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Abstract

Large-scale gene expression studies have mainly focused on highly expressed and ‘discriminatory’ genes to decipher key
regulatory processes. Biological responses are consequence of the concerted action of gene regulatory network, thus,
limiting our attention to genes having the most significant variations is insufficient for a thorough understanding of
emergent whole genome response. Here we comprehensively analyzed the temporal oligonucleotide microarray data of
lipopolysaccharide (LPS) stimulated macrophages in 4 genotypes; wildtype, Myeloid Differentiation factor 88 (MyD88)
knockout (KO), TIR-domain-containing adapter-inducing interferon-b (TRIF) KO and MyD88/TRIF double KO (DKO). Pearson
correlations computed on the whole genome expression between different genotypes are extremely high (.0.98),
indicating a strong co-regulation of the entire expression network. Further correlation analyses reveal genome-wide
response is biphasic, i) acute-stochastic mode consisting of small number of sharply induced immune-related genes and ii)
collective mode consisting of majority of weakly induced genes of diverse cellular processes which collectively adjust their
expression level. Notably, temporal correlations of a small number of randomly selected genes from collective mode show
scalability. Furthermore, in collective mode, the transition from large scatter in expression distributions for single ORFs to
smooth linear lines emerges as an organizing principle when grouping of 50 ORFs and above. With this emergent behavior,
the role of MyD88, TRIF and novel MyD88, TRIF-independent processes for gene induction can be linearly superposed to
decipher quantitative whole genome differential control of transcriptional and mRNA decay machineries. Our work
demonstrates genome-wide co-regulated responses subsequent to specific innate immune stimulus which have been
largely neglected.
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Introduction

The innate immune system utilizes pattern-recognition recep-

tors (PRRs), present in phagocytes such as macrophages and

dendritic cells, to recognize pathogen associated molecular

patterns (PAMPs), such as lipopolysaccarides (LPS). LPS, which

is found on the outer membrane of Gram-negative bacteria,

through the Toll-like receptor (TLR) 4, triggers a cascade of

signaling events initiated mainly by the MyD88- and TRIF-

dependent pathways. This activates a number of common

transcription factors including activator protein (AP)-1, nuclear

factor–kB (NF-kB) and interferon regulatory factors (IRF)-3. As a

result, a number of cytokines such as IL-1b and TNF-a, and type I

interferons such as IFN-a and IFN-b are produced. These

proinflammatory mediators activate helper T-cells for the onset

of acquired immune defense where foreign intruders are

eliminated and immunological memory is created [1–5]. These

processes happen at a multi-cellular level implying the coordinated

activities of many different tissues. Immunological responses are

self-limiting, highly orchestrated systemic processes that if not

precisely controlled can lead to major illnesses such as autoim-

mune diseases, cardiovascular diseases and cancer [6–8].

Recent high throughput experimental technologies have enabled

the comprehensive analysis of cellular response to a given stimulus.

However, molecular immunology still largely follows the tradition of

analyzing the snapshot of only a small number of specific statistically

significant molecules’ response. Although analyzing statistically

significant genes can help in the explanation of ‘local’ specific

response, to grasp the global regulatory processes requires the

comprehensive understanding of genome-wide response [9].

A previous high throughput study on LPS-stimulated murine

macrophages (in wildtype, MyD88 KO, TRIF KO, and MyD88/
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TRIF double (DKO)) focused on 148 highly expressed genes out of

22690 ORFs based on 3-fold expression increase and 100

expression unit cut-off from 0 to 4 h after LPS stimulation [10].

Although the study showed novel local insights of immune-

related genes in different KOs, it did not show the capacity of

LPS to induce pleiotropic biological processes not directly linked

to immunity [11,12]. To infer system-level emergent complexity,

we re-investigated the same data without any biased expressions

cut-off.

Building upon the accuracy and reliability of a correlation

metrics based upon thousands of statistical units (genes, ORFs), we

investigated temporal whole genome response to LPS stimulation

in the above-mentioned 4 different genotypes of macrophages. In

contrast to individually analyzing each microarray elements

(ORFs), where weakly expressed ORFs usually has been

considered to incur high noise-to-signal ratio, we analyzed the

temporal expression changes of entire ORFs set considered as a

whole. We confirmed LPS induces pleiotropic biological response

and, additionally, found two characteristic response modes: acute-

stochastic and collective. Acute-stochastic mode is largely immune-

related response, while collective mode participates in diverse

regulatory processes normally unrelated to immunity that

transform the initial local response to the antigenic stimulus into

a general state change of the cell. Overall, we show genome-wide

differential response mainly occur through lowly expressed genes.

This global LPS response has been previously neglected by biased

gene-expression cut-offs. Our work can be used to understand

both specific and global responses of biological systems.

Results and Discussion

Genome-wide invariance between wildtype, single and
double KOs
LPS stimulates the MyD88- and TRIF-dependent pathways to

activate the innate immune response (Figure 1). We evaluated the

correlation structure of Affymetrix mouse expression data for

wildtype, MyD88 KO, TRIF KO, DKO at 0, 1 and 4 hours

(Methods and [10]). The analyses of only highly up- or down-

regulated gene expressions ignoring lowly-expressed genes may

not be sufficient to unravel genome-wide organizational principles

[13–15]. To investigate the existence of such principles, we

analyzed the whole genome cDNA microarray expression without

any threshold cut-off. First, we performed Pearson correlation

analysis on the entire genome expression vector. This ensemble

property of the population of genes is a robust measure that is not

biased by noise at the level of individual gene measurement

[16,17]. The whole genome correlations of the same cell-type

between different genotypes are extremely high (Pearson r above

0.98, Figure 2A–B), indicating a strong common order parameter

influencing the expression level of the entire genome, correspon-

dent to the cell-type characterization [17]. High correlation

between genotypes may suggest that technical noise of our

microarray dataset is rather low [18,19]. Furthermore, our results

are coincident with the results obtained on erythroid cell lineages

using the same metrics [20]. The presence of such invariant order

spanning more than twenty-thousand elements (genes, ORFs) and

around four orders of magnitude of expression levels is a signature

of general order parameters organizing the entire cell regulation

network. This organization is, in our opinion, a ‘fact of nature’

that, for its dimensions and invariance, asks for a deep thinking in

analogy of what happened for other collective phenomena in

physics (magnetism, laser coherence, super-fluid helium, hydro-

dynamic instabilities). Such strong invariance is imposed by the

presence of a common attractor correspondent to the cell kind

[16,20], between all genotypes especially when we already know

that MyD88 KO and DKO show significantly impaired proin-

flammatory responses [21]. Hence, to investigate specific proin-

flammatory and global LPS response, we compared the between

genotypes Pearson similarities as computed both on the whole

genome and on different extractions of gene subsets (random and

immune-related).

Temporal Pearson correlation reveals genotype
differences
We adopted two measures to compare different genotypes by

means of a Pearson correlation metrics: i) auto-correlation: Pearson r

between 0 h (t0) and other time points (t1, t4) of the same genotype

and ii) cross-correlation: Pearson r between wildtype and other

genotypes at same time point (Methods). The auto-correlation
analysis measures progressive response from t0 for the same

genotype, while the cross-correlation analysis measures the temporal

difference from wildtype response.

The whole genome auto-correlation of all genotypes shows

progressive response, correspondent to a progressive displacement

of correlation from unity, to LPS stimulation using RMA

normalized data (Figure 3A and Methods). We further checked

the consistency of this result using another normalization process,

MAS5 data (Figure S1A). Wildtype response follows distinctly

different trend from MyD88 KO, TRIF KO and DKO that in

turn are remarkably similar to each other. These results show i)

1% of auto-correlations variability is sufficient to discriminate

different genotypes, and ii) the similar global gene expression

behavior between single KOs and DKO suggests DKO possesses

LPS response, too (see also section ‘Emergence of regulatory

signature from scattered expressions in all genotypes’ for further

proof of DKO response).

To find the source for genome-wide response similarity between

DKO and single KOs, we calculated the cross-correlation for all

genotypes. Cross-correlation shows the response of TRIF KO is the

most similar to wildtype, followed by MyD88 KO and DKO

(Figure 3B and Figure S1B). Although the auto-correlations are

similar, the different cross-correlations of other genotypes, with

wildtype as a reference, show that the gene expression responses

between genotypes are distinct from one another. We find these

differences originate from differential activation machinery of gene

expressions (see section ‘Deciphering gene regulatory mechanisms

from emergent signature’).

Since LPS is a well known inducer of immune response, we

next, specifically focused on the auto-correlations of 157 immune-

related genes (according to GenMAPP [22], Table S1). By this, we

shift the focus from the ‘whole-genome’ response to the ‘local

immune-related’ response of the system. The result shows that

DKO has a flat profile (as expected, almost perfect correlation

between different times is observed due to the lack of any classical

immune response to LPS), followed by TRIF KO and MyD88

KO displaying a linear displacement in time from unity

correlation but to a lesser extent than wildtype, pointing to a

diminished immune response of single KO with respect to

wildtype. (Figure 3C and Figure S1C). These results are consistent

with current literature which suggests that MyD88 is key for LPS

stimulation and consequently, for DKO, no activation of immune

response is expected to occur [23,24].

The cross-correlations of immune-related genes show TRIF KO

was closest to wildtype response, followed by MyD88 KO, while

DKO was the farthest (Figure 3D and Figure S1D). Based on these

results, we concur that the i) 157 immune-related genes are

dependent on both MyD88 and TRIF, and that they are mainly

activated by the MyD88-dependent pathway, ii) MyD88 and

Macrophage Genome-Wide Control
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TRIF cannot be considered to be acting along the same pathway,

otherwise single and DKO’s cross-correlation should be equal and

overlapping and iii) MyD88- and TRIF-dependent pathways are not

completely independent, otherwise DKO’s distance from unity in

terms of cross-correlation would be equal to a composition of MyD88

KO and TRIF KO individual values. These results imply the

existence of synergized action between the MyD88- and TRIF-

dependent pathways because the sum of single KO responses is

different from DKO response [25,26] (seeMT in ‘Deciphering gene

regulatory mechanisms from the emergent signature’).

In summary, even though we observed genome-wide strong

invariance between genotypes, temporal correlation analyses

reveal the difference between them. The temporal whole genome

(global) response and immune (local-specific) response show

distinct profiles [27]. Thus, we pondered whether there are

organization principles that distinguish such different modes of

response. To uncover, we next investigated Pearson r of all

genotypes between 0–1 h by selectively removing ORFs from each

genotype. This procedure will allow us to individualize the

different contributors to the whole genome behavior.

Figure 1. Simplified overview of LPS-induced signaling. LPS binds with TLR4 and activates transcription factors AP-1, NF-kB and IRF3 through
MyD88- and TRIF- dependant pathways. This leads to the induction of proinflammatory cytokines and interferons. Figure modified from Akira et al.
(2006).
doi:10.1371/journal.pone.0004905.g001

Macrophage Genome-Wide Control
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Figure 2. Genome-wide invariance between wildtype, single and double KOs. Highly correlated gene expressions between genotypes, and
between time points. A) Left panel: wildtype 0 h (x-axis) vs. wildtype 1 h (y-axis), right panel: wildtype 1 h (x-axis) vs. DKO 1 h (y-axis). Other
combinations of genotype and time points also show similar correlations (data not shown). Each point in the plot represents the expression of a
single ORF. B) Whole genome Pearson correlations between samples.
doi:10.1371/journal.pone.0004905.g002

Figure 3. Temporal Pearson correlation reveals genotype differences. A) Auto- and B) cross-correlations for whole genome (22690 ORFs). C)
Auto- and D) cross-correlations for immune-related genes. See maintext for details. Immune-related genes constitute 157 well-known genes induced
during immune and inflammatory response (obtained from GenMAPP [20]).
doi:10.1371/journal.pone.0004905.g003

Macrophage Genome-Wide Control
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Biphasic acute-stochastic and collective modes of LPS
response
We analyzed the change (i.e., difference of expression) of

response based on Pearson r of all genotypes by removing highest

up- and down-regulated ORFs (one by one up to 300 ORFs)

between 0 to 1 hr. For removing highest up-regulated ORFs, a

biphasic (hyperbolic) phenomenon emerges in wildtype and single

KOs but not in DKO (Figure 4A). The gradient of curves is steep

up to the removal of about 80 ORFs in wildtype and 50 ORFs in

both single KOs after which the slope gentles. In contrast, in

DKO, only the gentle gradient exists (Figure 4B). As control, we

next compared randomly removed ORFs in similar steps and

found Pearson r (0–1 h) of all genotypes does not change

noticeably (Figure 4C). This result points to a transition in the

response: a small fraction of ‘acute’ responding ORFs, and the

majority of ORFs responding ‘weakly’. Notably, for downregulat-

ed ORFs, biphasic response is not observed for any genotype

(Figure 4D).

Figure 4. LPS induces biphasic acute-stochastic and collective modes of response in wildtype and single KOs but not DKO. A) Auto-
correlation profiles of all genotypes when removing one by one up to 300 ORFs highest upregulated ORFs from 0 to 1 hr (in terms of expression
change: Dx= x(1 h)2x(0 h)). B) Plot of average auto-correlations slopes of 0–1 h in A). Since DKO possesses only collective mode, we used average
slope of DKO curve at N=10 to distinguish biphasic transition (dotted gray line). Wildtype and single KO cross this slope at about N= 80 and N= 50
ORFs, respectively. This biphasic transition point further suggests collective mode. No biphasic behavior was found for C) randomly selected or D)
downregulated ORFs. Confirmation of collective mode: E) Standard deviation (SD) of auto-correlation (0–1 h) of groups of randomly chosen ORFs
in steps of 10 up to 300 from whole genome. Each point represents average SD of 30 groups, error bars represent highest and lowest SD. F) As in
E) for 1–4 h auto-correlation. G) Auto-correlations of 80 highly expressed ORFs representing acute-stochastic mode in the wildtype. H) Average
auto-correlations of 30 extractions of 80 randomly chosen ORFs in the wildtype collective mode.
doi:10.1371/journal.pone.0004905.g004
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To investigate further, we evaluated the standard deviation of

Pearson r (0–1 h) for randomly chosen ORFs in steps of 10 up to

300 (with each selection repeated 30 times) from whole genome

and measured the standard deviation (SD) of auto-correlation. We

notice that the mean value of SD of auto-correlation decreases with

number of ORFs selected (Figure 4E). Notably, at around 80

ORFs for wildtype (and 50 for single KOs) the auto-correlation

transits to a flat trend (DKO, however, did not show any

transition). The amplitude of SD of auto-correlation is large for less

than 80 ORFs for wildtype (and around 50 for single KOs) and

small otherwise (Figure 4E). These results reveal the coincidence of

biphasic transition at around 50 ORFs. Therefore, we can consider

acute response as acute-stochastic mode (high SD) and the weak

response as collective mode (low SD) [27]. We also found biphasic

response for auto-correlations between 1–4 h (Figure 4F).

Investigating further the temporal response of acute-stochastic and

collective modes we observed auto- and cross-correlation profiles of

acute-stochastic mode is similar to immune-related genes whereas the

average response of randomly selected 80 ORFs in collectivemode is

scaled to genome-wide response (Figure 4G–H, and Figure 3A),

thus demonstrating that collective mode is scalable. This implies the

collective mode corresponds to a global, a-specific adjustment of the

expression network that can be appreciated even in the case of a

sufficiently populated random sample of genes. The collective mode

can be considered as a sort of ‘mean field’ encompassing the entire

genome expression and needs a sample of at least 80 ORFs to be

reliably detected.

Emergence of regulatory signature from scattered
expressions in all genotypes
To understand the temporal progress of biphasic response, we

investigated the changes of whole genome expression from early

(0–1 h) to late (1–4 h) in each genotype. We plotted the expression

change (Dx) of single ORFs (0–1 h for x-axis and 1–4 h for y-axis)

(Figure 5A–D, left panels) and the average value of groups of

ORFs (10, 50, 80, and 200 ORFs) (0–1 h for x-axis and 1–4 h for

y-axis) sorted from highest to lowest expressions (Figure 5A–D,

center panels for 200 ORFs and Figure S2). Remarkably, we

observed the transition from large scatter in expression distribu-

tions around the origin for single ORFs to smooth lines for group

of 50 ORFs onwards for all genotypes. This is due to the fact that

grouping of expression distribution for 50 ORFs or above forms

Gaussian distribution and the average value of each group

remarkably follows linear line (Figure S3A and see ‘Linear

regressions analyses’ in Methods); the fact average values follow

linear lines reveals the emergence of regulatory signature working

at the level of groups of genes. Furthermore, the fluctuations on

Gaussian distribution reduce as we increase the grouping size

(Figure S3A–C). From these, we observe genes upregulated at

early time points were downregulated at later time points and vice-

versa, through switching in gene regulatory circuits. Biologically,

upregulated ORFs in early signaling, when transcription rate is

faster than mRNA decay, are downregulated by late signaling,

when mRNA decay is prevalent. The vice versa occurs for

downregulated ORFs. Notably, this switching behavior is also

observed for DKO, thus reinforcing that DKO possess genome-

wide LPS response through MyD88- and TRIF- independent

manner.

Deciphering gene regulatory mechanisms from
emergent signature
We observed earlier from auto and cross-correlations that the gene

expression responses between genotypes are distinct from one

another. To understand this in depths, we compared genome-wide

expression changes between genotypes for 0–1 h, total of 6

combinations (Wildtype vs. MyD88 KO, Wildtype vs. TRIF KO,

Wildtype vs. DKO, TRIF KO vs. MyD88 KO, TRIF KO vs.

DKO and MyD88 KO vs. DKO) (Figure 6A–F). We plotted the

expression change (Dx) of single ORF as well as taking the average

value of each group of ORFs sorted from highest to lowest

expressions. We observed i) large scatter in expression distributions

around the origin for ORFs in the collective mode and ii) linear

expression distribution of ORFs in the acute-stochastic mode

(Figure 6A–F, left panels). These results further confirm biphasic

response of LPS stimulation.

For the collective mode, we found the distribution of averages

from expression change (Dx) in each group follows transition from

scatter to smooth lines for group of 50 ORFs onwards for all

genotypes (Figure 6A–F, right panels & Figure S4), revealing the

emergence of genome-wide control in wildtype and all KOs. This

is due to the fact that when we group ORFs of 50 and above, the

distribution of Dx becomes Gaussian and the mean values of

distribution follow linearity in the same way as mentioned in

previous section. Another observation is that DKO emergent

signature is invariant from single KOs (Figure 6E–F, right panels).

This further suggests that the contribution from DKO is

independent from MyD88 and TRIF and derives from an

unknown source (U). Thus, the emergent signature as smooth line

can be used to decipher quantitative genome-wide differential

control of transcriptional (Tr) and mRNA decay machineries (Dm)

by considering individual roles of MyD88 (M), TRIF (T), their

collective/synergistic roles (MT) and MyD88/TRIF-independent

processes (U) for gene induction, i.e., wildtype =M+T+MT+U,

MyD88 KO=T+U, TRIF KO=M+U and DKO=U. This linear

superposition model (resembling analysis of variance scheme)

cannot be applicable to analyze individual genes. However, for

understanding averaging behaviors found in each genotype, it can

help to shed light on overall control mechanisms of LPS

stimulation.

Wildtype upregulated ORFs in acute-stochastic mode (WTa
+), are

constituted of a single group of 80 ORFs whose average expression

change in wildtype (M+T+MT+U) is 1.22, MyD88 KO (T+U) is

0.46, TRIF KO (M+U) is 0.80 and DKO (U) is 0. Hence, the

relative contribution of each signaling to the activation of acute-

stochastic mode ORFs is determined: M=0.80, T=0.46,

MT=20.04, U=0. From these values, MyD88-dependant (M)

and TRIF-dependant (T) pathways are important for transcription

while MyD88 & TRIF-dependent synergized processes (MT) are

insignificant (in contrast to collectivemode, see below). Furthermore,

unknown processes (U) are not indicated for acute-stochastic mode.

Using DAVID analysis platform [28], the majority of biological

processes of acute-stochastic mode is related to immune system,

defense response, inflammatory response, etc., specifically activat-

ed by M and T (Table 1, p,0.05).

Next, we compared groups of upregulated ORFs in the collective

mode of wildtype (WTc
+) (x-axis) with MyD88 KO and DKO (y-

axes) (Figure 6A and C, right panels). Unlike acute-stochastic mode,

collective mode possesses average points in plot which follows flat

profiles. This could be due to the equilibrium of transcriptional

and mRNA decay machineries or shift in experimental or

normalization process. To investigate this statistically, we selected

grouping of equal number of random ORFs and assessed their

average expression change in wildtype against all genotypes. Flat

profiles were observed with M+T+MT+U=0 (wildtype),

T+U=20.024 (MyD88 KO), M+U=0.013 (TRIF KO) and

U=0.024 (DKO) (Figure 7A–C). Since random sampling displays

genome-wide constant shift in MyD88 KO, TRIF KO and DKO,

Macrophage Genome-Wide Control
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these should be due to experimental shift or normalization process.

Thus, we eliminated these shifts from MyD88 KO, TRIF KO and

DKO contributions.

In general, the emergent smooth lines in collective mode can be

presented by y= ax+b (Figure 8A–C) where slope a represents net

outcome between transcriptional and mRNA decay machineries

on average expression change and y-axis interception, b, implies

contribution from the equilibrium state of transcriptional and

mRNA decay machineries. Note that we ignore analysis around

the origin of axes, where the densely distributed average points

results in overlapping of their Gaussian distributions between

genotypes.

For WTc
+, we observed same flat profile for DKO in both WT+

and randomly selected wildtype ORFs, which indicates that WT+

in DKO possess no response, i.e., U=0 (Figure 8A and C, x.0).

The flat response in DKO stems from different set of upregulated

ORFs from WT+, confirming that DKO response (U) is

independent of MyD88 and TRIF. From all genotypes’ plot, we

obtain M+T+MT= x, T=20.04 and M=0.15x, thus,

MT=0.85x+0.04 (Figure 8A–C, x.0). This result points to i)

MyD88 & TRIF-dependent processes (MT) show synergized

activation of genes through transcription, i.e., Tr&Dm, since MT

possesses dominant positive slope, ii) MyD88-dependent pathway

(M) also activates these genes but to a lower extent, i.e., Tr.Dm,

since M possesses smaller positive slope, iii) TRIF-dependent

pathway (T) shows the equilibrium of transcriptional and mRNA

decay machineries i.e., Tr–Dm= constant, since non-zero flat

response between positive (transcriptional) and negative (mRNA

decay) contribution.

For wildtype downregulated ORFs (WTc
2), we obtained:

M+T+MT+U= x (Note: x,0 for WTc
2), T+U=20.35x,

M+U=0.15x, U=0.15x; thus, M=0, T=20.5x, MT=1.35x

Figure 5. Emergence of regulatory signature from scattered expressions. Genome-wide expression changes (Dx) between time points, 0–
1 h (x-axis) vs. 1–4 h (y-axis) for single ORF (left panels) in A) wildtype, B) MyD88 KO, C) TRIF KO), and D) DKO. Center panels: corresponding plots for
group of 200 ORFs sorted by their 0–1 h expression change (x-axis). Each point represents the average of Dx for 200 ORFs. Right panels: Gaussian
distribution of Dx for 1–4 h. Superposed profiles (lighter color for increasing upregulated groups and darker color for increasing downregulated
groups) represent density distribution (Gaussian) of each group of 200 ORFs sorted from highest to lowest for 0–1 h in A) wildtype, B) MyD88 KO, C)
TRIF KO and D) DKO. x-axis represents Dx for 1–4 h and y-axis represents the density of ORFs.
doi:10.1371/journal.pone.0004905.g005

Macrophage Genome-Wide Control
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Figure 6. Large scatter in collective mode and linear distribution in acute-stochastic mode. Genome-wide single ORFs (left panels)
expression changes (Dx) for 0–1 h between genotypes: wildtype vs. A) MyD88 KO, B) TRIF KO, C) DKO; TRIF KO vs. D) MyD88 KO and E) DKO; F) MyD88
KO vs. DKO. Right panels: corresponding plots for group of 200 ORFs, sorted by their expression change in the corresponding genotype (x-axis). + and
2 indicate average of expression change of the upregulated and downregulated ORFs in each group, respectively. Arrows indicate groups containing
the acute-stochastic mode.
doi:10.1371/journal.pone.0004905.g006

Macrophage Genome-Wide Control
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and U=0.15x (Figure 8A–C, x,0). This result points to i) MyD88

& TRIF-dependent (MT) pathways mainly show synergized

repression of genes through mRNA decay, i.e., Tr%Dm; ii)

TRIF-dependent (T) pathways can activate the transcription of the

same processes as MT, i.e., Tr.Dm; iii) M has no regulatory role

for wildtype downregulated ORFs and iv) unknown processes (U)

can weakly repress the same genes through decay machinery, i.e.,

Dm.Tr.

To determine biological processes regulated by the whole

genome, we selected genes satisfying upregulation in TRIF KO

and downregulation in MyD88 KO for WTc
+ and genes satisfying

downregulation in TRIF KO and DKO, and upregulation in

MyD88 KO for WTc
2, due to the observed emergent linearity

(Figure 8D). We obtained 3798 out of 11793 ORFs for WTc
+ and

1916 out of 10897 ORFs for WTc
2. Next, combining WTc

+ and

WTc
2 ORFs, and using DAVID platform analysis, we retained

the biological processes of genes with significant enrichment

(Tables 2 and 3, p,0.05).

We observed biological processes related to immunity (Cytokine-

cytokine receptor interaction, Toll-like receptor signaling pathway, etc.) were

upregulated in WTc
+, which indicates immune-related genes are

not restricted to the acute-stochastic mode alone (Table 2).

Predominantly, however, in WTc
+, a) pre-transcriptional and

transcription-related genes, such as genes related to cell surface

receptor mediated signal transduction (including Protein phosphorylation

required for signal transduction and Metabolism of cyclic nucleotides

used for kinase activities), and mRNA transcription regulation and b)

genes related to post-translational processes (Proteolysis, Exocytosis,

etc.) were upregulated (Table 2). In WTc
2, c) genes related to post-

transcriptional processes, (Pre-mRNA processing, mRNA splicing, Protein

biosynthesis, Ribosome, etc.) were downregulated (Table 3). We

therefore hypothesize that wildtype cells prepare for secondary

immune activation (possibly through cytokine receptors) by

upregulating signaling and transcription processes (Figure 8E).

To self-regulate the secondary immune response, post-transcrip-

tional processes (mRNA splicing and translation) are repressed.

Interestingly, we observe, from Figure 8E, a complete reverse

(switching) behavior in MyD88 KO where only T and U are

active, e.g. pre-transcriptional processes and transcription become

downregulated while post transcriptional processes are upregu-

lated. This suggests MyD88 KO cells compensate lack of

activation (transcription) by enhancing post-transcriptional pro-

cesses through TRIF-dependent (T) pathways [29]. These findings

seem to indicate that MyD88 is a key regulator in collective mode.

In summary, we observe differential activation of group of

ORFs between genotypes (Table S2). From these results, we

obtained the individual effects of M, T, MT and U on a genome-

wide scale (Figure 8E). This shows genome-wide differential

activation machinery of biological processes. Unlike acute-stochastic

mode which is dedicated to immune system, collective mode may

also participate in diverse regulatory processes; to prepare the cell

for activation (signal transduction), prevent over expression of

genes (regulation of post-transcriptional processes), and compen-

sate lack of activation in KO conditions (enhancement of genes

related to post-transcription when transcription process is lacking).

Conclusion
In this report, we found quantitative genome-wide differential

control of transcriptional and mRNA decay machineries through

signaling processes superimposing over the general strong co-

regulation of expression levels that is largely invariant between

genotypes and related to the global expression attractor corre-

spondent to the specific cell type [15,20]. Moreover, each

genotype, except DKO, possess two modes of responses; acute-

stochastic (small number of immune-related genes) and collective

modes (rest of ORFs). The collective mode, which consists of myriad

cellular processes, is often ignored in most analyses as they are

made of ORFs displaying small expression changes in time and

hence cannot be captured if high cut-off thresholds (e.g. 3-fold) are

used. Also in collective mode, for all genotypes, we notice scalable

response and emergent linear behavior arise when ORFs are

Table 1. Biological processes enriched in wildtype
upregulated acute-stochastic mode.

Biological processes (GO) and pathways (KEGG)# genes p-value

inflammatory response 13 5.6.E-06

response to wounding 13 9.9.E-05

defense response 14 2.9.E-04

response to stress 16 3.7.E-03

response to external stimulus 13 3.8.E-03

immune system process 14 2.8.E-02

immune response 11 3.6.E-02

response to stimulus 21 4.6.E-02

Cytokine-cytokine receptor interaction 9 2.5.E-02

doi:10.1371/journal.pone.0004905.t001

Figure 7. Global shifts in each genotype distribution. Genome-wide expression changes (Dx) for groups of 200 randomly chosen ORFs
between genotypes for 0–1 h: wildtype vs. A) MyD88 KO, B) TRIF KO, C) DKO.
doi:10.1371/journal.pone.0004905.g007
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grouped. Other manifestations of such collective behavior, arising

from the functional relations between gene expressions, were

observed in terms of coordinated genome-wide expression waves

[30,31]. The transition from scatter to linearity was observed in

the distribution of whole genome expression when grouping of 50

ORFs and above. Notably similar transition occurs for the

distribution of single gene expression of cells in culture when the

intrinsic (uncorrelated) noise becomes low [32]. Thus, our work

also reveals the regulation by correlations in gene expression

fluctuations [33]. However, it is important to stress that our data

refers to large ensembles of cells, unlike single cell measurements,

and thus exact discrimination between intrinsic and extrinsic noise

Figure 8. Deciphering gene regulatory mechanisms from the emergent signature. Linear regressions of genome-wide expression changes
(Dx) between genotypes after the removal of global shifts in Figure 7: A) wildtype vs. MyD88 KO, B) wildtype vs. TRIF KO, C) wildtype vs. DKO, for
group of 1000 ORFs, sorted from highest to lowest expressions change in wildtype. Each point represents the average expression changes of 1000
ORFs (see Methods). Distributions are approximated to linear equations represented by y= ax+b (main text) so as to obtain best fit. Flat distributions
are fitted to the average of their points (R2= 0). D) Gene clustering. The 3798 ORFs upregulated in TRIF KO and downregulated in MyD88 KO for WTc

+

(top panel) and the 1916 ORFs downregulated in TRIF KO and DKO, and upregulated in MyD88 KO for WTc
2 (bottom panel) were selected to

determine biological processes regulated in whole genome (see maintext). E) Individual effects of M, T, MT and U on the biological processes
regulated in collective mode of WTc

+and WTc
2. Arrows indicate activation through dominant transcription and T-shaped lines indicate repression

through dominant mRNA decay.
doi:10.1371/journal.pone.0004905.g008

Macrophage Genome-Wide Control

PLoS ONE | www.plosone.org 10 March 2009 | Volume 4 | Issue 3 | e4905



sources cannot be performed in a similar manner [32,33].

Nevertheless, the strong invariance between different conditions

of the same cell-type, can be considered as a sort of dynamical

attractor encompassing the entire transcriptome, reflecting hidden

genome-wide differential regulations [27]. Understanding the link

between the ordered behaviors observed for i) single gene

expression when intrinsic noise is low [33] and ii) genome-wide

conditions, promises to be a very fruitful future direction.

The discovery of two modes of response has also been shown

recently for protein dynamics to a drug perturbation where a rapid

translocation of specific proteins and a slower, wide-ranging

temporal wave of protein degradation and accumulation occurred

[34]. Our work points to the presence of a highly-ordered,

coordinated, genome-wide expression dynamics of LPS stimula-

tion, thereby requesting the need to consider global phenomena

when interpreting immune response. In general, the consideration

of the general rearrangement of the entire expression network

after a specific stimulus, with the consequent activation of

functions not directly linked to the original perturbation, could

be the basis for rationalizing the onset of unexpected side-effects

after drug treatments.

Materials and Methods

Biological datasets
We re-analyzed microarray data obtained from time-series

experiments (0, 1, and 4 hours) performed on peritoneal

macrophages from wildtype, MyD88 KO, TRIF KO, and

MyD88/TRIF DKO mice treated with 100 ng/ml of LPS

(Salmonella Minnesota Re595, Sigma) [10]. Affymetrix mouse

expression array A430 microarray chips were used for gene

expression detection. The microarray dataset obtained from these

experiments contains expression levels for 22690 Affymetrix probe

set IDs. We reprocessed our Affymetrix microarray chip data using

Robust Multichip Average (RMA) for further background

adjustment and to reduce false positives of our Affymetrix

microarray chip [35–37]. The complete experimental details can

be found in Hirotani et al [10].

Statistical Analysis
Auto- and cross-correlation analysis for interpreting LPS

response. To investigate the correlation between any two

expression vectors, x and y with n ( = 22690) dimension and

mean values of expressions x and y, we calculate their mutual

Pearson, r~ x,yð Þ by

r x,yð Þ~

P

n

i~1

xi{xð Þ yi{yð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i~1

xi{xð Þ2
P

n

i~1

yi{yð Þ2
s ~

P

n

i~1

XiYi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i~1

X 2
i

s ffiffiffiffiffiffiffiffiffiffiffiffiffi

P

n

i~1

Y 2
i

s

~

X:Y

Xj j Yj j
~cos h, ð1Þ

where X~ x1{x,x2{x,::,xn{xð Þ, Y~ y1{y,y2{y,::,yn{yð Þ
and h is angle between two expression vectors. Geometrically,

Eq. 1 shows the correlation coefficient, r(x,y), can be viewed as the

cosine of the angle (h) on n-dimensional space between the two

vectors of data representing a measure of response. However,

when h=0 (i.e., r=1), generally X= aY (a.0). In the case when

a=1 i.e., X=Y, this implies X and Y has the same response,

otherwise, X and Y have different but globally proportional response.

We extend the Pearson correlation analysis to measure global

temporal gene expression response to a given stimulation,

Table 2. Biological processes enriched in the wildtype
upregulated collective mode.

Biological processes (Panther) and pathways
(KEGG) # genes p-value

Developmental processes 445 8.3.E-06

mRNA transcription regulation 1686 5.9.E-06

Cell structure 667 7.0.E-05

mRNA transcription 1044 3.1.E-04

Signal transduction 747 5.4.E-04

Proteolysis 969 1.9.E-03

Melanogenesis 43 3.9.E-02

Cation transport 776 6.0.E-03

Oxidative phosphorylation 287 7.3.E-03

Cytokine-cytokine receptor interaction 86 4.0.E-02

Neurogenesis 231 1.9.E-02

Toll-like receptor signaling pathway 42 4.5.E-02

Blood circulation and gas exchange 44 2.5.E-02

Cell structure and motility 309 2.3.E-02

Focal adhesion 69 4.4.E-02

Cell communication 195 2.4.E-02

Prostate cancer 37 4.7.E-02

Ion transport 445 2.7.E-02

ErbB signaling pathway 33 4.5.E-02

B-cell- and antibody-mediated immunity 104 3.2.E-02

Metabolism of cyclic nucleotides 99 3.4.E-02

Neuronal activities 82 3.2.E-02

Complement-mediated immunity 93 3.2.E-02

Cell surface receptor mediated signal transduction 428 3.4.E-02

Protein phosphorylation 449 3.9.E-02

Ectoderm development 122 4.4.E-02

Exocytosis 72 4.9.E-02

doi:10.1371/journal.pone.0004905.t002

Table 3. Biological processes enriched in the wildtype
downregulated collective mode.

Biological processes (Panther) and pathways
(KEGG) # genes p-value

Oxidative phosphorylation 54 1.2.E-16

Ribosome 37 1.1.E-09

Protein biosynthesis 266 1.8.E-07

mRNA splicing 568 4.2.E-03

Histidine metabolism 15 4.7.E-03

Proteasome 13 1.7.E-02

Other metabolism 324 3.8.E-02

Pre-mRNA processing 363 3.0.E-02

Valine, leucine and isoleucine degradation 15 3.4.E-02

Protein metabolism and modification 305 4.7.E-02

doi:10.1371/journal.pone.0004905.t003
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comparing Pearson correlation between 0 h (X t0ð Þ) and all time

points (Y~X t0ð Þ,X t1ð Þ,X t4ð Þ) at 0 h, 1 h, 4 h of the same sample

vectors, auto-correlation. Therefore, the auto-correlation profiles

measures progressive divergence of expression from t0 for each

genotype in terms of decreasing correlation in time, if response of

LPS stimulation occurs. Since Pearson correlations of whole

genome for all condition are close to one (i.e., h>0), we need to

distinguish whether a=1 or not. We add 0 h vector elements of X

into both X and Y, resulting in 2n-dimension; X= (X(t0), X(t0)) and

Y= (X(t), X(t0)). If X(t) =X(t0), that is, no response, then

X :Y~2 X t0ð Þj j, Xj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 X t0ð Þj j
p

and Yj j~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 X t0ð Þj j
p

, thus,

auto-correlation=1 (h=0). On the other hand, if X(t) = a X(t0)
(a?1 & a.0), auto-correlation, r?1 (i.e. h?0). Biologically, auto-

correlation with control profiles will show progressive divergence from

0 h expression for each genotype if dynamic response to LPS exists,.

Similarly to auto-correlation, cross-correlation is a temporal Pearson

correlation measure. However, instead of measuring between the

same genotypes with different time points, cross-correlation measures

between different genotypes from wildtype at the same time points.

Linear regressions analyses
To obtain reliable linear regressions in the analysis of expression

change distributions (Figure 8A–C) for the collective mode, we

determined the minimal number of ORFs (N) per group, to

observe the formation of a Gaussian distribution centering on the

average expression change of the group of ORFs in all genotypes.

Shapiro-Wilk test was performed to assess the normality of the

distribution of expression changes in each group of N (0,N,2000

by step of 10) ORFs, which provides a statistic W coupled with p-
value of the data (Higher W and lower p-values for normally

distributed data). The average of p-values computed were lower

than 0.1 (2-tailed) for groups of about N.300 for MyD88 KO

distribution, N.800 for TRIF KO and N.1000 for DKO (Figure

S5). We therefore used N=1000 to determine the linear

regressions of expression changes distributions in collective mode.

Functional enrichment analyses
DAVID functional annotation platform [28] was used to

identify the functional categories (Gene Ontology (GO) [38],

Panther gene classification [39] or KEGG pathways [40]) enriched

in groups of ORFs. Among the 22690 ORFs, 10264 genes with

annotations in Gene Ontology, 13824 genes with annotations in

Panther gene classification, and 3778 genes with annotations in

KEGG pathways were identified. To evaluate functional category

enrichment under control of False Discovery Rate, Benjamini-

Hochberg adjusted p-values were obtained for each term (GO,

Panther, KEGG), and terms scoring p-values,0.05 were retained.

Supporting Information

Table S1 List of immune-related genes. List of 157 immune-

related genes selected from GenMAPP used for analysis.

Found at: doi:10.1371/journal.pone.0004905.s001 (0.16 MB

DOC)

Table S2 Differential activation of groups of ORFs between

genotypes. Biological processes (Panther) and pathways (KEGG)

enriched (p,0.05, Fisher-exact p-value) in the top 400 ORFs

upregulated in each genotype.

Found at: doi:10.1371/journal.pone.0004905.s002 (0.12 MB

DOC)

Figure S1 Temporal Pearson correlation using MAS5 normaliza-

tion. A) Auto- and B) cross-correlations for whole genome (22690ORFs). C)

Auto- and D) cross-correlations for immune-related genes.

Found at: doi:10.1371/journal.pone.0004905.s003 (0.08 MB

DOC)

Figure S2 Genome-wide expression changes between time

points. Genome-wide expression changes (Dx) between time

points, 0–1 h (x-axis) vs. 1–4 h (y-axis) for groups of N ORFs

(N=10, 50, 80, 200) in A) wildtype, B) MyD88 KO, C) TRIF KO,

D) and DKO. Group of n ORFs are sorted by their 0–1 h

expression change (x-axis). Each point represents the average of Dx

for n ORFs. + and - indicate average of expression change of the

upregulated and downregulated ORFs in each group, respectively.

Found at: doi:10.1371/journal.pone.0004905.s004 (0.08 MB

DOC)

Figure S3 Grouping of expression forms Gaussian distribution.

Density distribution of all group of A) 50, B) 500 and C) 1000

ORFs sorted from highest to lowest for 0–1 h for each genotype.

The density distribution of each of these groups in 1–4 h shows

Gaussian distribution with decreasing fluctuations when group size

increases (lighter color for increasing upregulated groups and

darker color for increasing downregulated groups). x-axis

represents Dx for 1–4 h and y-axis represents the density of ORFs.

Found at: doi:10.1371/journal.pone.0004905.s005 (0.11 MB

DOC)

Figure S4 Genome-wide expression changes between genotypes.

Genome-wide expression changes (Dx) for 0–1 h between

genotypes: A) wildtype vs. MyD88 KO, B) wildtype vs. TRIF

KO, C) wildtype vs. DKO, D) TRIF KO vs. MyD88 KO, E)

TRIF KO vs. DKO, F) MyD88 KO vs. DKO for groups of N

ORFs (N=10, 50, 80, 200). Group of N ORFs are sorted by their

0–1 h expression change (x-axis). Each point represents the average

of Dx for NORFs. + and2 indicate average of expression change of

the upregulated and downregulated ORFs in each group.

Found at: doi:10.1371/journal.pone.0004905.s006 (0.10 MB

DOC)

Figure S5 Test for normality of genome-wide expression

changes profiles. Average of p-values obtained from Shapiro-Wilk

test for all groups of ORFs of wildtype collective mode in the

MyD88 KO, TRIF KO, and DKO expression changes distribu-

tion when varying number of genes in the group.

Found at: doi:10.1371/journal.pone.0004905.s007 (0.03 MB

DOC)
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