changes in tropical clouds and thus ECS.
Consequently, the inter-model spread in the change of the
Hadley circulation in an ensemble of climate models is well
correlated with the corresponding changes in the TOA cloud
radiative effect. Moreover, Su et al. (2014) found a correla-
tion between a model’s ECS and its ability to represent the
present-day Hadley circulation. The latter is calculated from
the tropical (45◦ S–40◦ N) zonal-mean vertical profiles of rel-
ative humidity from the surface to 100 hPa. These profiles are
then used to define the x axis of the SU constraint by calculat-
ing a performance metric based on the slope of the linear re-
gression between a climate model’s relative humidity profile
and the corresponding observational reference. Similarly to
the original publication, we use humidity observations from
AIRS (Aumann et al., 2003) for pressure levels greater than
300 hPa and MLS-Aura data (Beer, 2006) for pressure levels
of less than 300 hPa. Our analysis yields a constrained 66 %
range of ECS of 3.30 K ± 0.88 K for CMIP5 (R2 = 0.08) and
3.77 K ± 1.35 K for CMIP6 (R2 = 0.05). The original pub-
lication gives a best estimate of 4 K with a lower limit of
3 K. Figure 4 shows that in addition to the low R2 values,
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the emergent relationship shows different slopes for CMIP5
and CMIP6. For the CMIP5, the expected positive corre-
lation is found, while for CMIP6, a negative correlation is
found. This suggests that the constraint is not working (any
more) when applied to the CMIP6 data. Consequently, the
SU constraint shows a weaker statistical significance in the
CMIP6 ensemble (p = 0.1935) than for the CMIP5 ensem-
ble (p = 0.1676). The SU constraint is related to an emergent
constraint on ECS proposed by Fasullo and Trenberth (2012),
who correlated May–August zonal-mean relative humidity
against ECS. In contrast to Su et al. (2014), they did not
use the entire tropics, but identified two distinct regions with
largest correlation.

3.8 Tropical mid-tropospheric humidity asymmetry

index (TIH)

Tian (2015) found a link between mid-tropospheric humid-
ity over the tropical Pacific and simulated moisture, pre-
cipitation, clouds, large-scale circulation, and thus ECS in
CMIP3 and CMIP5 models. The study explains this link
with the similarity of mid-tropospheric humidity and pre-
cipitation patterns as both are related to the ITCZ. The pro-
posed tropical mid-tropospheric humidity asymmetry index
to constrain ECS is defined as relative bias (in %) in simu-
lated annual mean 500 hPa specific humidity averaged over
the Southern Hemisphere (SH) tropical Pacific (30◦ S–0◦ N,
120◦ E–80◦ W) minus the bias averaged over the Northern
Hemisphere (NH) tropical Pacific (20◦–0◦ N, 120◦ E–80◦ W)
when compared with observations. Similar to the SU con-
straint, the index proposed by Tian (2015) seems to be related
to the emergent constraint by Fasullo and Trenberth (2012),
who found correlations between relative humidity of the mid-
dle and upper troposphere and ECS. Here, we use humidity
observations from AIRS (Aumann et al., 2003) over the time
period 2003–2005 as the reference dataset. We assess a 66 %
ECS range of 3.88 K ± 0.75 K for CMIP5 (R2 = 0.24) and
4.15 K ± 1.10 K for CMIP6 (R2 = 0.06). Tian (2015) speci-
fies a best estimate of 4.0 K. The significance of the emergent
relationship dropped massively from p = 0.0089 in CMIP5
to p = 0.1348 in CMIP6.

3.9 Southern ITCZ index (TII)

In addition to the humidity index, Tian (2015) proposed an
emergent constraint on ECS based on the southern ITCZ in-
dex (Bellucci et al., 2010; Hirota et al., 2011). This index is
defined as the climatological annual mean precipitation bias
averaged over the southeastern Pacific (30◦ S–0◦ N, 150–
100◦ W). The southern ITCZ index is calculated in mm d−1

and dominated by the so-called double ITCZ, a common
problem in many CMIP5 climate models. Tian (2015) found
a link between double-ITCZ bias and simulated moisture,
precipitation, clouds, and large-scale circulation in CMIP3
and CMIP5 models. He argues that this could explain the link

found between the double-ITCZ bias and ECS. As reference
data, we use observed precipitation data for the years 1986–
2005 from GPCP (Adler et al., 2003). We calculate an
ECS 66 % confidence range of 3.87 K ± 0.67 K for CMIP5
(R2 = 0.33) and 3.84 K ± 1.09 K for CMIP6 (R2 < 0.01).
Tian (2015) specifies a best estimate of 4.0 K. The emer-
gent relationship shows a much lower statistical significance
in CMIP6 (p = 0.8236) than in CMIP5 (p = 0.0013).

3.10 Difference between tropical and midlatitude cloud

fraction (VOL)

The study by Volodin (2008) aims at constraining ECS based
on the geographical distribution of clouds in climate models.
Since this early emergent constraint was originally trained on
CMIP3 models, both CMIP5 and CMIP6 are out-of-sample
tests for it. Volodin (2008) shows that high ECS models tend
to simulate a higher total cloud cover over the southern mid-
latitudes and a lower total cloud cover over the tropics (rela-
tive to the multi-model mean). This can be used to establish
an emergent relationship between the ECS and the difference
in tropical total cloud cover (28◦ S–28◦ N) and the south-
ern midlatitude total cloud cover (56–36◦ S). Analogous to
the original study, we use the ISCCP-D2 data (Rossow and
Schiffer, 1991) as observational reference. For the VOL con-
straint, we calculate a constrained 66 % range of ECS of
3.74 K ± 0.64 K for CMIP5 (R2 = 0.38) and 4.21 K ± 1.04 K
for CMIP6 (R2 = 0.18), whereas the original publication
gives a range of 3.6 K ± 0.4 K (standard deviation) for a cli-
mate model ensemble of CMIP3 models. The emergent con-
straint by Volodin (2008) shows a lower significance in the
CMIP6 ensemble (p = 0.0056) than in the CMIP5 ensemble
(p = 0.0004).

3.11 Response of seasonal marine boundary layer

cloud fraction to SST changes (ZHA)

Zhai et al. (2015) focus on the variations of marine boundary
layer clouds (MBLCs), which largely contribute to the short-
wave cloud feedback and thus to the uncertainty in modeled
ECS. Their central quantity is the response of the MBLC
fraction to changes in the sea surface temperature (SST) in
subtropical oceanic subsidence regions for both hemispheres
(20–40◦). On short (seasonal) and long (centennial under
a forcing) timescales, this quantity is well correlated with
ECS among an ensemble of CMIP3 and CMIP5 models.
Together with observations of cloud fraction from Cloud-
Sat/CALIPSO (Mace et al., 2009), SST from AMSRE SST
(AMSR-E, 2011), and vertical velocity from ERA-Interim
(Dee et al., 2011), the seasonal response of MBLC fraction
to changes in SST forms an emergent constraint on ECS.
We assess a 66 % ECS range of 3.35 K ± 0.74 K for CMIP5
(R2 = 0.05) and 3.79 K ± 0.67 K for CMIP6 (R2 = 0.62). In
their original publication, Zhai et al. (2015) found an ECS
range of 3.90 K ± 0.45 K (standard deviation) for a combi-
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Figure 6. Emergent relationship ZHA (Zhai et al., 2015) for different subsets of CMIP5 models. Blue circles show the 15 CMIP5 models used
in the original publication (except for CESM1-CAM5): the solid blue line and blue shaded area show the emergent relationships evaluated
on these models including the uncertainty range. In our study, we added 11 more CMIP5 models (red circles). The corresponding emergent
relationship that considers all available CMIP5 models is shown in red colors. This relationship shows a considerably lower coefficient
of determination (R2) and higher p value than the relationship using the original subset of CMIP5 models. The vertical dashed line and
shaded area correspond to the observational reference, and the horizontal dashed lines show the corresponding ECS constraints using this
observation.

nation of CMIP3 and CMIP5 models. In terms of statisti-
cal significance, the results of the ZHA constraints are some-
what surprising: although CMIP5 data (in combination with
CMIP3 data) were successfully used in their original pub-
lication, our approach finds that the statistical significance
of the emergent relationship is much higher in the unseen
CMIP6 ensemble (p < 0.0001) than in the previously avail-
able CMIP5 ensemble (p = 0.2567). The ZHA constraint is
the only emergent constraint analyzed here that shows this
extreme behavior (only one other constraint, SHS, shows a
slightly higher significance in CMIP6; all other constraints
show lower significances in CMIP6). The reason for the
erratic skill in CMIP5 is the set of climate models used.
For our analysis, we use 11 additional CMIP5 models that
were not used in the original publication (i.e., ACCESS1-0,
ACCESS1-3, bcc-csm1-1, bcc-csm1-1-m, CCSM4, GFDL-
ESM2G, GFDL-ESM2M, IPSL-CM5A-MR, IPSL-CM5B-
LR, MPI-ESM-MR and MPI-ESM-P). Due to a lack of pub-
licly available data, the model CESM1-CAM5 that is used in
the original publication is not included in our analysis. The
effect of choosing different subsets of CMIP5 models on the
emergent relationship is illustrated in Fig. 6. Using the origi-
nal CMIP5 models from the original publication gives a con-
siderably higher correlation (R2 = 0.38) than using all avail-
able CMIP5 models (R2 = 0.05). This result shows a strong
dependency of this emergent constraint on the subset of cli-
mate models used. Nonetheless, the performance on CMIP6
models is, surprisingly, the best of all the constraints, and
much better than on either subset of CMIP5 models.

3.12 Constrained ECS ranges and statistical

significance of the 11 emergent constraints

In most cases, the emergent relationships (left columns of
Figs. 2 to 5) show the same sign of the slope (as expected
from the theory) for CMIP5 and CMIP6, with the SU con-
straint being the only exception. However, the coefficient of
determination (R2) is lower for CMIP6 compared to CMIP5
for all one constraint: ZHA. The probability distributions of
the constrained ECS that we obtain (right columns of Figs. 2
to 5) give similar results: except for the ZHA constraint, the
constraint on the CMIP6 ensemble is weaker, i.e., the con-
strained PDFs derived from the CMIP6 ensemble are broader
than their respective CMIP5 counterparts. As shown in Ta-
ble 4, for CMIP5, the range of the best (maximum likelihood)
estimates for ECS is 2.97 to 3.88 K, while the correspond-
ing CMIP6 best estimates are higher for almost every tested
emergent constraint (TII being the only exception), result-
ing in a range of best estimates of 3.48 to 4.32 K. Using the
arithmetic mean of all analyzed emergent constraints, this re-
sults in a mean increase of the ECS best estimate of 12 % in
CMIP6 compared to CMIP5. Similarly, the size of the 66 %
ECS ranges (17 %–83 % confidence) shows values of 1.16 to
1.75 K in CMIP5 and 1.32 to 2.70 K in CMIP6, resulting in
an increase of 51 % averaged over all emergent constraints.
In summary, the R2 of the emergent relationships and the
constrained range of ECS each depend strongly on the cli-
mate model ensemble used, even though a physical explana-
tion is given for each emergent constraint that is thought to be
valid for every climate model ensemble. The same behavior
is found for the statistical significance of the emergent rela-
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tionships using the null hypothesis that there is no correlation
between the predictor and ECS (see Sect. 2.3). Except for the
ZHA and SHS constraints, every emergent relationship in-
vestigated shows a lower statistical significance (i.e., higher
p value) in the CMIP6 ensemble than in the CMIP5 ensem-
ble. If a conventional significance test of p < 0.05 was ap-
plied, 8 of the 11 constraints would pass this test on CMIP5
model data but only 5 (BRI, SHL, SHS, VOL, and ZHA)
would pass this test on CMIP6. This is still much better than
would be expected purely by chance. Hence, there is still skill
in at least a few of the constraints, but it is much lower than
was suggested in nearly all of the initial studies.

4 Discussion

As shown in the previous sections, most emergent relation-
ships show smaller coefficients of determination when eval-
uated on the new CMIP6 ensemble compared to the CMIP5
ensemble. In this section, we discuss possible reasons for,
and implications of, these differences. As reported by Cald-
well et al. (2014), the large amount of data provided by mod-
ern ESMs can generate spurious correlations of variables be-
tween past climate and ECS just by chance, especially when
only a small number of climate models is considered. This
would cause the performance of the emergent constraint to be
reduced on out-of-sample data (like the new CMIP6 ensem-
ble), since the emergent relationship appeared just by chance
and not because of a physically based mechanism.

A further reason for the weaker emergent relationships in
CMIP6 may be the increased complexity of the participat-
ing ESMs. Each emergent constraint approach is based on
the assumption that a single observable process or physical
aspect in the current climate dominates the uncertainty in
ECS. Some emergent constraints such as ZHA and BRI relate
changes in cloud properties (ZHA: low-level cloud fraction;
BRI: cloud reflectivity) on seasonal or interannual timescales
driven by changes in SST to ECS. This means that it has to
be implicitly assumed that the observable changes in these
properties on seasonal or interannual timescales are related
to those occurring as a result of climate forcing in a way
successfully captured by the ESMs. While this assumption
seems to make sense, we do not know whether the ESMs
cover all relevant processes of the real Earth system. For ex-
ample, it may be possible that there exist processes that are
unimportant in the ESMs (and hence are not captured by the
emergent constraints) but are actually important in reality.
This lack of relevant processes may lead to an overconfident
constraint. Thus, the more complex ESMs of the CMIP6 en-
semble are more likely to capture relevant processes of the
true climate, which leads to weaker emergent relationships.
On the other hand, emergent constraints on the less complex
CMIP3 and CMIP5 ensemble may be overconfident.

For CMIP6 models, Zelinka et al. (2020) showed that
cloud feedbacks and thus ECS in high-sensitivity models are

to some extent associated with changes in clouds over the
Southern Ocean, while in CMIP3 and CMIP5 the uncertainty
in cloud feedbacks is dominated by clouds in the subtropi-
cal subsidence regions. One might speculate that a possible
reason for this might be an improved simulation of clouds
over the Southern Ocean in some models (Bodas-Salcedo et
al., 2019; Gettelman et al., 2019a), as shown for some pre-
CMIP6 model versions evaluated by Lauer et al. (2018). The
findings of Zelinka et al. (2020) can also at least partly ex-
plain the larger inter-model spread in climate sensitivity due
to a greater diversity of cloud feedbacks, which also results
in a weaker emergent constraint compared with CMIP5 mod-
els, as most of them constrained low-cloud feedbacks. They
found that on average, the shortwave low cloud feedback is
larger in CMIP6 than in CMIP5, which they primarily relate
to changes in the representation of clouds. As a possible ex-
planation, Zelinka et al. (2020) give an increase in mean-state
supercooled liquid water (i.e., increase in the cloud water
liquid fraction) in mixed-phase clouds resulting in less pro-
nounced increases in low-level cloud cover and water content
with warmer SSTs particularly in midlatitudes.

Our findings suggest that the process-oriented emergent
constraints (i.e., all of the emergent constraints investigated
here except COX) are only successful in constraining ECS
as long as the uncertainty in ECS is dominated by the same
process or feedback. In the CMIP5 ensemble, cloud feed-
back is the main contributor to the spread in ECS with low-
level clouds in tropical subsidence regions dominating the
spread in cloud feedback (e.g., Ceppi et al., 2017). If any
other process or feedback is biased (or missing) in the ensem-
ble as a whole, then these process-oriented emergent con-
straints will be biased in their estimates of ECS. The ap-
pearance of diverse new feedback processes in CMIP6 could
explain the reduced skill when applied to CMIP6 data, and
a tendency for these to be positive would explain the up-
ward shift in the model ECS distribution that is not captured
by the CMIP5-trained constraints. Process-oriented emergent
constraints are therefore perhaps best thought of as con-
straints on the processes that they target, rather than con-
straints on ECS.

Emergent constraints that use global temperature change
as a way of constraining ECS could in principle overcome
this problem. If one feedback is biased in an ensemble
the constraint might still work as both global temperature
change and ECS might similarly reflect the sum of all feed-
backs. Emergent constraints of this kind include the trop-
ical temperature during the Last Glacial Maximum (Har-
greaves et al., 2012), tropical temperature anomalies dur-
ing the mid-Pliocene Warm Period (Hargreaves and Annan,
2016), and post-1970s warming (Jimenez-de-la-Cuesta and
Mauritsen, 2019). This seems to be supported by the find-
ings of Tokarska et al. (2020), who tested an emergent con-
straint for the transient climate response based on recent
global warming trends on the CMIP5 and CMIP6 ensem-
bles with similar results for both model ensembles. Never-
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theless, these temperature-based estimates are sensitive to as-
sumptions about forcings and unforced decadal temperature
variations, which could also be incorrect, as could model-
predicted relationships between feedbacks on short and long
timescales that are implicit in most such measures.

5 Summary

This paper assesses 11 different emergent constraints on
ECS, of which most are directly or indirectly related to cloud
feedbacks, by applying them to results from ESMs contribut-
ing to CMIP5 and CMIP6. Of particular interest are the re-
sults from CMIP6, since all analyzed emergent constraints
were published prior to the availability of CMIP6 data. In
summary, the best estimate of ECS averaged over all emer-
gent constraints increases by 12 % when moving from re-
lationships trained on CMIP5 to those trained on CMIP6.
Some increase is predicted by every constraint we analyzed
and can be at least partly explained by the increased multi-
model mean ECS of CMIP6, which was not accompanied
by systematic changes in the constraint variables that could
explain this increase, leading to regression fits with higher
intercept values at observed constraint values. This is also il-
lustrated by the CMIP5 and CMIP6 multi-model means in
the left columns of Figs. 2 to 5 (colored dots), in which the
connecting line between the CMIP5 and CMIP6 multi-model
mean is not parallel to the CMIP5 emergent relationships for
all emergent constraints.

Our results also show that, except for ZHA, all emer-
gent relationships are weaker (in terms of the coefficient of
determination R2) in CMIP6 compared to CMIP5, which
means that the corresponding emergent relationships are
able to explain less of the ECS variation simulated by the
newer CMIP6 models than by those of CMIP5. This is also
demonstrated by the statistical significance, which is lower
in CMIP6 than in CMIP5 for all emergent constraint except
for ZHA and SHS. As described in Sect. 2.3, our test for
statistical significance uses the null hypothesis that there is
no correlation between the predictor variable of the emer-
gent constraint and ECS. Further evidence of the decreased
performance of the emergent constraints in CMIP6 is given
by the size of the constrained ECS ranges, which widens by
51 % in CMIP6 compared to CMIP5 on average. Moreover,
our more detailed analysis of the ZHA constraint (see Fig. 6)
showed that this emergent constraint is very sensitive to out-
liers and the subset of the climate model ensemble used to
fit the emergent relationship. Such a behavior might not be
unique to the ZHA constraint but could apply to other emer-
gent constraints as well. This in turn suggests that the number
of climate models commonly used for emergent constraints
might be too low, leading to non-robust relationships.

Our analysis makes a number of simplifying assumptions
common to other studies, such as model independence, dis-
cussed in Sect. 2.1 and 2.2. These assumptions affect the
significance of emergent relationships and the PDFs of ECS
based on a constraint. However, they do not affect our main
conclusions here, which concern the change in performance
on CMIP6 relative to CMIP5 and the implications for robust-
ness and future use of emergent constraints.

ECS is the product of the complex interactions of the many
components and feedbacks. Thus, constraining ECS with a
single physical process might overly simplify this problem.
Such single process-oriented emergent constraints therefore
do not seem to be helpful in constraining ECS but should
probably rather be thought of as constraints for the process
or feedback they are actually targeting (if that can be clearly
identified). With increasing computational resources avail-
able to climate science, more and more detailed process in-
teractions can be taken into account in a modern ESM. In
contrast, the predecessor versions CMIP3 and CMIP5 were
less complex with simpler atmospheric process representa-
tions, so constraining uncertainties of a single dominant pro-
cess may have allowed for an apparently more successful
constraint of ECS than would be achieved in more com-
plex models. As a conclusion, we argue that to constrain
ECS in a more robust way, it might be beneficial to ap-
ply multivariate approaches that are able to consider multi-
ple (different) relevant physical processes and feedbacks at
once and thus are able to get a broader picture of the com-
plex reality. A possible approach for this is given by Brether-
ton and Caldwell (2020), who combine the information from
multiple emergent constraints on ECS using a multivariate
Gaussian and multiple linear regression. For the CMIP3 and
CMIP5 ensembles, they find an increased best estimate rela-
tive to the unweighted ensemble mean similar to the partici-
pating individual emergent constraints, but with lower uncer-
tainty range. Moreover, new machine learning techniques are
a promising avenue forward for such multivariate approaches
and for constraining uncertainties in multi-model projections
(Schlund et al., 2020) with the aim of further improving cli-
mate modeling and analysis (Reichstein et al., 2019).
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Appendix A

Table A1. All participating CMIP5 models including their ECS values (in K) and x axis values for the different emergent constraints. Details
on all constraints (including the units) are given in Table 1. The leftmost column corresponds to the index used in all plots.

Model ECS BRI COX LIP SHD SHL SHS SU TIH TII VOL ZHA

1 ACCESS1-0 3.83 −1.59 0.20 −33.70 0.45 0.84 0.39 0.94 14.14 0.54 −26.16 −2.32
2 ACCESS1-3 3.53 −1.59 0.15 −34.32 0.54 0.90 0.36 0.93 21.05 0.64 −20.21 −2.11
3 BNU-ESM 3.92 −1.39 0.14 −33.38 0.35 0.75 0.41 1.11 22.56 1.47 −11.91
4 CCSM4 2.94 −0.09 0.18 −37.64 0.39 0.75 0.37 24.32 1.17 −9.88 0.00
5 CNRM-CM5 3.25 0.29 0.15 −34.53 0.38 0.71 0.33 1.04 14.54 1.50 −15.43 −0.40
6 CNRM-CM5-2 3.44 0.56 −34.62 0.40 0.73 0.33 15.83 1.44 −15.08
7 CSIRO-Mk3-6-0 4.08 −1.57 0.20 −35.12 0.61 0.97 0.36 1.00 11.19 1.01 −11.53 −0.79
8 CanESM2 3.69 −0.72 0.16 −34.28 0.30 0.61 0.31 1.00 20.00 0.69 −21.21 −1.18
9 FGOALS-g2 3.38 0.33 0.05 −30.75 0.29 0.79 0.51 1.26 24.61 0.93 −12.06 −0.54
10 GFDL-CM3 3.97 −0.26 0.32 −35.03 0.33 0.67 0.34 1.01 18.05 1.43 −14.67 −2.33
11 GFDL-ESM2G 2.39 −0.80 0.19 −36.47 0.30 0.76 0.45 0.93 18.60 0.74 −17.63 −2.43
12 GFDL-ESM2M 2.44 −0.34 0.15 −35.95 0.25 0.68 0.43 0.94 17.43 1.36 −17.75 −2.64
13 GISS-E2-H 2.31 1.18 0.10 −33.87 0.32 0.61 0.29 0.71 21.70 2.58 3.57 −0.27
14 GISS-E2-R 2.11 0.89 0.11 −34.14 0.32 0.60 0.28 0.71 12.88 2.13 2.52 −0.21
15 HadGEM2-ES 4.61 −2.45 0.26 −34.58 0.43 0.81 0.38 0.95 11.54 0.87 −24.69 −1.54
16 IPSL-CM5A-LR 4.13 −0.96 0.21 −32.13 0.41 0.86 0.45 0.95 11.58 0.53 −34.04 −1.08
17 IPSL-CM5A-MR 4.12 −1.18 0.15 −33.61 0.48 0.92 0.44 0.98 5.73 0.36 −32.90 −0.95
18 IPSL-CM5B-LR 2.60 −0.50 0.16 −32.02 0.25 0.67 0.41 0.89 21.25 0.92 −27.02 −1.90
19 MIROC-ESM 4.67 −0.99 0.22 −31.87 0.33 0.89 0.56 0.95 0.94 −0.54 −27.09 0.07
20 MIROC5 2.72 0.27 0.22 −35.51 0.36 0.78 0.42 1.01 4.90 0.40 −10.99 0.41
21 MPI-ESM-LR 3.63 −0.35 0.15 −34.67 0.41 0.86 0.45 1.07 3.16 0.24 −17.96 0.07
22 MPI-ESM-MR 3.46 −0.49 0.16 −34.33 0.42 0.87 0.45 1.04 6.10 0.30 −18.92 −0.04
23 MPI-ESM-P 3.45 −0.68 −34.36 0.41 0.87 0.46 −0.23 0.13 −17.97 0.06
24 MRI-CGCM3 2.60 −1.08 0.09 −35.01 0.37 0.78 0.41 1.04 34.02 2.04 −11.08 0.40
25 NorESM1-M 2.80 −0.74 0.13 −37.44 0.44 0.82 0.38 1.07 26.23 0.65 −7.13 0.51
26 bcc-csm1-1 2.83 −0.11 0.18 −34.25 0.37 0.78 0.41 1.15 30.84 1.34 −8.77 0.41
27 bcc-csm1-1-m 2.86 −0.46 0.13 −36.36 0.34 0.74 0.40 1.19 43.64 2.69 −7.56 0.66
28 inmcm4 2.08 −0.18 0.07 −36.43 0.19 0.52 0.33 0.84 28.16 1.89 −14.52 0.75
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Table A2. As in Table A1 but for the CMIP6 models.

Model ECS BRI COX LIP SHD SHL SHS SU TIH TII VOL ZHA

29 ACCESS-CM2 4.72 −0.60 0.20 −35.14 0.42 0.88 0.46 0.99 21.63 1.62 −24.48
30 ACCESS-ESM1-5 3.87 −0.81 0.13 −35.00 0.44 0.79 0.35 0.94 15.62 1.00 −20.15
31 AWI-CM-1-1-MR 3.16 −0.70 −35.43 0.42 0.76 0.34 1.05 2.15 −0.12 −19.44
32 BCC-CSM2-MR 3.04 −1.43 0.16 −36.12 0.54 0.89 0.36 1.10 32.92 1.50 −3.93 −0.10
33 BCC-ESM1 3.26 0.19 −36.18 0.46 0.88 0.42 1.18 38.93 0.94 2.69 −0.22
34 CAMS-CSM1-0 2.29 −0.44 0.14 −35.38 0.47 0.91 0.44 1.09 27.52 1.40 −13.84 −0.36
35 CAS-ESM2-0 3.51 −0.84 0.16 −30.53 0.31 0.80 0.48 0.95 6.98 1.58 −14.42 −0.06
36 CESM2 5.16 −1.94 0.15 −36.22 0.49 0.85 0.36 0.93 −7.25 0.45 −24.99 −2.39
37 CESM2-FV2 5.14 −1.30 0.13 −36.88 0.45 0.79 0.34 0.93 12.09 0.30 −25.68 −2.44
38 CESM2-WACCM 4.75 −1.60 0.18 −36.43 0.55 0.91 0.36 0.93 −5.37 −0.13 −23.81 −2.14
39 CESM2-WACCM-FV2 4.79 0.16 −36.57 26.98 0.96 −25.34
40 CMCC-CM2-SR5 3.52 −0.19 0.18 −37.48 0.50 0.90 0.40 1.03 23.28 1.12 −22.46 −1.00
41 CNRM-CM6-1 4.83 −0.61 0.11 −34.50 0.30 0.74 0.44 1.03 16.59 0.92 −9.16
42 CNRM-CM6-1-HR 4.28 −0.25 0.11 −33.41 0.34 0.81 0.46 1.04 13.31 1.04 −6.63
43 CNRM-ESM2-1 4.76 −0.51 0.08 −34.83 0.30 0.74 0.44 1.04 16.17 0.95 −8.60
44 CanESM5 5.62 −0.97 0.18 −35.50 0.48 0.82 0.34 0.97 15.39 0.04 −20.02
45 E3SM-1-0 5.32 −0.74 0.22 −35.59 0.46 0.80 0.34 0.96 16.73 1.26 −25.38 −3.11
46 EC-Earth3-Veg 4.31 0.19 0.82
47 FGOALS-f3-L 3.00 −0.63 0.09 −33.40 0.31 0.76 0.44 1.06 11.75 1.00 −0.19
48 FGOALS-g3 2.88 −0.12 0.13 −34.57 0.36 0.80 0.44 1.18 19.06 0.32 −15.13 1.06
49 GISS-E2-1-G 2.72 −0.58 0.17 −36.24 0.26 0.61 0.35 0.98 28.46 2.39 −7.75 −0.07
50 GISS-E2-1-H 3.11 −0.48 0.13 −36.95 0.24 0.59 0.36 1.00 24.55 1.84 −6.82 0.00
51 HadGEM3-GC31-LL 5.55 −0.56 0.20 −35.75 0.46 0.92 0.46 1.02 9.56 0.99 −24.87 −2.66
52 HadGEM3-GC31-MM 5.42 −1.06 0.18 −35.09 1.01 4.73 1.19 −22.48
53 INM-CM4-8 1.83 0.03 0.13 −38.15 0.47 0.71 0.25 0.99 12.22 0.62 −16.71
54 INM-CM5-0 1.92 −0.46 0.14 −37.34 0.40 0.63 0.23 0.99 11.22 0.62 −14.38
55 IPSL-CM6A-LR 4.56 −0.38 0.14 −33.74 0.50 0.92 0.41 0.76 11.90 0.41 −34.90
56 KACE-1-0-G 4.48 −0.60 0.15 −34.95 0.41 0.87 0.47 1.03 22.16 1.66 −24.51
57 MCM-UA-1-0 3.65 0.20 0.91 14.50 −0.56
58 MIROC-ES2L 2.68 −0.49 0.15 −34.13 0.36 0.79 0.43 0.91 18.53 0.68 −13.03 −0.14
59 MIROC6 2.61 −0.45 0.17 −34.90 0.46 0.91 0.45 0.99 5.79 0.29 −13.43 −1.08
60 MPI-ESM-1-2-HAM 2.96 −0.60 0.14 −35.21 0.42 0.77 0.35 0.96 14.47 0.70 −23.06 −0.73
61 MPI-ESM1-2-HR 2.98 −0.34 0.15 −34.60 0.45 0.78 0.33 1.04 4.33 0.53 −20.21 −0.16
62 MPI-ESM1-2-LR 3.00 −0.64 0.18 −34.76 0.39 0.68 0.29 1.02 5.92 0.40 −19.40 −0.42
63 MRI-ESM2-0 3.15 −0.73 0.15 −33.39 0.39 0.79 0.40 0.95 3.33 0.75 −22.83 −1.35
64 NESM3 4.72 −0.73 0.24 −36.77 0.52 0.89 0.37 1.05 28.78 0.55 −18.81 −0.62
65 NorCPM1 3.05 0.12 −37.45 0.45 30.50 0.54 −8.09
66 NorESM2-LM 2.54 −1.61 0.20 −36.17 0.46 0.79 0.33 1.01 34.40 1.30 −16.22 −1.25
67 NorESM2-MM 2.50 0.12 0.31 −36.55 0.52 0.86 0.34 1.00 11.07 0.27 −25.33 −1.03
68 SAM0-UNICON 3.72 −1.40 0.19 −36.41 0.54 0.90 0.36 1.01 11.99 1.13 −25.25 −1.85
69 TaiESM1 4.31 −0.22 0.15 −36.80 0.48 0.89 0.42 1.02 11.20 1.17 −16.53 −1.89
70 UKESM1-0-LL 5.34 −0.59 0.21 −35.67 0.48 0.93 0.45 1.03 2.22 0.86 −26.83 −2.72
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et al., 2020) at the time of publication of this paper. ESMVal-
Tool v2 is released under the Apache License, version 2.0. The lat-
est release of the ESMValTool is publicly available on Zenodo at
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