
INVESTIGATION

Emergent Neutrality in Adaptive Asexual Evolution

Stephan Schiffels,*,1 Gergely J. Szöll}osi,†,1 Ville Mustonen,‡ and Michael Lässig*,2

*Institut für Theoretische Physik, Universität zu Köln, 50937 Köln, Germany, †Centre National de la Recherche Scientifique, UMR
5558–Laboratoire de Biométrie et Biologie Évolutive, Université Claude Bernard, Lyon 1, France, and ‡Wellcome Trust Sanger

Institute, Hinxton, Cambridge, CB10 1SA, United Kingdom

ABSTRACT In nonrecombining genomes, genetic linkage can be an important evolutionary force. Linkage generates interference
interactions, by which simultaneously occurring mutations affect each other’s chance of fixation. Here, we develop a comprehensive
model of adaptive evolution in linked genomes, which integrates interference interactions between multiple beneficial and deleterious
mutations into a unified framework. By an approximate analytical solution, we predict the fixation rates of these mutations, as well as
the probabilities of beneficial and deleterious alleles at fixed genomic sites. We find that interference interactions generate a regime of
emergent neutrality: all genomic sites with selection coefficients smaller in magnitude than a characteristic threshold have nearly
random fixed alleles, and both beneficial and deleterious mutations at these sites have nearly neutral fixation rates. We show that this
dynamic limits not only the speed of adaptation, but also a population’s degree of adaptation in its current environment. We apply the
model to different scenarios: stationary adaptation in a time-dependent environment and approach to equilibrium in a fixed environ-
ment. In both cases, the analytical predictions are in good agreement with numerical simulations. Our results suggest that interference
can severely compromise biological functions in an adapting population, which sets viability limits on adaptive evolution under linkage.

POPULATIONS adapt to new environments by fixation of

beneficial mutations. In linked sequence, simultaneously

occurring mutations interfere with each other’s evolution

and enhance or reduce each other’s chance of fixation in

the population. We refer to these two cases as positive

and negative interference. Several classical studies have

shown that interference can substantially reduce the speed

of adaptation in large asexual populations (Fisher 1930;

Muller 1932; Smith 1971; Felsenstein 1974; Barton 1995;

Gerrish and Lenski 1998). Linkage effects are weaker in

sexual populations, because they are counteracted by re-

combination.

Microbial evolution experiments provide a growing

amount of data on adaptive evolution under linkage (de

Visser et al. 1999; Rozen et al. 2002; de Visser and Rozen

2006; Desai and Fisher 2007; Perfeito et al. 2007; Silander

et al. 2007; Kao and Sherlock 2008; Barrick et al. 2009;

Betancourt 2009; Kinnersley et al. 2009), and similar data

are available for adaptive evolution in viral systems (Bush

et al. 1999; Rambaut et al. 2008; Neher and Leitner 2010).

Modern deep sequencing opens these systems to genomic

analysis and poses new questions: How does a continuously

changing environment such as the human immune chal-

lenge shape the genome of the seasonal influenza virus?

How does the fitness of a bacterial population increase in

a new environment? To answer such questions, we need to

explain how a population and its current fitness values

evolve in a time-dependent ecology and fitness landscape

and what are the rates of beneficial and deleterious changes

observed in this process. Thus, we need to describe the

adaptive process in an explicitly genomic context.

In this article, we develop a genomic model of adaptation

under linkage, which establishes the conceptual framework

to analyze such data. Our model links the adaptive process,

which changes the frequencies of beneficial and deleterious

alleles at polymorphic sites, to the genome state, which

includes the distribution of beneficial and deleterious alleles

at fixed sites. It is the genome state that determines the

fitness of a population in its current environment. We show

that interference interactions can drastically affect process

and state in large asexual populations: Adaptation generates

beneficial driver mutations, but a substantial fraction of al-

lele changes are passenger mutations, whose chance of fixa-

tion depends only weakly on their selection coefficient. Thus,
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a near-neutral dynamic of mutations emerges from suffi-

ciently strong interference interactions. This effect causes

a—potentially large—fraction of genomic sites to have nearly

random fixed alleles, which do not reflect the direction of

selection at these sites. Thus, interference interactions not

only reduce the speed of adaptation, but also degrade the

genome state and the population’s fitness in its current envi-

ronment. The joint dynamics of driver and passenger muta-

tions have consequences that may appear counterintuitive:

deleterious substitutions of a given strength can have a rate

increasing with population size, and beneficial substitutions

can have a rate decreasing with population size. This behav-

ior is contrary to unlinked sites evolving under genetic drift.

The complexity of genomic linkage and of interference

interactions is reflected by the long history of the subject in

population genetics literature, which dates back to Fisher

and Muller (Fisher 1930; Muller 1932). Their key observa-

tion is that in the absence of recombination, two mutations

can both reach fixation only if the second mutation occurs in

an individual that already carries the first. In other words,

mutations occurring in different individuals interfere with

one another. Interference inevitably causes a fraction of all

mutations to be lost, even if they are beneficial and have

already reached substantial frequencies in the population

(i.e., have overcome genetic drift). Following a further sem-

inal study, the interference between linked mutations is

commonly referred to as the Hill–Robertson effect (Hill

and Robertson 1966). This term is also used more broadly

to describe the interplay between linkage and selection: in-

terference interactions reduce the fixation probability of

beneficial mutations and enhance that of deleterious ones.

Hence, they reduce the effect of selection on substitution

rates (Felsenstein 1974; Barton 1995), but for which muta-

tions, and by how much? A number of theoretical and ex-

perimental studies have addressed these questions and have

led to a quite diverse picture of particular interaction effects.

These effects, which are sketched in Figure 1, include (i)

interference between strongly beneficial mutations (clonal

interference and related models) (Gerrish and Lenski 1998;

Orr 2000; Rouzine et al. 2003; Wilke 2004; Desai et al.

2007; Park and Krug 2007, Hallatschek 2011) and between

weakly selected mutations (McVean and Charlesworth

2000; Comeron and Kreitman 2002; Comeron et al. 2008),

(ii) the effects of strongly beneficial mutations on linked

neutral mutations (genetic hitchhiking, genetic draft) (Smith

and Haigh 1974; Barton 2000; Gillespie 2001; Kim and

Stephan 2003; Hermisson and Pennings 2005; Andolfatto

2007), and (iii) the effects of strongly deleterious mutations

on linked neutral or weakly selected mutations (background

selection) (Charlesworth et al. 1993; Charlesworth 1994,

1996; Kim and Stephan 2000; Bachtrog and Gordo 2004;

Kaiser and Charlesworth 2009).

Adaptive evolution under linkage contains all of these

processes, and the model developed in this article integrates

positive and negative interference, background selection,

and hitchhiking into a unified treatment of multiple in-

teracting mutations. Specifically, the model describes the

adaptive evolution of a finite asexual population, whose

individuals have nonrecombining genotypes of finite

length. Evolution takes place by mutations, genetic drift,

and selection given by a genomic fitness function, which is

specified by the distribution of selection coefficients be-

tween alleles at individual sequence sites and may be

explicitly time dependent. The evolving population is

described by its genome state, i.e., by the probabilities of

beneficial and deleterious alleles at fixed sites. The genome

state influences the rate and distribution of selection coef-

ficients for mutations in individuals: the better the popula-

tion is adapted, the more sites are fixed at beneficial alleles

and the more novel mutations will be deleterious. Thus,

the scope of our genomic model goes beyond that of pre-

vious studies that analyze the statistics of substitutions

given the rate and the effects of mutations as fixed input

parameters (Gerrish and Lenski 1998; Desai et al. 2007;

Park and Krug 2007). In particular, our model naturally

includes nonstationary adaptation, i.e., processes in which

the distribution of selection effects for mutations becomes

itself time dependent.

Figure 1 Interference interactions of mutations in linked genomes. Our
model describes the evolution of N individuals with two-nucleotide
genomes of length L. In a nonrecombining genome, this process is gov-
erned by positive and negative interference interactions between benefi-
cial (green), neutral (blue), and deleterious mutations (red). Shown are
five mutations simultaneously present in the population; their expected
frequency changes in the absence of genetic linkage are indicated by
arrows. The fitness contribution of each mutation additively affects the
fitness of all individuals carrying that mutation, which is indicated by the
background color of the sequences. Linkage introduces the following
interactions: allele 1 may be driven to fixation by allele 2 (hitchhiking of
a neutral mutation), alleles 2 and 3 enhance each other’s probability of
fixation (positive interference between beneficial mutations), alleles 3 and
4 compete for fixation (negative interference between beneficial muta-
tions), allele 4 may be driven to loss by allele 5 (background selection), or
allele 5 may be driven to fixation by allele 4 (hitchhiking of a deleterious
mutation).
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The key derivation of this article concerns the effects of

interference interactions on the evolution of the genome

state. We develop an approximate calculus for multiple

simultaneous mutations. Specifically, we determine how the

fixation probability of a specific target mutation is affected

by positive and negative interference of other mutations.

Since the target mutation can, in turn, act as interfering

mutation, we obtain an approximate, self-consistent sum-

mation of interference interactions between all co-occurring

mutations. We show that these interactions partition the

adaptive dynamics into strongly beneficial driver mutations,

which fix without substantial interference, and beneficial or

deleterious passenger mutations, which suffer strong posi-

tive or negative interference.

Our analytical approach differs from the two classes of

models analyzed in previous work. The clonal interference

calculus (Gerrish and Lenski 1998) focuses on the dynamics

of driver mutations, but it does not consider passenger

mutations and neglects the effects of multiple co-occurring

mutations. On the other hand, the traveling-wave approach

assumes an ensemble of many co-occurring mutations,

which have the same or a similar selective effect (Rouzine

et al. 2003; Desai et al. 2007). The adaptive processes stud-

ied in this article—and arguably those in many real systems—

take place in linked genomes with more broadly distributed

selection coefficients and differ from both model classes: they

are governed by interference interactions between multiple,

but few strongly beneficial substitutions and their effect on

weaker selected alleles. We show that this leads to intermit-

tent fitness waves, which have large fluctuations and travel

faster than fitness waves with deterministic bulk. This sce-

nario and the results of our model are supported by simula-

tions over a wide range of evolutionary parameters, which

includes those of typical microbial evolution experiments. Its

range of validity and the crossover to other modes of evolu-

tion are detailed in the Discussion.

We analyze our model and its biological implications for

two specific scenarios of adaptive evolution. The first is

a stationary adaptive process maintained by an explicitly

time-dependent fitness “seascape”, in which selection coef-

ficients at individual genomic sites change direction at a con-

stant rate (Mustonen and Lässig 2007, 2008, 2009). Such

time dependence of selection describes changing environ-

ments, which can be generated by external conditions, mi-

gration, or coevolution. An example is the antigen–antibody

coevolution of the human influenza virus (Bush et al. 1999).

Our model predicts the regime of emergent neutral genomic

sites, the speed of adaptation, and the population’s degree of

adaptation in its current environment. The second scenario

is the approach to evolutionary equilibrium in a static fitness

landscape, starting from a poorly adapted initial state. This

case describes, for example, the long-term laboratory evo-

lution of bacterial populations in a constant environment

(Barrick et al. 2009). The predictions of our model are

now time dependent: the regime of emergent neutral sites

and the speed of adaptation decrease over time, while the

degree of adaptation increases.

This article has two main parts. In the first part, we

introduce a minimal genomic model for adaptation under

linkage and present its general solution. In the second part,

we discuss the application of the model to the scenarios of

stationary adaptation and approach to equilibrium. In the

Discussion, we draw general biological consequences and

place our model into a broader context of asexual evolution-

ary processes.

Minimal Model for Adaptive Genome Evolution

We first introduce our model of genome evolution, as well as

two key observables of the evolutionary process: the degree

of adaptation, which measures the fitness of a population in

its current environment, and the fitness flux, which we use

as a measure of the speed of adaptation. We then calculate

the fixation probability of beneficial and deleterious muta-

tions and show, in particular, the emergence of neutrality.

Genome state and degree of adaptation

We consider an evolving asexual population of fixed size N,

in which each individual has a genome of length L with two

possible alleles per site. Our minimal fitness model is addi-

tive and fairly standard: each site is assigned a nonnegative

selection coefficient f, which equals the fitness difference

between its beneficial and its deleterious allele. The site

selection coefficients are drawn independently from a nor-

malized distribution r(f), which is parameterized by its

mean !f and a shape parameter k [we use a Weibull distri-

bution, which has a tail of the form rðf Þ # exp½2ðf=!fÞk%; see

section 6 of supporting information, File S1 for details]. In

section 7.4 of File S1, we introduce an extension of the

fitness model with simple fitness interactions (epistasis) be-

tween sites, and we show that such interactions do not affect

the conclusions of this article.

Point mutations between nucleotides take place with

a uniform rate m. We assume that the population evolves in

the low-mutation regime mN > 1, in which one of the two

nucleotide alleles is fixed in the population at most sequence

sites, and a fraction mN or less of the sites are polymorphic.

In this regime, the two-allele genome model adequately

describes the evolution of a genome with four nucleotides,

because polymorphic sites with more than two nucleotides

occur with negligible frequency. The genome state of the

population is then characterized by the probability that

a fixed site with selection coefficient f carries the beneficial

allele, lb(f), or the probability that it carries the deleterious

allele, ld(f). We use the familiar weak-mutation approxima-

tion lb(f) + ld(f) = 1 (this approximation neglects the

probability that a site is polymorphic, which is of order mN

log N). The selection-dependent degree of adaptation,

which is defined as a(f) = lb(f) 2 ld(f), varies between

0 for a randomly fixed genomic site and 1 for a perfectly

adapted genomic site, which carries the beneficial allele
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with probability 1. For example, a single locus with two

alleles and time-independent selection coefficient f has

a(f) = tanh(Nf) at evolutionary equilibrium (Kimura

1962; Mustonen and Lässig 2007).

In a similar way, we define the degree of adaptation in

the entire genome as the weighted average over all sites,

a ¼
1
!f

Z

N

0
rðf Þdf   f ½lbðfÞ2 ldðfÞ%: (1)

This summary statistic can be written in the form a =

(F 2 F0)/(Fmax 2 F0), where F is the Malthusian population

fitness, F0 is the fitness of a random genome, and Fmax is the

fitness of a perfectly adapted genome. Hence, a varies be-

tween 0 for a random genome and 1 for a perfectly adapted

genome, and 1 2 a is a normalized measure of genetic load

(Haldane 1937; Muller 1950). For an adaptive process, the

lag of the genomic state behind the current fitness optimum

can lead to a substantial reduction of a (Haldane 1957;

Smith 1976), which is larger than the reduction due to mu-

tational load (of order m=f
!

). In the following, we use a to

measure the fitness cost of interference.

Mutations and speed of adaptation

A genomic site of selection coefficient f evolves by beneficial

mutations with selection coefficient s = f . 0 and by dele-

terious mutations with selection coefficient s = 2f , 0

(recall that f is, by definition, nonnegative). Hence, the

distributions of beneficial and deleterious alleles at fixed

sites, lb,d(f), determine the genome-wide rate of muta-

tions with a given selection coefficient occurring in the

population,

UðsÞ ¼

!

mNLrðsÞldðsÞ ðs.0;  beneficial mutationsÞ;
mNLrðjsjÞlbðjsjÞ ðs,0;  deleterious mutationsÞ:

(2)

The total rates of beneficial and deleterious mutations are

obtained by integration over all positive and negative selection

coefficients, Ub ¼
R

N

0 dsUðsÞ and Ud ¼
R 0
2N

dsUðsÞ. The dis-

tribution U(s) is conceptually different from the distribu-

tion r(s) of selection coefficients at genomic sites, because

it depends on the genome state lb,d(f). Therefore, both the

shape of U(s) and the total rates Ub,d are in general time

dependent, even if r(f) is fixed. A similar coupling be-

tween the distribution U(s) and the adaptive state of the

population has been discussed previously, for example, in

the context of Fisher’s geometrical model (Martin and

Lenormand 2006; Tenaillon et al. 2007; Waxman 2007;

Rouzine et al. 2008). For stationary evolution with an ex-

ponential r(f), we find the distribution U(s) of beneficial

mutations (s . 0) is approximately exponential as well,

which is in accordance with the form suggested by pre-

vious studies (Gillespie 1984; Imhof and Schlotterer

2001; Orr 2003; Rokyta et al. 2005; Kassen and Bataillon

2006; Eyre-Walker and Keightley 2007; MacLean and

Buckling 2009).

The selection-dependent substitution rate is given by the

product of the mutation rate and probability of fixation G(s)

of a mutation with selection coefficient s,

VðsÞ ¼ GðsÞUðsÞ: (3)

For unlinked sites, the fixation probability is given by

Kimura’s classical result, G0(s) = (1 2 exp[22s])/(1 2

exp[22Ns]) (Kimura 1962). Computing this probability

for linked sites is at the core of this article: G(s) depends

not only on the selection strength s and population size N,

but also on the interference interactions between co-occurring

mutations shown in Figure 1.

To measure the speed of adaptation contributed by sites

with selection coefficient f, we define the fitness flux F(f) =

f[V(f) 2 V(2f)]. The total fitness flux

F ¼

Z

N

0
df  FðfÞ ¼

Z

N

2N

ds  sVðsÞ ¼ V!sV (4)

is simply the product of the total rate V and the average

selection coefficient !sV of substitutions (Mustonen and

Lässig 2007). If evolution is adaptive, it can be shown that

F is always positive (Mustonen and Lässig 2010), which

reflects an excess of beneficial over deleterious substitutions.

In the following, we use F to measure the reduction in

speed of adaptation due to interference (Gerrish and Lenski

1998).

Adaptive dynamics

In an additive fitness model, adaptive evolution can be

maintained at a stationary rate if the selection coefficients

at individual genomic sites are time dependent: changes

in selection open new windows of positive selection and

trigger adaptive response by beneficial mutations. Selection

changes at a specific genomic site result from changes in

a population’s environment, as well as from substitutions at

other sites coupled by epistasis. In this sense, time-dependent

selection is a proxy for epistasis within an additive fitness

model (see section 7.4 in File S1 for an explicit epistatic

model). Here, we use the minimal dynamic fitness model

introduced in Mustonen and Lässig (2007, 2010), in which

the direction of selection at each site flips according to

an independent Poisson process. A selection flip exchanges

the beneficial and the deleterious allele at a given site,

whereas the magnitude f of selection remains constant for

simplicity. The rate g of selection flips per site is small, such

that a given direction of selection persists for longer than the

typical fixation time of a mutation; a sufficient condition is

Ng > 1. In this regime, selection flips trigger adaptive

substitutions, which occur at a rate gL for independently

evolving sites under substantial selection (Nf ? 1). In a

linked genome, however, the rate of adaptation can

be substantially smaller, because adaptive mutations over-

lap in time and interfere with each other’s evolution. In

our model, this effects sets in approximately at 2NgL # 1

(see below).
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Changes in selection and substitutions together deter-

mine the change of the genome state,

dlbðf Þ

dt
¼ 2

dldðfÞ

dt

¼
1

Lrðf Þ
½VðfÞ2Vð2 fÞ% þ g½ldðfÞ2 lbðf Þ%  ;

(5)

which, in turn, determines the substitution rates V(s) by

Equations 2 and 3. These coupled dynamics admit an itera-

tive solution, once we have computed the fixation prob-

ability G(s) (see below). Equation 5 can be expressed as

a relation between the selection-dependent fitness flux

F(f), the degree of adaptation a(f), and its time derivative,

Fðf Þ ¼ Lrðf Þ f

"

1

2

daðf Þ

dt
þ gaðf Þ

#

: (6)

Hence, a population’s fitness in a time-dependent environ-

ment increases by fitness flux and decreases by changes of

the fitness seascape. A similar relation follows for the total

fitness flux F (Equation 4) and the genome-averaged degree

of adaptation (Equation 1),

F ¼ L!f

"

1

2

da

dt
þ ga

#

: (7)

In the second part of this article, we analyze these dynamics

in two specific scenarios.

Stationary adaptation under time-dependent selection:

In this case, the genome state becomes static, dlb,d/dt =

da/dt = 0. This state is determined by the fixation proba-

bilities G(s) and the selection flip rate g,

lbðfÞ ¼ 12 ldðfÞ ¼
NGðfÞ þ g=  m

NGðfÞ þ NGð2 f Þ þ 2g=  m
(8)

(Mustonen and Lässig 2007). The stationary fitness flux

becomes proportional to the degree of adaptation,

F ¼ !fgLa ðstationary adaptationÞ; (9)

that is, the actual fitness flux F is only a fraction a of the

maximal flux !f
!

gL required for perfect adaptation.

Approach to equilibrium under time-independent selec-

tion: In a static fitness landscape (g = 0), adaptation is

the approach to a mutation–selection–drift equilibrium

state. In this case, the fitness flux is simply the change

in fitness,

F ¼
dF

dt
¼

!fL

2

da

dt
ðapproach to equilibriumÞ; (10)

that is, the population fitness increases with time toward its

equilibrium value.

Fixation probability of interacting mutations

The missing piece in the coupled dynamics of substitutions

and genomic state (Equations 2, 3, and 5) is the fixation

probability G(s). Consider a target mutation with origina-

tion time t and selection coefficient s, which is subject to

interference by a mutation with origination time t9 and a se-

lection coefficient s9 larger in magnitude, js9j . jsj; this

hierarchical approximation is detailed further below. We

classify pairwise interactions between interfering and target

mutations by three criteria:

i. Temporal order: The interfering mutation originates either

at a time t9 , t (we call this case background interfering

mutation) or at a time t9 . t (future interfering mutation).

Figure 2 Interference time series diagrams. A target mutation with orig-
ination time t and frequency x(t) (black arrow) is subject to a stronger
interfering mutation with origination time t9 and frequency x9(t) (colored
arrow). The interactions between this pair of mutations can be classified
as follows: (A and B) Interference by a deleterious background mutation

(red arrow). (A) The target mutation originates on the deleterious allele of
the interfering mutation and is driven to loss, and (B) the target mutation
originates on the ancestral (beneficial) allele of the interfering mutation
and is enhanced in frequency. (C and D) Interference by a beneficial back-

ground mutation (green arrow). (C) The target mutation originates on the
beneficial allele of the interfering mutation and is enhanced in frequency,
and (D) the target mutation originates on the ancestral (deleterious) allele
of the interfering mutation and is driven to loss. (E and F) Interference by

a beneficial future mutation (green arrow). (E) The interfering mutation
originates on the new allele of the target mutation and drives it to fixation,
and (F) the interfering mutation originates on the ancestral background
of the target locus and drives the target mutation to loss.
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ii. Direction of selection on the interfering mutation:

Deleterious or beneficial.iii. Allele association: The target

mutation may occur on the ancestral or the new allele of

a background interfering mutation; similarly, a future

interfering mutation may occur on the ancestral or the

new allele of the target mutation. Figure 2 shows this

classification: a target mutation interacts with a deleteri-

ous background interfering mutation (Figure 2, A and B),

with a beneficial background interfering mutation (Figure

2, C and D), and with a beneficial future interfering

mutation (Figure 2, E and F). The case of deleterious

future interfering mutations is not shown, because their

contribution to the fixation probability is negligible.

As a first step, we evaluate the conditional fixation proba-

bility of a target mutation, G(s, t | s9, t9), for each of the

cases of Figure 2, A–F, and for given selection coefficients s,

s9 and origination times t, t9. This step is detailed in the

Appendix. The net contribution of deleterious background

(Figure 2, A and B) is found to be small, because the re-

duction in fixation probability for association with the dele-

terious allele is offset by an enhancement for association

with the beneficial allele. The relationship of this result to

previous studies of background selection is discussed in sec-

tion 1 of File S1. Beneficial background mutations (Figure 2,

C and D) retain a net effect on the fixation probability of the

target mutation. The largest effect turns out to arise from

future interfering mutations (Figure 2, E and F).

We now derive an approximate expression for the total

fixation probability of a target mutation on the basis of pair

interactions with multiple interfering mutations. Clearly,

a straightforward “cluster expansion” makes sense only in

a regime of dilute selective sweeps at sufficiently low rates of

beneficial mutations, where the interference interactions of

Figure 2, C–F, are infrequent. However, we are primarily

interested in adaptive processes under linkage in the

dense-sweep regime at high rates of beneficial mutations,

which generates strongly correlated clusters of fixed muta-

tions nested in each other’s background (the crossover be-

tween these regimes is further quantified below). We treat

the dense-sweep regime by an approximation: each sweep is

associated with a unique driver mutation, which is the stron-

gest beneficial mutation in its cluster. The driver mutation

itself evolves free of interference, but it influences other

mutations by interference; that is, we neglect the feedback

of weaker beneficial and deleterious mutations on the driver

mutation. In this hierarchical approximation, the coherence

time of a sweep is set by the fixation time of its driver

mutation, tfix(s) = 2 log(2Ns)/s (see section 2 of File

S1). The sweep rate becomes equal to the rate of driver

mutations, Vdrive(s), and is given by the condition that no

stronger selective sweep occurs during the interval tfix(s).

Hence, we obtain a self-consistent relation,

VdriveðsÞ ¼ pdriveðsÞG0ðsÞUðsÞ (11)

with

pdrive   ðsÞ ¼ exp 

"

2 tfixðsÞ

Z

N

s

VdriveðzÞdz

#

  ; (12)

which can be regarded as a partial summation of higher-order

interference interactions characteristic of the dense-sweep

regime (see the Appendix for details). These expressions and

the underlying hierarchical approximation are similar to the

model of clonal interference by Gerrish and Lenski (1998).

This model determines an approximation of the sweep rate,

VGL(s), by requiring that no negative interference by a future

interfering mutation occurs (see below for a quantitative com-

parison with our model).

Consistent with the hierarchical approximation, we can

interpret the diagrams of Figure 2, C–E, as effective pair in-

teractions between a target mutation and a selective sweep,

which is represented by its driver mutation. The target mu-

tation can strongly interact with two such sweeps, the last

sweep before its origination (with parameters s9 . s and

t9 . t) and the first sweep after its origination (with param-

eters t99 . t and s99 . s). These two sweeps affect the

fixation probability G(s) in a combined way: the target mu-

tation can be fixed only if it appears on the background of

the last background sweep and if it is itself the background

of the first future sweep. The resulting conditional fixation

probability of the target mutation, G(s, tj s9, t9, s99, t99),

is a straightforward extension of the form obtained for a

single interfering mutation. The full fixation probability

G(s) is then obtained by integration over the selection

coefficients s9, s99 with weights Vdrive(s9) and Vdrive(s99)

and over the waiting times t 2 t9, t99 2 t. This calculation

and the result for G(s), Equation A6, are given in the

Appendix.

The fixation probability can be expressed as the sum of

driver and passenger contributions,

GðsÞ ¼ pdriveðsÞG0ðsÞ þ ½12 pdriveðsÞ%GpassðsÞ: (13)

A passenger mutation fixes predominantly by interference

from other stronger mutations, which results in a fixation

probability Gpass (see Equation A8). The arguments leading

to Equations 11 and 12 must be modified, if the distribution

of selection coefficients p(f) falls off much faster than expo-

nentially (Fogle et al. 2008). In that case, we can still de-

scribe the fixation probability of a target mutation as the

result of interference interaction with the closest past and

future sweep, but these sweeps may contain several driver

mutations of comparable strength (see Discussion). The sys-

tem of Equations 2, 3, 8, 11, 12, and 13 can be solved

numerically using a straightforward iterative algorithm,

which is detailed in section 4 of File S1.

Emergent neutrality

For mutations of sufficiently weak effect, the fixation

probability takes the particularly simple form

GðsÞ≃GpassðsÞ≃G0

$ s

2N~s

%

&

for 2~s , s , ~s
'

; (14)
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where the neutrality threshold ~s is given by the total sweep

rate Vdrive ¼
R

N

0 VdriveðzÞdz,

~s ¼
1

2N
þ Vdrive (15)

(see the Appendix). These are the central equations of this

article. They show how neutrality emerges for strong adap-

tive evolution under linkage. Specifically, the relation for ~s

delineates two dynamical modes: the dilute sweep mode

(Vdrive ≲ 1/2N), where the neutrality threshold is set by

genetic drift to the Kimura value ~s≃ 1=2N (Kimura 1962),

and the dense sweep mode (Vdrive ≲ 1/2N), where interfer-

ence effects generate a broader neutrality regime with

~s≃Vdrive. The transition between these modes marks the

onset of clonal interference as defined in previous work

(Wilke 2004; Park and Krug 2007). For stationary adapta-

tion in a time-dependent fitness seascape, the upper bound

Vdrive ≃ gL produces the estimate 2NgL . 1 for the crossover

from dilute to dense sweeps. However, Equations 14 and 15

remain valid for nonstationary adaptation, where the neu-

trality threshold ~s becomes time dependent (see below).

In summary, interference interactions in the dense-sweep

mode produce the following selection classes of mutations

and genomic sites.

Emergent neutrality regime: Mutations with selection

coefficients 2~s,s,~s fix predominantly as passenger muta-

tions. Their near-neutral fixation probability (Equation 14)

is the joint effect of positive and negative interference. Com-

pared to unlinked mutations, G(s) is reduced for beneficial

mutations and enhanced for deleterious mutations. Accord-

ingly, sites with selection coefficients f,~s have near-random

probabilities of their alleles.

Adaptive regime:Mutations with effects s.~s have a fixation

rate significantly above the neutral rate and, hence, account

for most of the fitness flux. Moderately beneficial mutations

ðs≳~sÞ still fix predominantly as passengers, whereas

strongly beneficial mutations ðs?~sÞ are predominantly

drivers. Hence, the fixation rate increases to values of order

G0(s) ≃ 2s, which are characteristic of unlinked mutations.

Accordingly, sites with f.~s evolve toward a high degree of

adaptation.

Deleterious passenger regime: Mutations with s,2~s can

fix by positive interference, i.e., by hitchhiking in selective

sweeps. This effect drastically enhances the fixation rate in

comparison to the unlinked case. It follows the heuristic ap-

proximation GðsÞ ( GpassðsÞ # expð2jsj=~sÞ, which extends

the linear reduction in the effective strength of selection

(Equation 14) obtained in the emergent neutrality regime.

Applications to Adaptive Scenarios

Here we analyze our results for two specific adaptive

scenarios: stationary adaption in a fitness seascape and

approach to equilibrium in a static fitness landscape. De-

tailed comparisons of our analytical results with numerical

simulations show that our approach is valid in both cases. In

particular, we always find a regime of emergent neutrality

with a threshold ~s, which is time dependent for nonstation-

ary processes.

Stationary adaptation in a fitness seascape

Stationary adaptation in our minimal fitness seascape is

characterized by ongoing selection flips, which occur with

rate g per site and generate an excess of beneficial over

deleterious substitutions, with rates V(s) . V(2s) (see

Equation 5). Figure 3A shows the selection-dependent

fixation probability G(s) in a linked genome undergoing

stationary adaptive evolution. The emergent neutrality re-

gime ðjsj,~sÞ, the adaptive regime ðs.~sÞ, and the deleteri-

ous passenger regime ðs,2~sÞ are marked by color shading.

The self-consistent solution of our model (Figure 3A, red

line) is in good quantitative agreement with simulation

results for a population of linked sequences (Figure 3A, open

circles; simulation details are given in section 6 of File S1).

Data and model show large deviations from single-site the-

ory (Figure 3A, long-dashed blue line), which demonstrate

strong interference effects in the dense-sweep regime. Fig-

ure 3A also shows an effective single-site probability with

a globally reduced efficacy of selection, G0ðs=2N~sÞ (short-

dashed blue line). As discussed above, a global reduction

in selection efficacy fails to capture the adaptive regime,

where mutations have a fixation probability approaching

the single-site value 2s.

The crossover between adaptive and emergent-neutrality

regimes implies a nonmonotonic dependence of the sub-

stitution rate V(s) on the population size: in sufficiently

small populations sizes (where ~s,s), beneficial mutations

of strength s are likely to be driver mutations. Hence, V(s)

is an increasing function of N with the asymptotic behavior

VðsÞ≃mNs familiar for unlinked sites. In larger populations

(where ~s.s), the same mutations are likely to be passenger

mutations and V(s) decreases with N toward the neutral

rate V(s) ≃ m. The maximal substitution rate is expected

to be observed in populations where ~s is similar to s. By

the same argument, deleterious mutations have a minimum

in their substitution rate in populations where ~s is similar

to |s|.

Furthermore, it is instructive to compare our results for

stationary adaptation with the classical clonal interference

model (Gerrish and Lenski 1998) (see section 5 of File S1

for details). This model focuses exclusively on negative in-

terference between strongly beneficial mutations, the case

shown in Figure 2F. The resulting approximation for the

fixation probability, GGL(s) = VGL(s)/U(s), is shown in Fig-

ure 3A (brown line). It captures two salient features of the

stationary adaptive process: the behavior of strongly bene-

ficial driver mutations and the drastic reduction of the total

substitution rate caused by interference. However, the full

spectrum of G(s) requires taking into account positive and
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negative interference. Furthermore, mutation-based models

with rate and effect of beneficial mutations as input param-

eters cannot predict the degree of adaptation, as discussed

in section 7.3 of File S1.

An important feature of the adaptive dynamics under

linkage is the relative weight of driver and passenger

mutations in selective sweeps. The fixation probability is

highest for strongly beneficial mutations ðs?~sÞ, which are

predominantly driver mutations. Nevertheless, the majority

of observed substitutions can be moderately adaptive or

deleterious passenger mutations (in the process of Figure

3, for example, #60% of all substitutions are passengers,

20% of which are deleterious). The distribution of mutation

rates, U(s), and the distribution of fixation rates, V(s) =

Vdrive(s) + Vpass(s), are shown in Figure S3 in File S1.

In Figure 3, B and C, we plot the selection-dependent

degree of adaptation a(f) and the fitness flux F(f) at statio-

narity, which are proportional to each other according to

Equation 6. Simulation results are again in good agreement

with our self-consistent theory, but they are not captured by

single-site theory, single-site theory with globally reduced

selection efficacy, or Gerrish–Lenski theory. The functions

a(f) and F(f) display the emergent neutrality regime

ðf,~sÞ and the adaptive selection regime ðf.~sÞ for genomic

sites, which are again marked by color shading. Using Equa-

tions 8 and 14, we can obtain approximate expressions for

both regimes. Consistent with near-neutral substitution

rates, sites in the emergent neutrality regime have a low

degree of adaptation and fitness flux:

aðfÞ ¼
Fðf Þ

fgLrðf Þ
≃

1

ð1þ g=mÞ

f

2~s
: (16)

Hence, fixed sites in this regime have nearly random alleles:

they cannot carry genetic information. Two processes

contribute to this degradation: negative interference slows

down the adaptive response to changes in selection, and

hitchhiking in selective sweeps increases the rate of delete-

rious substitutions. By contrast, sites in the adaptive regime

(f.~s) have a high degree of adaptation and generate most

of the fitness flux. Sites under moderate selection (f ≳ ~s) are

still partially degraded by interference, and the negative

component of fitness flux (i.e., the contribution from dele-

terious substitutions) is peaked in this regime (see Figure S4

in File S1). Strongly selected sites (f?~s) are approximately

independent of interference. Hence, their degree of adapta-

tion and fitness flux increase to values characteristic of un-

linked sites,

aðf Þ ¼
Fðf Þ

fgLrðfÞ
≃

f

f þ g=ðmNÞ
: (17)

In addition to the selection-dependent quantities dis-

cussed so far, our theory also predicts how genome-wide

characteristics of the adaptive process depend on its input

parameters. The adaptively evolving genome is parameter-

ized by the mutation rate m, by the effective population size

N, and by three parameters specific to our genomic model:

average strength !f and flip rate g of selection coefficients,

and genome length L. As an example, Figure 4 shows the

dependence of the average degree of adaptation a on g and

on L, with all other parameters kept fixed (recall that

according to Equation 9, this also determines the behavior

of the total fitness flux, F ¼ a!fgL). The genome-wide rate of

selection flips, gL, describes the rate at which new opportu-

nities for adaptive substitutions arise at genomic sites. With

increasing supply of opportunities for adaption, interference

interactions become stronger. This leads to an increase in

the neutrality threshold ~s, a decrease in the degree of ad-

aptation a, and a sublinear increase of the fitness flux F. All

of these effects are quantitatively reproduced by the self-

consistent solution of our model. As shown in Figure 4,

low values of the degree of adaptation a are observed over

large regions of the evolutionary parameters g and L. This

indicates that a substantial part of the genome can be de-

graded to a nearly random state, implying that interference

effects can compromise biological functions (see Discussion).

Figure 3 Selection regimes of
stationary adaptation. (A) Selec-
tion-dependent fixation probabil-
ity of mutations G(s), scaled by
the population size N. Analytic
model solution (red line) and sim-
ulation results (circles) show
three regimes of selection: (i) ef-
fective neutrality regime (white
background), where G(s) takes

values similar to the fixation probability of independent sites with reduced selection, G0ðs=2N~sÞ (short-dashed blue line); (ii) adaptive regime (green),
where G(s) crosses over to the fixation probability for unlinked sites with full selection, G0(s) (long-dashed blue line) [the strong-selection part of this
crossover is captured by the Gerrish–Lenski model, GGL(s) (brown line, see section 5 of File S1); and (iii) strongly deleterious passenger regime (red),
where G(s) is exponentially suppressed, but drastically larger than for unlinked sites (long-dashed blue line) due to hitchhiking in selective sweeps. (B
and C) Selection-dependent degree of adaptation a(f) and fitness flux F(f), scaled by N. Analytical model solution (red line) and simulation results
(circles) show two regimes of selection: (i) effective neutrality regime (white background), where a(f) and F(f) take values similar to those of unlinked
sites with reduced selection (short-dashed blue line), and (ii) adaptive regime (green), where a(f) and F(s) cross over to values of unlinked sites with full
selection (short-dashed blue lines). The strong-selection part of the crossover for F is captured by the Gerrish–Lenski model, FGL(f) (brown line, see
section 5 of File S1). System parameters are N = 2000, L = 1000, 2Nm = 0.025, 2Ng = 0.1, and 2Nf

!

¼ 50, and simulation time is 2 · 106 generations.
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Approach to equilibrium in a fitness landscape

A particular nonstationary adaptive process is the approach

to evolutionary equilibrium in a static fitness landscape,

starting from a poorly adapted initial genome state. Here,

we analyze this mode in our minimal additive fitness model.

We choose an initial state at time t = 0 from the family of

stationary states presented in the previous section (which

is characterized by a value ginitial . 0). We study the evolu-

tion of this state for t . 0 toward equilibrium under time-

independent selection (g = 0; see section 4 of File S1 for

details of the numerical protocol). Unlike for stationary ad-

aptation, the observed dynamics now depend on the initial

state. Figure 5 shows the selection-dependent degree of ad-

aptation a(f) of this process at three consecutive times. The

self-consistent solution of our model is again in good agree-

ment with simulation data. There is still a clear grading of

genomic sites into an emergent neutrality regime and an

adaptive regime, which is again marked by color shading.

The neutrality threshold ~sðtÞ is now a decreasing function of

time. Figure 5 also shows the time derivative of the degree

of adaptation, which equals half the adaptive substitution

rate per site: daðf Þ=dt ¼ ½VðfÞ2Vð2f Þ%=2rðfÞ by Equations 4

and 6. Data and model solution show that the adaptive pro-

cess is nonuniform: at a given time t, adaptation is peaked at

sites of effect f # ~sðtÞ, while sites with stronger selection

have already adapted at earlier times and sites with weaker

selection are delayed by interference. Thus, our model pre-

dicts a nonmonotonic behavior of the adaptive rate da(f)/dt

on time: for sites with a given selection coefficient f, this rate

has a maximum at some intermediate time when ~sðtÞ ¼ f ,

after interference effects have weakened and before these

sites have reached equilibrium. This result mirrors the max-

imum of the substitution rate V(s) at some intermediate

population size for stationary adaptation. As before, a sub-

stantial fraction of substitutions are passengers in selective

sweeps.

Figure 6A shows the evolution of the genome-averaged

degree of adaptation, a, and of the mean population fitness,

F, which are linearly related by Equation 1. The fitness flux

F = dF/dt and the total substitution rate V are plotted

in Figure 6B. According to Equation 4, these quantities are

Figure 4 Degree of adaptation at stationarity. Results from our model
(red lines), simulation results (circles), and values for independent sites
(dashed blue lines) of the degree of adaptation are plotted (A) against the
total selection flip rate gL for two different values of the genome length,
L ¼ 200 (circles) and L ¼ 2000 (diamonds), and (B) against the total
genomic mutation rate mNL for two different values of the selection flip
rate, 2Ng ¼ 0.01 (circles) and 2Ng ¼ 0.1 (triangles). Note that for the
smaller value of g, the time to reach stationarity is very long, which limits
the numerical results to smaller values of the system size. Other system
parameters are N ¼ 4000, 2Nm ¼ 0.025, and 2N!f 5 50, and simulation
time is 8 · 105 generations.

Figure 5 Selection regimes for approach to equilibrium. The population
evolves from a poorly adapted initial state to a high-fitness equilibrium
state. The degree of adaptation (circles and solid line) and its time de-
rivative (which is related to the adaptive rate per site, crosses and dashed
line) are shown for three consecutive times, t = 600, 8000, and 55,000
generations. Theory lines are obtained by numerically solving Equation 6.
The emergent neutrality regime ðs,~sÞ and the adaptive regime ðs.~sÞ
are shown by color shading; the neutrality threshold ~s decreases with
time. Parameters are N = 1000, L = 1000, 2N!f ¼ 50, and 2Nm = 0.025.
The initial state is a stationary state with 2Ng = 0.1.
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linked in a time-dependent way, FðtÞ ¼ VðtÞ~sðtÞ ( VðtÞ~sðtÞ.

We observe that fitness increases monotonically with time.

Its rate of increase F rapidly slows down as the system

comes closer to evolutionary equilibrium, whereas the total

substitution rate V shows a slower approach to equilibrium.

A qualitatively similar time dependence of fitness and sub-

stitution rate has been reported in a long-term bacterial

evolution experiment by Barrick et al. (2009).

Discussion

Interference can dominate genetic drift

Interference interactions in the dense-sweep regime may be

complicated in their details, but their net effect is simple:

genomic sites with selection coefficients s smaller than

a threshold ~s have nearly random fixed alleles, and mutations

at these sites fix with near-neutral rates. The neutrality thresh-

old ~s is given by the total rate of selective sweeps, Vdrive, as

shown in Equation 15. Emergent neutral mutations, as well as

more deleterious changes, fix as passengers in selective

sweeps. That is, both classes of mutations are subject to in-

terference, not genetic drift, as a dominant stochastic force.

The resulting fixation rates V(s) depend only weakly on the

effective population size N. Mutations with larger beneficial

effect ðs.~sÞ suffer gradually weaker interference interactions.

Hence, their fixation rates show a drastic increase toward the

Haldane–Kimura value V(s) = 2mNs set by genetic drift.

At a qualitative level, these results tell the story of the

Hill–Robertson effect: genetic linkage reduces the efficacy of

selection. Quantitatively, they demonstrate that emergent

neutrality is not equivalent to a simple reduction in effective

population size. The fixation rate of emergent neutral and

deleterious passenger mutations can heuristically be inter-

preted as a linear reduction in effective population size by

a factor 2N~s, but this approximation breaks down for muta-

tions with larger beneficial effect; see Equation 14 and Fig-

ure 3A. In other words, we cannot absorb the effects of

interference into a single modified strength of genetic drift.

Of course, both interference and genetic drift are stochastic

processes that randomize alleles of genomic sites. However,

they have fundamentally different characteristics: genetic

drift is a diffusion process causing independent changes in

allele frequencies in each generation, whereas interference

generates coherent changes over time intervals given by the

inverse selection coefficient of the driver mutation.

Fluctuations and intermittency of the adaptive process

Given genetic drift and interference as stochastic driving

forces, how stochastic are the resulting adaptive substitution

dynamics? This question has been addressed in several

recent studies, which treat the adaptive process as a traveling

fitness wave (Rouzine et al. 2003, 2008; Desai et al. 2007;

Hallatschek 2011). If all mutations are assumed to have the

same effect, these models are solvable. One finds a traveling

wave with a deterministic bulk of stationary shape (given

by a mutation–selection flux state) and a stochastic tip. The

variance of this wave determines its speed (i.e., the fitness

flux) by Fisher’s fundamental theorem. Given a stationary

bulk of the wave, the fitness flux has only small fluctuations

around its mean value. However, the recent solvable model

of Hallatschek (2011) contains large fluctuations in popula-

tion size, which may be related to fluctuations in fitness flux.

The adaptive process studied in this article shows a

drastically different behavior. In our model, fitness effects at

genomic sites follow a distribution r(f) with shape parame-

ter k. For the case of exponential r(f) (given by k = 1), a

snapshot of the population’s fitness distribution at a given

point in time is shown in Figure 7A. This distribution has

large shape fluctuations throughout its bulk, not just at the

tip. It shows that the adaptive process is dominated by few

co-occurring beneficial mutations of large effect, whereas a

stationary wave is maintained by many mutations of smaller

effect. As a consequence, the fitness flux becomes intermit-

tent: on small timescales, it has large fluctuations around its

mean value, as shown in Figure 7A. Movies of the intermit-

tent fitness wave are available; see Figure 8. Importantly, this

strong stochasticity accelerates evolution: at given rate Ub

and mean effect sb ¼ ð1=UbÞ
R

N

0 sUðsÞds of beneficial muta-

tions, our model produces a much higher mean fitness flux

than the traveling-wave solution. The reason is simple: a dis-

tribution of selection coefficients generates dynamics domi-

nated by strong driver mutations, whose effect is substantially

larger than the mean (Park et al. 2010).

How relevant is this mode of intermittent adaptation for

actual populations? We expect our model to be applicable

to microbial laboratory populations, which often fall into the

Figure 6 Degree and speed of adaptation for approach to equilibrium.
(A) The degree of adaptation evolves from a poorly adapted initial state
toward equilibrium at high fitness. Simulation results are shown as circles,
and theory predictions as red lines. (B) The fitness flux (circles) and the
substitution rate (crosses) as a function of time, together with theory (red
lines). The substitution rate decays slower than the fitness flux, due to
a decrease in ~s. Theory predictions are obtained by numerically solving
Equation 6. Parameters are the same as in Figure 5.
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range of evolutionary parameters considered by this study.

For example, the population- and genome-wide mutation

rate in an Escherichia coli population of size N = 105 is mNL

= 250 (Drake et al. 1998). Our simulations cover system

sizes up to mNL = 2000; large populations are simulated

by scaling up m while keeping mNL constant (for details,

see section 6 of File S1).

To further test the range of applicability of our model, we

evaluate the stochasticity of the fitness flux for different

Figure 7 Stochasticity of the adaptive process. The speed of adaptation
and the shape of the distribution of fitnesses in the population are gov-
erned by large fluctuations. (A) Snapshot of the fitness distribution in the
population, centered around the mean fitness. The shape of this distri-
bution is very different from the average shape, shown as a dashed line.
The dynamics are governed by few fitness classes with a large number of
individuals (note the logarithmic axis). The evolution of this distribution is
shown in three movies; see Figure 8. (B) Time series of the cumulative fitness
flux FDt(t), which is defined as the net selective effect of all allele frequency
changes Dxi(i = 1, . . . , L) within a short time interval Dt (Mustonen and Lässig
2010): FDtðtÞ ¼

PL
i¼1ðDxiÞ@Fðx1ðtÞ;  . . .  ; xLðtÞ;  tÞ=@xi (we use Dt = 20

generations). This flux is intermittent; i.e., the traveling fitness wave has
short-term boosts in its speed. (C) Stochasticity of the fitness flux. The ratio
of variance and mean fitness flux FDt(t) over a population’s history is plotted
as a function of the total mutation rate mNL for selection shape parameters
k = 1

2 (circles), k = 1 (squares), and k = 2 (triangles). For a given total mutation
rate, the stochasticity is highest for k = 1

2 and decreases with increasing k.
However, the stochasticity remains approximately constant for increasing
system size. Other simulation parameters are N = 500 (a and b), N = 1000
(c), L = 500, 2Ng = 0.1, 2Ng = 0.025, k = 1, and 2N!f ¼ 50.

Figure 8 Intermittent fitness waves. The three videos show the distribu-
tion of genotype fitness values in a population, as it changes over time in
a dense-sweep adaptive process. The mean fitness is kept to 0 by nor-
malization. The fitness distribution is strongly stochastic: at any specific
time, its shape is very different from the long-time average shape (plotted
as a dashed line). There are recurrent selective sweeps: a new high-fitness
genotype appears in the right-hand tail of the distribution, gains frequency,
and moves quickly toward the center. Simulations are shown for three
different distributions r(f) of genomic selection coefficients, characterized
by the shape parameter k. (a) k = 0.5 (stretched exponential tail). This case
has the strongest stochasticity in the shape of the fitness wave, because
exceptionally strong sweeps are generated with significant probability. (b)
k = 1 (exponential tail). (c) k = 2 (Gaussian tail). This case shows a smoother
evolution of the fitness wave, which results from average-strength
sweeps generated at a more regular pace. Other simulation parameters
are N = 1000, L = 1000, 2Nm = 0.025, 2Ng = 0.1, and 2Nf

!

¼ 50.
(A) Movie 1: http://www.genetics.org/content/suppl/2011/09/16/genetics.
111.132027.DC1/Movie1.mov
(B) Movie 2: http://www.genetics.org/content/suppl/2011/09/16/genetics.
111.132027.DC1/Movie2.mov
(C) Movie 3: http://www.genetics.org/content/suppl/2011/09/16/genetics.
111.132027.DC1/Movie3.mov
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evolutionary parameters. We define the cumulative fitness

flux FDt(t) as the selective effect of allele frequency changes

over a short time interval Dt (we use Dt = 20 generations),

and we evaluate the ratio e of variance and mean of FDt(t)

over a population’s history (Mustonen and Lässig 2010). In

Figure 7C, we plot this ratio as a function of the genome

length L for fitness effect distributions r(f) of different

shapes, which have a stretched exponential (k = 1
2), an

exponential (k = 1), or a Gaussian (k = 2) tail for large

values of f. Movies of the fitness wave are available for all

three cases; see Figure 8. As expected, we observe a decrease

in stochasticity with increasing shape parameter k. This is

consistent with a crossover to fitness waves with deterministic

bulk shape in the limit of a sharp distribution (k / N).

However, we do not see any evidence of a crossover to de-

terministic fitness waves with increasing genome length L:

the stochasticity ratio e stays roughly constant and the fitness

wave retains strong shape fluctuations even for the largest

values of L. At the same time, our model predictions of the

fixation probability G(s) overestimate the simulation results

at large L, in particular for strongly beneficial driver muta-

tions. This may indicate a crossover to a new mode of adap-

tive evolution: selective sweeps are driven cooperatively by

multiple beneficial mutations, but the adaptive dynamics re-

main intermittent. This regime is not yet covered by any

analytical scheme, but we expect that our interaction calculus

can be extended to more complex multidriver sweeps.

Passenger mutations and the inference of selection

Our model predicts an important consequence of interference

interactions: a substantial fraction of the genomic substitu-

tions observed in laboratory or field data of dense-sweep

processes are not driver mutations, but moderately beneficial

or deleterious passenger mutations fixed by hitchhiking. This

fraction increases with increasing population size N or ge-

nome length L. Disentangling driver and passenger mutations

in the dense-sweep regime poses a challenge for the inference

of selection from such data. This problem arises not only for

asexual populations, but also for linked genome segments of

recombining genomes (Fay 2011). The general rationale of

this article applies to recombining populations as well, if we

replace the total genome length by the linkage correlation

length. Adaptation under linkage confounds the standard

population-genetic inference of selection based on the statis-

tics of polymorphisms and substitutions, because it reduces

the statistical differences between weakly and strongly se-

lected genomic changes. To develop selection inference meth-

ods applicable under strong interference, we have to extend

our picture of the genome state to polymorphism spectra.

This will be the subject of a future study.

Viability limits of evolution under linkage

To summarize, we have shown that interference can

strongly reduce the degree of adaptation of an evolving

population and hence its viability. This result is likely to be

valid beyond the specifics of our model: in any ongoing

adaptive process driven by time-dependent selection, a large

reduction in the speed of adaptation due to interference is

inextricably linked to a large fitness cost compared to

unlinked sites. However, genome states with a large fraction

of effectively randomized sites are not a plausible scenario

for microbial evolution, where a substantial degree of

adaptation is maintained and dysfunctional parts are

expected to be pruned from the genome. This suggests that

natural populations limit genome degradation by interfer-

ence. Microbial experiments and genomic analysis may help

us to better understand how.
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Appendix

Fixation Probability Under Interference Interactions

Here we compute the conditional fixation probability

G(s, t | s9, t9), of a target mutation with selection coeffi-

cient s and origination time t, which is subject to an inter-

fering mutation with selection coefficient s9 and origination

time t9, for the different cases of Figure 2: interference by

deleterious background mutations (t9 , t and s9 , 2|s|,

Figure 2, A and B), beneficial background mutations (t9 , t

and s9 . |s|, Figure 2, C and D), and beneficial future

mutations (t9 . t and s9 . |s|, Figure 2, E and F). We

neglect the effects of interference mutations weaker than

the target mutations (2|s| , s9 , |s|), which is consis-

tent with the hierarchy approximation. We also neglect

the effects of deleterious future mutations, which are

small (if a deleterious mutation arises after the target

mutation, this deleterious mutation cannot prevent fixation

of the target mutation). Without interference, a target

mutation of frequency x0 has a fixation probability

G0ðx0;sÞ ¼ ð12e22Nsx0Þ=ð12e22NsÞ, which is determined

by selection and genetic drift. In contrast, we treat beneficial

interfering mutations as destined for fixation; that is, we

assume they have overcome genetic drift.

Interference by deleterious background mutations

The diagrams in Figure 2, A and B, describe background

selection caused by strongly deleterious alleles originat-

ing before the target mutation. Case a occurs with proba-

bility x9Q(x9, s), where x9 is the frequency of the

interfering mutation at time t and Q(x9, s) is the proba-

bility distribution of this frequency. This case results in

likely loss of the target mutation, because the interfering

mutation has a selection coefficient stronger in magnitude

than the target mutation. Case b occurs with probability

(1 2 x9)Q(x9, s), and its dominant effect is to boost the

initial frequency x0 of the target mutation by a factor 1/(1

2 x9) (see section 1 of File S1 for a numerical validation).

The resulting conditional fixation probability of the target

mutation is

Gðs; tjs9; t9Þ ¼

Z 1

0
dx9Qðx9; sÞð12 x9ÞG0

(

1

Nð12 x9Þ
;  s

)

:

(A1)

Because the interfering mutation is deleterious, its

probability distribution Q(x9; s) is dominated by very small

frequencies x9 > 1. For s $ 0 and x9 > 1, the fixation

probability G0(x0, s) is in good approximation linear in its

first argument. In that case, the factor (1 2 x9) cancels out

and we recover the unlinked fixation probability

Gðs; tjs9; t9Þ ¼ G0ð1=N;sÞ. This argument does not apply

to deleterious target mutations, but they can be neglected

because G0(x0, s) is exponentially small for s , 0, even

including a boost in the initial frequency.

Interference by beneficial background mutations

The diagrams of Figure 2, C and D, describe positive

and negative interference by a selective sweep starting at

time t9 , t. Case d occurs with probability 1 2 x9 and results

in likely loss of the target mutation. Case c occurs with prob-

ability x9 and boosts the initial frequency x0 of the target

mutation by a factor 1/x9 (see Figure S1 in File S1). Treating

the interfering mutation as deterministic, its frequency x9 at

time t is given by x9 ¼ xdetðt2t9;  s9Þ ¼ 1=½1þ ðN21Þ

expð2s9ðt2t9ÞÞ%. Hence, we obtain

Gðs; tjs9; t9Þ ¼

Z 1

0
dx9  dðx92 xdetðt2 t9;s9ÞÞx9G0

(

1

Nx9
;s

)

;

(A2)

where d is Dirac’s delta distribution.

Interference by future beneficial mutations

The diagrams in Figure 2, E and F, describe positive and

negative interference by a selective sweep starting at time

t9 . t. Case e occurs with probability xG0(x, t9 2 t; x0, s)

and results in likely fixation of the target mutation by hitch-

hiking. Here, G0(x, t9 2 t; x0, s)is the probability that a tar-

get mutation of initial frequency x0 at time t has reached

frequency x at time t9 without interference in between. Case

f occurs with probability (1 2 x)G0(x, t9 2 t; x0, s) and

results in likely loss of the target mutation. Hence, we obtain

Gðs; tjs9; t9Þ ¼
R 1
0dx   x  G0ðx; t92 t; x0;sÞ

¼

!

G0ðx0;sÞ=
&

1þ e2ŝðt92tÞ
&

G0ðx0;sÞx
21
0 2 1

''

ðfor s. 0Þ;

x0e
ŝðt92tÞ þ

&

12 eŝðt92tÞ
'

G0ðx0;sÞ ðfor s, 0Þ;

(A3)

see section 2 of File S1 for the evaluation of this integral in

the diffusion approximation. The regularized selection co-

efficient ŝ is a shorthand for the crossover from strong to

weak selection: ŝ≃s for Ns ≳ 1 and ŝ≃ 1=2N for Ns ≲ 1.

Interference by past and future sweeps

First, we compute the conditional fixation probability

G(s, t | s9, t9, s99, t99) of a target mutation subject to inter-

ference by the closest background sweep (with parameters

t9 , t and s9 . s) and the closest future sweep (with

parameters t99 . t and s99 . s). As shown above, the net

positive contributions to this probability arise from partial

hitchhiking with the past sweep and subsequent full hitch-

hiking with the future sweep; see Figure 2, C and E. Com-

bining Equations A2 and A3, we obtain

Gðs; tjs9; t9;s99; t99Þ ¼

Z 1

0
dx9

Z 1

0
dx  dðx92 xdetðt2 t9;s9ÞÞx9xG0

(

x; t992 t;
1

Nx9
;  s

)

:

(A4)

This expression is based on the assumption that the two

sweeps act sequentially and independently; that is, the

target mutation can fix only if it is free of interference or

positively interfered with by both sweeps. Interactions
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between the sweeps themselves are neglected (such as

rescue of the target mutation by a future sweep, following

negative interference by a past sweep). This is in tune with

our self-consistent determination of the sweep rate, which

absorbs the overlap exclusion between driver mutations

[i.e., the condition t99 2 t9 . tfix(s9)] into a reduced uni-

form or “mean-field” rate Vdrive(s) given by Equations 11

and 12. In this approximation, a target mutation of selection

coefficient s is subject to interference by stronger selective

sweeps at a total rate V.ðsÞ ¼
R

N

s
ds9Vdriveðs9Þ: We can now

integrate Equation A4 over past and future sweeps (i.e.,

driver mutations) with an exponential distribution of wait-

ing times t 2 t9 and t99 2 t,

GðsÞ¼

Z t

2N

dt9

Z

N

t

dt99

Z

N

s

ds9

Z

N

s

ds99Vdriveðs9ÞVdriveðs99Þe
2V.ðsÞðt992t9ÞGðs; tjs9; t9;s99; t99Þ:

(A5)

Using Equation A3, the integrations over s99 and t99 can

be treated analytically, and we obtain

GðsÞ ¼
R t
2N

dt9
R

N

jsjds
9Vdrive

&

s9
'

e2V.ðjsjÞðt2t9 Þ
R 1
0dx

9d
&

x9 2 xdet
&

t2 t9 ;s9
''

·

(

x9G0

(

1

Nx9
;s

)

2F1

"

1;  V.ðsÞŝ;  1þ V.ðsÞŝ;  12Nx9G0

(

1

Nx9
;s

)#

ðfor s. 0Þ;

1

Nðjŝjþ V.ðjŝjÞÞ

(

Nx9G0

(

1

Nx9
;  s

)

jŝjþ V.ðjsjÞ

)

ðfor s, 0Þ;

(A6)

where 2F1(a, b, c; z) is a hypergeometric function. The

remaining integrals in this expression can be evaluated nu-

merically in a straightforward way (see section 4 of File S1

for an iterative procedure). Neglecting the (numerically

smaller) integral over past sweeps, we obtain a closed form

of Equation A6,

GðsÞ ¼

8

>

<

>

:

G0

(

1

N
;s

)

2F1

"

1; V.ðsÞŝ;  1þ V.ðsÞŝ;  12NG0

(

1

N
;  s

)#

ðfor s. 0Þ;

1

Nðjŝjþ V.ðjŝjÞÞ

(

NG0

(

1

N
;  s

)

jŝjþ V.ðjsjÞ

)

ðfor s, 0Þ:
(A7)

These results also determine the fixation probability of

passenger mutations in the decomposition of Equation 13,

GpassðsÞ ¼
GðsÞ2 pdriveðsÞG0ðsÞ

12 pdriveðsÞ
; (A8)

where Pdrive(s) is given by Equation 12 and G0ðsÞ ¼

ð12exp½22s%Þ=ð12exp½22Ns%Þ. The neutrality threshold ~s

is obtained by Taylor expansion of Equation A7; we obtain

GðsÞ ¼ ð1=NÞ þ s=½1þ 2NV.ðsÞ% þOðs2Þ. Comparing with

the corresponding expansion of G0(s) shows that linkage

leads to a linear reduction of the strength of selection by

a factor 1 + 2NV.(s) ( 1 + 2NV.(0) compared to unlinked

sites, as expressed in Equations 14 and 15.
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File S4

Supporting Text

1 Approximation for pairwise interaction diagrams

In the two diagrams (b) and (c) of Figure 2, we made the approximation that the advantage for the target
mutation can be expressed as an increase in the initial frequency. In case of diagrams, (b), the factor of
increase is given by 1/(1 − x�), where x� is the frequency of the deleterious background mutation at time
τ , while in diagram (c) the factor of increase is given by 1/x�, where x� is the frequency of the beneficial
driver substitution at time τ . We simulated this situation with a two-locus model in which the beneficial
background allele is introduced with frequency x� and the target mutation with frequency x0 = 0.01 within

the subpopulation carrying the background allele. We then simulate a Wright-Fisher process and measure
the fixation probability of the target mutation.

In Figure S1 we show results of a numerical simulation for the case of diagram (c). The validation for
diagram (b) can then be read by substituting x�

→ 1 − x� in the x-axis. As can be seen, the model is
accurate as long as the increase factor 1/x� is not too large. For values of x� < 0.4, the fixation probability is
overestimated. In case of diagram (b) this condition is almost always fulfilled, as deleterious mutants have
very small frequencies, i.e. 1−x�

� 0.4. In case of diagram (c) the approximation overestimates the fixation
probability if the driver substitution appeared shortly before the target mutation and hence still has small
frequency.

In a previously described model [7] the fixation probability in an expanding subpopulation is computed
explicitly, which yields a result that is comparable to our approach (see their equation 11). Their result is
more accurate than the expression we provide above (expanding the initial frequency in Kimura’s formula).
In our case, modeling the effect of the expansion as an increase in the initial frequency is accurate enough,
in particular since the dominant interference effect is provided by future interfering mutations and not by
background mutations.

The effects of background selection have been subject to a large number of articles. Often, these studies
find that background selection in fact retains a substantial net effect on the fixation probability of a target
mutation [10, 1, 6]. These studies typically assume a mutation-selection balance of many deleterious muta-
tions, with a constant deterministic influx of deleterious mutations. For this case, an argument from Fisher
[3] shows that the fixation probability of a beneficial mutation is reduced (see [1]) by a factor exp(−Ud/σd),
where Ud is the rate and σd is the selection coefficient of deleterious mutations.

In our model, Fisher’s argument does not hold, for two reasons: i) because of the presence of adap-
tive substitutions (selective sweeps), variance in the population is constantly removed, hence a stationary
mutation-selection balance is never maintained; ii) because we consider an exponential distribution of selec-
tion coefficients, the number of deleterious mutations that are stronger in effect than the target mutation,
are typically rare enough to be treated stochastically, as done in our pairwise interaction scheme using the
diagrams of Figure 2.

2 Single site propagator

In the derivation of the fixation probability (see Appendix B, we use the time evolution of the mean allele

frequency M(t, x0,σ) =
� 1

0
dxxG0(x, t, x0,σ) for which we can derive an analytical expression using the
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Figure S1: We plot the fixation probability of a beneficial target mutation (2Nσ = 10) on the background of a
strongly selected mutation (2Nσ

� = 100) initially present with frequency x�. The target mutation has initial frequency
x0 = 0.01%. The black circles are simulation results, the blue dashed line is the expected fixation probability without
background selection, the red line is the theory prediction by G0(x0/x

�,σ). The population size is N = 1000.

diffusion approximation. The Fokker-Planck equation for a single site under drift and selection, using the
selection coefficient σ and the population size N reads:

∂tG =

�

1

2N
∂2
x(x(1− x))− σ∂x(x(1− x))

�

G. (S1)

To derive M(t, x0,σ), we multiply equation (S1) with x and integrate by parts, neglecting boundary terms:

∂t

� 1

0

dxxG = σ

� 1

0

dxx(1− x)G (S2)

or

∂tM = σ(M −

� 1

0

dxx2G). (S3)

We introduce M2 = σ(
� 1

0
dxx2G−M2) to write

∂tM = σM(1−M)−M2. (S4)

We identify two limits of the solution of this equation. First, for t = 0, the variance term M2 must vanish
and we see that M evolves logistically with initial value x0. Secondly, if µN � 1, for times larger than the
fixation time τ(σ) = (2 lnσ)/σ (see chapter Fixation Time), G becomes stationary and will consist of two
delta peaks at 0 and 1 with weights reflecting the fixation probability G0:

G(x, t, x0,σ)
t>τ(σ)
−−−−→ (1−G0)δ(x) +G0δ(1− x), (S5)

and

M2
t>τ(σ)
−−−−→ G0(1−G0). (S6)

For the stationary mean allele frequency we get

∂tMstat = 0 ⇒ Mstat = G0. (S7)

Motivated by the form of S4 and the known limit S7, we can try a logistic ansatz for beneficial and an
exponential for deleterious mutations:

M+(t, x0,σ) =
G0(x0,σ)

1 + e−σ̂t(G0(x0,σ)x
−1
0 − 1)

(S8)
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Figure S2: This plot shows the mean frequency of a beneficial (a) and deleterious (b) mutation as a function
of time, measured in generations. Black circles are data obtained from simulations, red solid lines are the theory
predictions of equation S8 and S9. Simulation data has been obtained from many trajectories started with different
random seeds. Error bars indicate the standard error of the mean. Parameters: N = 1000, 2Nσ = 10, x0 = 10/N .

and
M−(t, x0,σ) = x0e

−σ̂t + (1− e−σ̂t)G0(x0,−σ) (S9)

with the standard fixation probability

G0(x0,σ) =
1− e−2Nσx0

1− e−2Nσ
(S10)

and the regularized selection coefficient σ̂ that has the two limits σ̂ = 1/2N for Nσ � 1 and σ̂ = σ for
Nσ � 1. The exact form of this crossover is not important. Here we choose

σ̂ =

�

1/2N for Nσ ≤ 1

σ for Nσ > 1
(S11)

The predictions from equations S8 and S9 agree with simulations, as shown in Figure S2.

3 Fixation Times

The deterministic equation for the frequency of a mutation under selection σ is

x(t) =
1

1 + exp(−σ�(τ − τ �))(x−1
0 − 1)

(S12)
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Since evolution is always stochastic at the boundaries, we define the fixation time as the time it takes to
reach a frequency 1− 1/(2Nσ), starting from a frequency x0 = 1/(2Nσ). This leads to

τfix(σ) =
2 log(2Nσ)

σ
. (S13)

For small values of σ, the dynamics is not anymore deterministic and the above expression becomes wrong
as can be seen by the limit value for neutral alleles, where we require τfix = 2N . For values of 2Nσ < 3, we
simply set

τfix(σ) = 2N 2Nσ < 3. (S14)

We typically consider average selection coefficients of 2Nf̄ � 1, and the average driver mutation has even
larger selection coefficients. The exact setting of the above threshold is therefore not important.

4 Iterative Solution

As discussed in the main text, the following set of equations has to be solved:

pdrive(σ) = exp(−τfix(σ)V>(σ)), (S15)

Vdrive(σ) = U(σ)G(σ)pdrive(σ), (S16)

V>(σ) =

� ∞

σ

dσ� Vdrive(σ
�), (S17)

U(σ) = LNµλd(σ)ρ(σ), (S18)

λd(f) =
G(−f) + γ/(µN)

G(f) +G(−f) + 2γ/(µN)
, (S19)

G(σ) =

� τ

−∞

dτ �
� ∞

σ

dσ� Vdrive(σ
�)e−V>(σ)(τ−τ �)

� 1

0

dx� δ(x� − xdet(τ − τ �;σ�))

× x�G0

�

1

Nx�
,σ

�

2F1

�

1,
V>(σ)

σ
, 1 +

V>(σ)

σ
; 1−Nx�G0

�

1

Nx�
,σ

��

, σ > 0

(S20)

and

G(σ) =

� τ

−∞

dτ �
� ∞

|σ|

dσ� Vdrive(σ
�)e−V>(|σ|)(τ−τ �)

� 1

0

dx� δ(x� − xdet(τ − τ �;σ�))

×
1

N(|σ|+ V>(|σ|))

�

Nx�G0

�

1

Nx�
,σ

�

|σ|+ V>(|σ|)

�

, σ < 0,

(S21)

where 2F1(a, b, c; z) is a hypergeometric function.
The selfconsistent solution G(σ) of equations S16, S18, S19, S17, S20 and S21 is found by the following

numerical procedure: We initialize the iteration by setting Vdrive(σ) ≡ 0. We then iterate the following steps:

1. Use equation S17 to compute the cumulative rate of drivers V>(σ).

2. Use V>(σ) to compute the fixation probabilities G(±σ) from equations S20 and S21.

3. Use G(±σ) to compute the stationary state λd(f) from equation S19 and hence the mutation rate U(σ)
and the driver rate Vdrive(σ) from equations S18 and S16.

Steps 1. and 2. involve standard numerical integration methods, such as the function NIntegrate in Wol-
fram Research’s Mathematica. To speed up the iterations, we evaluated all of the involved functions at 40
equidistant discrete values of σ between 0 and σmax = 10f̄ and linear interpolations between the evaluated
points. We used 10 iterations and observe a quick convergence after six iterations of the above algorithm.
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5 Comparison with Gerrish-Lenski theory

Gerrish and Lenski (GL) [4] computed the fixation probability of a beneficial mutation in a manner similar
to how we compute the rate of driver mutations. In GL-theory, the fixation probability is

GGL(σ) = U(σ)G0(σ)e
− 1

2
τ(σ)

�
∞

σ
U(σ)G0(σ). (S22)

The factor 1/2 in the exponent follows from counting only those stronger mutations that appear on the
background not carrying the target mutation. Only these mutations decrease the fixation probability of the
target mutation. Equation S22 is analogous to equation S16, in which we require that a driver mutation
is not interfered with by any stronger driver mutation. There are, however, two important differences: i)
Equation S16 has no factor 1/2, since we exclude from the driver rate those mutations that fix by positive
interference (hitchhiking). In contrast, in GL-theory, the only mode of fixation are driver mutations that
are not suffering negative interference. ii) Equation S16 reflects a self-consistent closure, in which each
interfering driver must itself be free from even stronger interfering drivers. Therefore, apart from the factor
1/2, equation S22 can be seen as a first iteration loop of the rate of driver mutations. Taking into account
hitchhiking as a positive outcome of interference dramatically enhances the fixation probability of weakly
beneficial mutations and in particular allows us to compute the influence on deleterious alleles, a case which
is not covered by GL-theory.

Our genomic model yields beneficial mutation rates and their distribution as an outcome, while GL-theory
takes distribution and rate of beneficial mutations as an input. In GL-theory all stronger driver mutations
in the exponent of equation S22 are assumed to be free of interference. In our model this corresponds to
assuming the unlinked rate of beneficial mutations, using results from single site theory, to be

U0(σ) = λ0,d(f)ρ(f) (S23)

and

λ0,d(f) =
G0(−f) + γ/(µN)

G0(f) +G0(−f) + 2γ/(µN)
. (S24)

A comparison with GL-theory is shown in Figures 3a, 3c and S3b as a brown curve.

6 Computer simulations

We simulate the Wright Fisher model with N individuals (N fixed throughout). Each individual consists of
a sequence of L alleles, denoted by bits aij = {1, 0} with i = 1 . . . N and j = 1 . . . L. At every generation,
alleles at any individual can mutate from 1 to 0 and vice versa with probability µ. The fitness Fi of individual
i is obtained by a sequence of additive selection coefficients fj multiplied by the time-dependent direction of
selection ηj(t) = {−1, 1}:

Fi =

L
�

j=1

aijηj(t)fj . (S25)

The local selection coefficients fj ≥ 0 are kept constant throughout evolution and fixed at values:

fj =
f̄

Γ(1 + 1/κ)

�

− log

�

1−
j − 1

L

��1/κ

(S26)

The numbers fj reflect an ordered set of random variates from the Weibull distribution (as suggested in [9]):

ρ(f) =
κ

ζ

�

f

ζ

�κ−1

e−(f/ζ)κ (S27)

with ζ = f̄/Γ(1+1/κ) such that the mean of this distribution is f̄ . For κ = 1 this distribution is exponential.
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The direction of selection ηj(t) is a stochastic random variable that flips its sign on average every 1/γ
generations with the autocorrelation

�ηj(t)ηk(t
�) = e−γ|t−t�|δjk. (S28)

A flip of direction affects the fitnesses of all individuals in the population. Each generation is stochastically
sampled from the previous generation, using a multinomial sampling process, in which the probability pi of
picking individual i is given by:

pi = eFi−�F �, (S29)

with the mean fitness

�F � =
1

N

N
�

i=1

Fi. (S30)

A substitution is observed if a site that was monomorphic at some allele becomes polymorphic and then fixed
at the other allele. Each substitution can be categorized as “beneficial”, if the new allele is the currently
fitter, or “deleterious” if it is the currently less fit of the two alleles. We also keep track of the fixation state:
Over a sufficiently large number of generations, we can compute λj of site j as the fraction of time at which
the frequency of the currently fitter allele was below 0.5. Since we generally consider low local mutation
rates µN � 1, this fraction yields approximately the fraction of time the population was fixed at the locally
less fit allele. At every site, the origination rate of new beneficial mutations can be computed as µλ and
of new deleterious mutations as µ(1 − λ). Fixation probabilities can be computed by dividing the rate of
beneficial/deleterious substitutions by the rate of beneficial/deleterious originations.

For the stationary adaptation simulations, we initialize the program with a monomorphic population
where all alleles are 0. In each run of the simulation, we let the population equilibrate for min(1/µ, 1/γ)
generations before initiating any measurement to ensure that the population is in the stationary state.

In case of the approach to equilibrium, we first run the above protocol for stationary adaptation (for
some parameter γ as given in the particular presentation of the results) for sufficiently long time to ensure
stationarity. Then we set the flip rate γ = 0 and start obtaining measurements as described above. All
results are now time-dependent. To obtain averages, we therefore have to repeat this program many times
and average over the full ensemble of simulations for each time point.

The theoretical derivations for our model suggest some simple scaling laws. As can be seen, the population
size N and the genome length L are only relevant in the parameter combinations NµL, NγL and Nf̄ . As
long as we keep these parameter combinations fixed, we can use smaller values for N and L to speed up the
simulations. This scaling holds up to the following conditions: i) µL � 1 to avoid two mutations in the
same individual in the same generation, ii) µN � 1 so that sites follow substitution dynamics with short
polymorphic times and iii) Nγ � 1 so that the time between selection flips is larger than the time needed
for a fixation. These conditions can always be fulfilled for given parameters NµL, NγL and Nf̄ .

7 Supplementary Results

7.1 Mutation and Fixation rate

As seen in equation S18, the rate of beneficial and deleterious mutations in our model depends on the
dynamics. In Figure S3a) we plot the rate of mutations compared to the expectation without interference
from linkage. The rate of beneficial mutations is enhanced, while the rate of deleterious mutations is decreased
in comparison to single site theory. This increase is reflecting the fact that the population under linkage
is less adapted to its environment and many sites in the genome are not fixed at the locally fitter allele.
Hence mutations at these maladapted sites emit more beneficial mutations. It turns out that for beneficial
mutations, σ > 0, the distribution U(σ) is exponential. In Figure S3b) we show the rate of fixations, which
is a product of the mutation rate and the fixation probability. The comparison with GL-theory emphasizes
the point made in section 5: the rate of weakly beneficial fixations is underestimated due to neglecting
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hitchhiking. Figure S3c) shows the theory prediction of the substitution rate (see S3b) together with its
partitioning in passengers (gray shading) and drivers (green shading).

7.2 Positive and negative fitness flux

Since in our model we explicitly include the dynamics of deleterious mutations, we can disentangle the fitness
flux into a positive fitness flux, constituted by the beneficial mutations, and a negative part, caused by the
fixation of deleterious mutations:

Φ(f) = Φ+(f)− Φ−(f) = fV (f)− fV (−f). (S31)

In figure S4 we show this decomposition. As can be seen, the two terms of the fitness flux have their main
contributions coming from different parts of the spectrum of selection coefficients: While the positive flux
is mainly carried by strongly beneficial mutations, the negative flux consists of weaker deleterious fixations.
In total, the positive flux is always much larger than the negative one, but the decomposition reveals an
interesting pattern: Remarkably, even very strongly selected genomic sites provide a significant contribution
to the negative flux, reflecting ubiquitous (strongly) deleterious passenger mutations.

7.3 Relation to mutation based models

The self-consistency of genomic state and mutations is one feature that distinguishes our model from most
previous studies of adaptation under linkage [4, 12, 2, 8]. These mutation-based models constrain the
distribution of selection coefficients for beneficial mutations, u(σ) = (1/Ub)U(σ), to a fixed shape and use
the total rate of beneficial mutations, Ub, and their mean effect, σb =

�∞

0
σu(σ)dσ, as independent input

parameters. This is a suitable setup to evaluate the speed of adaptation at stationarity, because Φ depends
in good approximation only on the distribution of beneficial mutations (see Figure S5a). However, mutation-
based approaches of this type cannot predict genomic quantities such as the average degree of adaptation, α,
which arguably is the most appropriate measure of the efficiency of the adaptive process over long periods
of time. Even at stationarity, the average degree of adaptation is not uniquely determined by Ub and σb,
but depends on all three genomic parameters f̄ , γ, and L in a nontrivial way (see Figure S5b). In our
model, the rates U(σ) of beneficial mutations (and, hence, Ub and σb) are dependent quantities, which must
be derived from the self-consistent solution of the genome dynamics described in the main text. Changing
any of the genomic parameters, say L, will change Ub and σb, so that these parameters are not suitable as
input if we want to evaluate the dependence of the model on L. Similarly, Ub and σb change with time in a
non-stationary adaptive process.

7.4 Epistasis

In the model presented in the manuscript, we use a strictly additive fitness model without any epistatic
interactions between genomic sites. To check how epistasis affects our results, we employ a simple extension
to our model that explicitly realizes pairwise epistatic interactions. This extension is done in the spirit of
the study presented in reference [5]. In addition to the strictly additive contribution to an individuals fitness
S25, we add another term for the pairwise interactions:

Fi =

L
�

j=1

aijηj(t)fj + e
�

j<k

(2aij − 1)(2aik − 1)fjk, (S32)

with the matrix fjk describing the pairwise epistatic interactions between sites. In the simplest case realized
here, we use normal distributed random numbers with mean 0 and standard deviation 1, fixed throughout
evolution. The impact of the epistatic interactions can be estimated by comparing the magnitude of the
additive fitness effects with the magnitude of the epistatic effects. As can be seen from equation S32, the
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Figure S3: a) rate of mutations, b) rate of substitutions, c) theory prediction of substitutions with partitioning
into passengers (gray) and drivers (green). Black circles: Simulation data, blue line: single site theory, red line:
self-consistent theory, brown line: GL-theory. Parameters are N = 2000, L = 1000, 2Nγ = 0.1, 2Nµ = 0.025,
2Nf̄ = 50.
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with a ten-fold amplification to give a more direct comparison. Black circles: Simulation data ( N = 2000, L = 1000,
2Nγ = 0.1, 2Nµ = 0.025, 2Nf̄ = 50).

epistatic term scales as L2 (double sum), whereas the additive term scales as L. We therefore have

e ∼
f̄

L
(S33)

as the typical crossover at which epistatic interactions dominate the additive fitness.
Figure S6 shows the degree of adaptation as a function of the site selection coefficient f , for both the

strictly additive model (blue curve) and the epistatic model at the crossover, i.e. e = f̄/L. Clearly, although
the epistatic contribution to the fitness function is of the same magnitude as the additive part, the degree of
adaptation is very robust under epistasis. Figure S7 shows the total degree of adaptation for varying values
of the scaled epistasis parameter ê = e(L − 1)/f̄ . The predicted crossover is given by ê = 1. In summary,
epistasis does not quantitatively change our model and results, as long the epistatic interactions are of the
same magnitude as the additive component of the fitness.

7.5 Mutation rate during approach to equilibrium

In the main text we show the degree of adaptation during an approach to equilibrium. Here we show
additionally how the mutation rate itself depends on time in such a scenario. Figure S8 shows the distribution
of fitness effects of new mutations at three different time points. Initially, the population is poorly adapted,
so there are many beneficial mutations available. As the population approaches equilibrium, more mutations
become deleterious, as seen in the plot. We use the same simulation protocol as described in the main
text: the initial population has been evolved in stationarity with 2Nγ = 0.1. To observe the approach to
equilibrium, we set γ = 0.

7.6 Non-exponential distributions of selection coefficients

In addition to the exponential distribution results shown in the main text, we present two additional cases:
For κ = 1/2 the tail of the distribution is a stretched exponential with broadly distributed selection coef-
ficients. For κ = 2 we recover a gaussian tail and hence more sharply distributed selection coefficients. In
Figure S9 we show simulation results with theory predictions for the three distribution shapes κ = 1/2, 1, 2.
While the case κ = 1 is predicted most accurately by our theory, our prediction slightly deviates from the
simulations using the two non-exponential distributions.
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Figure S5: This plot shows a) the scaled fitness flux 4N2
Φ and b) the degree of adaptation α as a function of σb at
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