
well-organized functional sarcomeres. The re-
sultant sarcomere insufficiency (fig. S7) caused
both profound baseline contractile deficits and
attenuated signaling that limited cardiomyocyte
reserve in response to mechanical and adrener-
gic stress, parameters that are critical to DCM
pathogenesis. The consequences of TTN trun-
cation are markedly different from the effects
of truncating mutations in another sarcomere
protein, myosin-binding protein C (MYBPC); trun-
cation of MYBPC causes enhanced contractile
power (18). Our findings also suggest potential
therapeutic targets for TTNtvs, including strat-
egies to enhance TTN gene expression, diminish
miRNAs that inhibit sarcomerogenesis (15, 19),
or stimulate cardiomyocyte signals that improve
function (20).
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SYNTHETIC BIOLOGY

Emergent genetic oscillations in a
synthetic microbial consortium
Ye Chen,1* Jae Kyoung Kim,2,3* Andrew J. Hirning,1

Krešimir Josić,4,5 Matthew R. Bennett1,6†

A challenge of synthetic biology is the creation of cooperative microbial systems that
exhibit population-level behaviors. Such systems use cellular signaling mechanisms to
regulate gene expression across multiple cell types. We describe the construction of
a synthetic microbial consortium consisting of two distinct cell types—an “activator” strain
and a “repressor” strain. These strains produced two orthogonal cell-signaling molecules
that regulate gene expression within a synthetic circuit spanning both strains. The
two strains generated emergent, population-level oscillations only when cultured together.
Certain network topologies of the two-strain circuit were better at maintaining robust
oscillations than others. The ability to program population-level dynamics through
the genetic engineering of multiple cooperative strains points the way toward engineering
complex synthetic tissues and organs with multiple cell types.

M
ost synthetic gene circuits have been con-
structed to operatewithin single, isogenic
cellular populations (1–4). However, syn-
thetic microbial consortia could provide
a means of engineering population-level

phenotypes that are difficult to obtain with single
strains (5). Indeed, several synthetic systems have
been constructed to exhibit population-level phe-
notypes (6–9), including synthetic predator-prey
systems (10), multicellular computers (11), and
spatio-temporal pattern generators (12, 13). We
constructed two genetically distinct populations
of Escherichia coli to create a bacterial consor-
tium that exhibits robust, synchronized transcrip-
tional oscillations that are absent if either strain
is grown in isolation. Specifically, we used two
different bacterial quorum-sensing systems to
construct an “activator” strain and a “repressor”
strain that respectively increase anddecrease gene
expression in both strains. When cultured togeth-
er in a microfluidic device, the two strains form
coupled positive and negative feedback loops at
the population level, akin to the circuit topology
(i.e., how regulatory components within a circuit
regulate each other) of a synthetic dual-feedback
oscillator that operates within a single strain
(14, 15). We used a combination of mathematical
modeling and targeted genetic perturbations to
better understand the roles of circuit topology
and regulatory promoter strengths in generating
and maintaining oscillations. The dual-feedback
topology was robust to changes in promoter

strengths and fluctuations in the population ra-
tio of the two strains.
The two synthetic strains in our system were

constructed to enzymatically produce and tran-
scriptionally respond to intercellular signaling
molecules (Fig. 1A). The activator strain produces
C4–homoserine lactone (C4-HSL) (16), a signaling
molecule that increases transcription of target
geneswithin the synthetic circuits of both strains.
The repressor strain produces 3-OHC14-HSL (17),
which decreases transcription in both strains
through a synthetic transcriptional inverter (18, 19)
mediated by the repressor LacI. These two sig-
nalingmechanisms jointly create coupled positive
and negative feedback loops at the population
level when the two strains are grown together
(Fig. 1B). Additionally, each strain, when active,
produces the enzyme AiiA, which degrades both
signaling molecules, resulting in another layer of
negative feedback.
To observe the dynamics of the synthetic con-

sortium,we used a custom-designedmicrofluidic
device in conjunction with time-lapse fluores-
cence microscopy to observe the two strains as
they grew together in a small chamber in which
the diffusion time of the HSLs was small (see sup-
plementary materials) (20). Each strain contained
a gene encoding a spectrally distinct fluorescent
reporter (cfp, cyan fluorescent protein, in the ac-
tivator; yfp, yellow fluorescent protein, in the re-
pressor), driven by promoters that respond to
both positive and negative signals in the network
(Fig. 1A). After an initial transient time, synchro-
nous, in-phase oscillations emerged in the fluo-
rescent reporters of both strains (Fig. 1, C and D).
Neither strain oscillated when cultured in isola-
tion (fig. S1). Oscillations had a period of ~2 hours
and persisted throughout the experiments (usu-
ally more than 14 hours).
The circuit topology of our synthetic consor-

tium consisted of linked positive and negative
feedback loops, similar to the topologies of many
naturally occurring biological oscillators (21, 22).
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However, a single negative feedback loop is suf-
ficient to generate rhythms (14, 23). Therefore,
we tested whether the additional feedback loops
in our systemwere necessary for oscillations. We
eliminated either the extra positive or extra neg-
ative feedback loop, or both simultaneously. To
eliminate the extra positive feedback loop, we
created a variant activator strain in which the
hybrid promoter Prhl/lac-s was replaced with Plac.
We eliminated the additional negative feedback
loop by constructing a variant repressor strain
without lacI. By combining one of the two var-
iant activator strains with one of the two variant
repressor strains, we generated consortia with
four different topologies (fig. S2): P2N2 (contain-
ing both additional feedback loops), P2N1 (lack-
ing the additional negative feedback loop), P1N2

(lacking the additional positive feedback loop),
and P1N1 (lacking both additional feedback loops).
Each topology still contained the negative feed-
back loop mediated by AiiA.
Each of the topologies described above gen-

erated rhythms if and only if both strains were
present, confirming that additional feedback loops
are not required for oscillations. Further, the oscil-
lations were robust to fluctuations in the popula-
tion ratio of the two strains in the microfluidic
trap (Fig. 2, A to D). In contrast to the effect in a
single-strain oscillator (14), removing the addition-
al positive feedback loop lengthened the period
in P1N2 and P1N1 (Fig. 2E). Furthermore, P1N2

and P1N1 generated double-peaked activator os-
cillations, in contrast to the single-peaked oscil-
lations generated by P2N2 and P2N1.
To understand the behaviors of the different

topologies, we developed a mathematical model
(24, 25) to simulate the intra- and extracellular
dynamics of the key proteins and molecules (see
supplementary materials and table S1). In our
model, most of the parameters (32 of 40) were
either obtained from the literature or by mea-
surement of promoter activity under various
conditions (fig. S3 and table S1). The unknown
parameters were randomly and independently
sampled from uniform distributions covering
biologically realistic ranges (see supplementary
materials). We obtained 10,000 parameter sets
that led to oscillations in four different versions
of our model, corresponding to the different net-
work topologies. Of these 10,000 parameter sets,
1506 resulted in rhythmswith approximately cor-
rect periods (100 to 250 min) for all topologies
(fig. S4). More than 40% of these sets gave rise to
double-peaked oscillations in the activator strain
for both P1N2 and P1N1, but not P2N2 and P2N1,
matching experimental observations (Fig. 2, C
and D, and fig. S5, A to D). In simulations, the
periods of P1N2 and P1N1 were longer when acti-
vator oscillations displayed double peaks (Fig. 2F).
This indicates that the double peaks and pe-
riod lengthening of P1N2 and P1N1 observed in
experiments (Fig. 2, C to F) are related. Spe-
cifically, the model suggests that both the double
peaks and period lengthening of P1N2 and P1N1

are caused by competition between RhlI and CFP
for ClpXP-mediated proteolysis in the activator
strain (26, 27).
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We investigated how the additional feedback
loops affect the robustness of oscillations, as the-
oretically additional feedback can increase the
robustness of genetic oscillators (21, 22).Wewere
interested in two types of perturbations: (i) var-
iations in the population ratio of the two strains,
and (ii) different promoter strengths within the
circuit. Perturbations in the population ratio of
the two strains arose naturally from variations in
growth of the two strains within themicrofluidic
device. To perturb the promoter strengths within
the circuits, we altered the Prhl/lac promoters used
to drive cinI in the repressor strain and rhlI in
the activator strain to have different expression
strengths (see supplementarymaterials). The orig-
inal activator strain contained a strong promoter,
Prhl/lac-s, and the repressor strain a weaker pro-
moter, Prhl/lac-w. Gene expression from the strong
promoter was approximately 15 times that of the
weak promoter. We also created a medium pro-
moter, Prhl/lac-m,whichwas approximately 10 times
as strong as the weak promoter (fig. S3).
To examine how changes to the promoter

strengths and fluctuations in the population ra-
tio affected oscillations in themathematicalmod-
el, we used the 1506 parameter sets described
above and systematically altered the parameters
governing promoter activities and the popula-
tion ratio (fig. S3 and table S1). We then calcu-
lated the percentage of parameter sets that still
led to oscillations in the four different topologies
(fig. S6). The mathematical model predicted that
P2N2 and P1N2 show similar robustness (i.e., the
percentage of parameter sets leading to oscil-
lations after perturbation was similar) and that
both are more robust than P2N1 and P1N1 (Fig. 3,
A and F, and fig. S6). Hence, the model predicts
that the addition of a negative feedback loop, but
not a positive feedback loop, has a pivotal role in

generating robust rhythms because it tightly reg-
ulates repressor concentration (fig. S6) (22, 28).
Thus, for different promoter-strength combina-
tions, the P2N2 oscillator is expected to be more
robust to differences in population ratio than
P2N1 (Fig. 3, A and F). To test this prediction, we
constructed P2N2 and P2N1 using the medium
promoter, Prhl/lac-m, for both strains. P2N2 oscillated
over a wide range of population ratios, whereas
P2N1 occasionally stopped oscillating when the
activator population fraction was low (Fig. 3).
We also explored other configurations of pro-

moter strengthswithin the four topologies.When
the promoter driving cinI in the repressor strain
was changed fromPrhl/lac-w to Prhl/lac-m (andPrhl/lac-s
was kept in the activator), all topologies still
generated oscillations (fig. S7, A to D). However,
P1N2 and P1N1 showed rhythms with a much
shorter period than those of P2N2 and P2N1 (fig.
S7, C and D). Furthermore, oscillations in the
repressor strain were robust even though acti-
vator strain oscillations in P1N2 and P1N1 were
low and unstable.
To understand why the P1N2 and P1N1 topol-

ogies exhibited strong and short-period repres-
sor oscillations even in the absence of strong
activator oscillations, we again turned to the
mathematical model. Our simulations matched
experimental data when Prhl/lac-m was used in the
repressor strain in the P1N2 and P1N1 topologies
(fig. S8, A and B). Themodel predicted that when
Prhl/lac-m is used in P1N2 and P1N1, themechanism
responsible for generating oscillations is an in-
tracellular negative feedback loop mediated by
AiiA in the repressor strain and not the inter-
cellular transcriptional negative feedback loop
between the two strains (fig. S8). Essentially, the
feedback loop mediated by AiiA in the repressor
strain has a shorter delay time than the tran-

scriptional loop between the strains, and hence
the period becomes shorter (29).
Our results show that engineering dynamic

population-level phenotypes in syntheticmicrobial
consortia is possible with multiple intercellular
signaling mechanisms. Because the population
ratio within a consortium can fluctuate, it is im-
portant to engineer synthetic circuits that are ro-
bust to such perturbations. Overall, our synthetic
microbial consortia provide a platform for testing
the relation between population-level dynamics
and genetic-level regulation.
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Changes to the symbiotic microbiota early in life, or the absence of it, can lead to
exacerbated type 2 immunity and allergic inflammations. Although it is unclear how
the microbiota regulates type 2 immunity, it is a strong inducer of proinflammatory
T helper 17 (TH17) cells and regulatory T cells (Tregs) in the intestine. Here, we report
that microbiota-induced Tregs express the nuclear hormone receptor RORgt and
differentiate along a pathway that also leads to TH17 cells. In the absence of RORgt+

Tregs, TH2-driven defense against helminths is more efficient, whereas TH2-associated
pathology is exacerbated. Thus, the microbiota regulates type 2 responses through the
induction of type 3 RORgt+ Tregs and TH17 cells and acts as a key factor in balancing
immune responses at mucosal surfaces.

A
llergic reactions are on the rise in indus-
trialized nations, paralleling a decrease in
the incidence of infectious diseases (1, 2).
The hygiene hypothesis proposes that ex-
posure to pathogens reduces the risk of

allergy, a notion that may be extended to ex-
posure to the symbioticmicrobiota. In support of
this hypothesis, germfree mice, devoid of micro-
organisms, develop increased susceptibility to
allergy (3–6). Furthermore, a developmental time
window during childhood determines such sus-
ceptibility (1, 2).Mice treated earlywith antibiotics,
which deeply affect the microbiota, develop an
increased susceptibility to allergy (7) that can last
into adulthood (8), an effect also found in mice
that remain germfree until weaning (9).
The mechanism by which the microbiota reg-

ulates type 2 responses remains unclear. A direct
effect of microbiota on type 2 cells, such as T
helper 2 (TH) cells and innate lymphoid cells
(ILC) 2, has not been documented. In contrast,
symbionts are necessary for the differentiation of
TH17 cells that produce interleukin (IL)–17 and
IL-22 (10), cytokines involved in homeostasis and
defense of mucosal surfaces, and a subset of in-
testinal regulatory T cells (Tregs) (11). Intriguingly,
the absence of extrathymically generated Tregs

leads to spontaneous type 2 pathologies at muco-
sal sites (12). As intestinal Tregs recognize bacte-
rial antigens (11), the microbiota may regulate
type 2 responses through the induction of extra-
thymically generated Tregs.
The nuclear hormone receptor RORgt is a key

transcription factor for the differentiation of
TH17 cells and ILC3s (13, 14). In addition, a sub-
stantial fraction of RORgt+ T cells residing in the
lamina propria of the small intestine does not
express IL-17, but rather IL-10, the Treg marker
FoxP3 (a transcription factor), and has regulatory
functions (15). Furthermore, the generation of
such RORgt+ Tregs requires the microbiota (16).
Using reporter mice for the expression of RORgt
and Foxp3, we found that a majority of RORgt+

T cells in the colon of adult mice expressed Foxp3,
and, reciprocally, a majority of colon Tregs ex-
pressed RORgt (Fig. 1A). The frequency of RORgt+

Tregs increasedwith age, representingmost intes-
tinal Tregs in 1-year-oldmice (fig. S1A). These cells
were not found in the thymus (fig. S1B) and did
not express Helios or Neuropilin-1, markers of
thymically derived Tregs (17, 18), in contrast to
conventional RORgt– Tregs (Fig. 1B and fig. S1C).
In the colon, most Helios– Tregs were absent in
RORgt-deficient mice (Fig. 1B). RORgt+ Tregs also

expressed an activated CD44high CD62Llow phe-
notype, as well as increased levels of ICOS, CTLA-4,
and the nucleotidases CD39 and CD73 (fig. S1C),
altogether indicating robust regulatory functions.
Another major subset of intestinal Tregs expresses
Gata3, responds to IL-33, and is involved in the
regulation of effector T cells during inflammation
(19, 20). Gata3+ Tregs were distinct from RORgt+

Tregs and expressed Helios, as well as lower levels
of IL-10 (fig. S2).
RORgt+ Tregs were profoundly reduced in germ-

free or antibiotic-treated mice, whereas Helios+

and Gata3+ Tregs were unaffected (Fig. 1C and fig.
S3). Recolonization of germfree mice with a spe-
cific pathogen–free (SPF) microbiota restored
normal numbers of RORgt+ Tregs (fig. S4). Fur-
thermore, a consortium of symbionts composed
of 17 Clostridia species efficiently induces the gen-
eration of Tregs expressing IL-10 in the colon (21),
the majority of which expressed RORgt (Fig. 1D).
The microbiota has been shown to induce the
generation of intestinal Tregs through short-chain
fatty acids (SCFA) (22, 23) and antigen (11). We
found that the SCFA butyrate induced an increase
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