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Artificial Intelligence Laboratory, Unï ersity of Michigan, Ann Arbor, MI 48109-2110

WILLIAM P. BIRMINGHAM wpb@umich.edu
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Ž .Abstract. The University of Michigan Digital Library UMDL is designed as an open system that
allows third parties to build and integrate their own profit-seeking agents into the marketplace of
information goods and services. The profit-seeking behavior of agents, however, risks inefficient
allocation of goods and services, as agents take strategic stances that might backfire. While it would be
good if we could impose mechanisms to remove incentives for strategic reasoning, this is not possible in
the UMDL. Therefore, our approach has instead been to study whether encouraging the other extreme
}making strategic reasoning ubiquitous}provides an answer.

Ž .Toward this end, we have designed a strategy called the p-strategy that uses a stochastic model of
the market to find the best offer price. We have then examined the collective behavior of p-strategy
agents in the UMDL auction. Our experiments show that strategic thinking is not always beneficial and
that the advantage of being strategic decreases with the arrival of equally strategic agents. Furthermore,
a simpler strategy can be as effective when enough other agents use the p-strategy. Consequently, we
expect the UMDL is likely to evolve to a point where some agents use simpler strategies and some use
the p-strategy.
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1. Introduction

Mechanism design and individual-agent design are two primary design issues when
building an open multi-agent system consisting of self-interested agents. System
designers devise a mechanism that defines who can communicate with whom and

Žwhat message types are allowed. Then, agent designers who do not necessarily
.share common goals with system designers develop self-interested agents to

achieve their individual goals under the given mechanism.
Of course, these two design issues are interdependent; a well-designed mecha-

Ž .nism can simplify the design of individual agents and vice versa . Over a quarter of
Ža century ago, for example, Vickrey devised an auction mechanism now sometimes
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.called the Vickrey auction where the best bid would win the auction and the
payment to or by its maker would be the amount of the best losing bid. As he

w xanalyzed 24 , the Vickrey auction mechanism makes rational agents bid their true
reservation prices, such that even self-interested agents, if they are rational, will
behave honestly and not try in vain to outsmart other agents. Therefore, the
Vickrey auction mechanism trivializes the design of each individual agent’s deci-
sion making.2

However, designing a good mechanism that exhibits certain properties}which is
called incentive engineering}is difficult, especially for dynamic systems where the
participants and their interactions evolve over time. The example of such dynamic
systems that we use throughout this paper is the University of Michigan Digital

Ž .Library UMDL . In UMDL, we aim to provide an infrastructure for rendering
w xlibrary services in a networked information environment 4 . The UMDL is de-

Žsigned as a multi-agent system, where agents representing users, collections, and
.services of the digital library sell and buy information goods and services through

auctions. While supporting flexibility and scalability, the open multi-agent architec-
Žture and market infrastructure create dynamics agents participating in an auction

.change, matches between buyers and sellers vary, and auctions themselves evolve ,
which adds additional complexity to mechanism design.

As system architects, we strive for an efficient system. Although the UMDL
market allows the self-interested agents to seek profits, we do not want strategic

Ž .agents to undermine the overall system performance efficiency in market , nor
Ž .such agents to reap excessive profits from other agents efficiency in allocation .

That is, we want an incentive-compatible mechanism that makes strategic reason-
w xing unnecessary 27 . Unfortunately, we do not have such a mechanism yet for the

UMDL system; we fully expect strategic agents who try to take advantage of other
agents to enter the system. Note that the potential of having strategic agents is not
limited to the UMDL auction. Most open multi-agent systems expect strategic
behavior by the agents, who try to maximize their utilities given the current
mechanism.

Ž .So, does this mean the UMDL will become inefficient? Will and should a
UMDL agent spend much of its computational power trying to outsmart other
agents? What happens if all the agents behave strategically? In this paper, we
answer these questions, by studying the properties of the UMDL with strategic
agents. Developing a mechanism that prevents strategic thinking is a hard problem,
so instead we use a bottom-up approach. We design a strategy that the UMDL
agents may use, and experiment with such strategic agents to learn about the
system properties. In particular, we are interested in knowing whether making

Ž .strategic reasoning ubiquitous instead of preventing it reduces its negative effects.
In this paper, we briefly examine the target system, the UMDL service market

society. We describe an agent bidding strategy called the p-strategy and demon-
strate its advantages over other simpler strategies in the context of the UMDL
auction. Then, by experimenting with multiple p-strategy agents, we investigate
some emergent properties of the UMDL auction. Finally, we review some of the
previous work on multi-agent system design issues and conclude our paper.
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2. The UMDL service market society

The UMDL provides digital library services in a distributed information environ-
ment. Given the magnitude of the number of contents and services available, the
rate of change in what is available, the size of a user population, and the evolving
nature of that population, a digital library faces a great challenge in its administra-
tion efforts. One possible approach is to move as much of the administration into
the infrastructure as possible. The infrastructure should encourage the following

w xthings 5 .

v Flexibility: It should be able to embody a wide variety of policies to realize
Ž .different types of libraries e.g., public, corporate, university, personal, etc. .

v Extensibility: Providers and consumers of information goods and services should
have incentives to join the library and should be capable of finding their
counterparts.

v Scalability: As the number of users, goods, and services grows, the underlying,
computerized administration of the library should not bog down.

Toward this end, the UMDL is structured as a collection of agents that buy and
sell services from each other using an auction infrastructure. We refer to this

Ž .infrastructure as the Service Market Society SMS . Instead of relying solely on
internally-designed agents, the UMDL can attract outside agents to provide new
services, which are motivated by the profit they might accrue by participating in the
system. Since the UMDL is open, all agents are treated as self interested.

We distinguish three broad classes of agents populating the UMDL: User
Ž . Ž .Interface Agents UIAs , Collection Interface Agents CIAs , and Mediator Agents.

Users, or library patrons, have individual UIAs, which interact with the UMDL on
their behalf to acquire library services. CIAs, representing the publishers and other
owners of these collections, provide access and search services for the library
collections. Various middlemen, or Mediator Agents, perform a variety of services
that end-users or other agents desire. An example is Query Planning Agents
Ž .QPAs , which act as middlemen, accepting queries from UIAs and returning the
list of CIAs related to the queries. Another type of mediator agent is the Service

Ž .Classifier Agent SCA , which provides ontology services.
Figure 1 shows a simple agent-interaction scenario in the UMDL Service Market

Ž .Society SMS . In this scenario, users want to find sources of information for
Ž .various topics e.g., history, science, or mathematics and various audience levels

Ž .e.g., middle school, high school, or professional . Initially, the user sends a query
to the UIA. The UIA must then find an agent that can service this query. The SCA
recommends the most appropriate services out of those that are currently available

Ž .using its base ontology Step 1 . Once the UIA has acquired the appropriate
service-label from the SCA for the service it is looking for, it needs to locate the

Ž .sellers of that service QPAs in this example . The UIA sends the desired
Ž .service-label to the Auction Manager Agent AMA , which returns a list of

Ž .auctions that sell the appropriate query planning services Step 2 . Then, the UIA
Ž .sends buy offers to a particular Auction Agent Step 3 . The Auction Agent collects
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Figure 1. Agent interaction in the UMDL Service Market Society. Steps 1 and 2 are the finding phase,
where agents find the auction to participate in. Step 3 is the negotiation phase, where agents settle on
the price of the query service they are buying or selling. Steps 4 and 5 are the query phase, where the
actual query is forwarded and the documents are returned. This paper focuses on the negotiation phase
of Step 3.

offers from the participating agents and determines matches consistent with those
offers. Once a match is found, the UIA will send its query to the matching QPA
Ž .Step 4 . The QPA returns the list of appropriate CIAs, and the UIA then forwards

Ž .its query to them Step 5 . The CIAs can translate UMDL queries to a variety of
Ž .protocols e.g., http, Z39.50, FTP, etc. and return the appropriate documents.

Each activity in Figure 1 addresses different research issues, such as how to
describe what agents buy or sell, when and how to create an auction, how to locate
the right auction to participate in, and so on. Since the focus of this paper is on
multi-agent auctions, we assume that agents have found the right auction and are
ready to buy and sell in an auction, while ignoring other issues.

Selling and buying of services are done through auctions, operated by Auction
Agents. Figure 2 shows an example of a UMDL auction, where User Interface

Ž . Ž .Agents UIAs want to find sources of information for some topic say, science on
Ž .behalf of certain kinds of users say, high school , and some Query Planning

Figure 2. The UMDL double auction for ‘‘QPA-service high-school science.’’ In this auction, there
Ž . Ž .are n sellers QPAs and m buyers UIAs . Additional buyers and sellers may join, and the existing

Ž .buyers and sellers may leave the auction at any time i.e., entry-and-exit is allowed .
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Ž .Agents QPAs sell the services for finding such collections. In this auction, there
Ž . Ž .are n sellers QPAs and m buyers UIAs . Additional buyers and sellers may join,

and the existing buyers and sellers may leave the auction at any time.
Ž .The UMDL auction is a continuously-clearing double auction CDA . Compared

to more familiar one-sided auctions, the UMDL is a double auction where both
buyers and sellers post their buy prices and sell prices, respectively. It is a
continuously-clearing auction, as every bid could trigger a potential clear, depend-
ing on whether it matches an existing bid. In the UMDL, the Auction Agent
continuously matches the highest buyer to the lowest seller, given that the buy
price is greater than the sell price. The clearing price is based on the seller’s offer

Ž . 3price i.e., buyers receive the entire surplus . The CDA supports dynamic pricing,
and is well suited for frequent, timely transactions needed in information
economies, such as document-delivery services provided by the UMDL.

An incoming offer that cannot be matched with the existing offers becomes a
Ž . Ž .new standing offer. Since buyers sellers with bid prices higher lower than any

Ž . Žstanding sell buy offer get matched, the buyers’ standing offers in the auction if
. Ž .any always have lower offer prices than the sellers’ standing offers if any . That is,

Ž .standing offers ordered by lowest to highest bid are always in a bbb . . . bsss . . . s
sequence, as shown in Figure 3.

3. P-strategy: An agent bidding strategy based on stochastic modeling

In the previous section, we have examined how the UMDL auction works. In this
Žsection, we describe an agent bidding strategy based on stochastic modeling called

.the p-strategy .
The four-step p-strategy is as follows. First, a p-strategy agent models the auction

Ž . Ž .process using a Markov chain MC with two absorbing states success and failure .
Second, it computes the transition probabilities between the MC states. Third, it
computes the probabilities and the payoffs of success and failure. Finally, it finds
the best offer price to maximize its expected utility.

In this section, we describe how to build the MC model for the UMDL auction,
while skipping the details of how to define the exact transition probabilities

Ž .between the MC states step 2 , how to compute the probabilities and the payoffs
Ž . Ž .of success and failure step 3 , and how to find the best payment step 4 . More

w xdetails can be found in one of our papers 15 .

Ž . Ž .Figure 3. Standing offers in the auction. At first, one buy offer b1 and one sell offer s1 are standing
Ž .at the auction. When a sell offer s2 with a higher price than the current highest standing buy offer

Ž .arrives, it becomes a new standing offer. When a buy offer b2 that is higher than the current lowest
Ž .standing sell offer s1 comes, the auction agent matches those two offers.
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The main idea behind the p-strategy is to capture the factors that influence the
expected utility in the MC model of the auction process. For instance, a seller is
likely to raise its offer price when there are many buyers, or when it expects more
buyers to come. The MC model takes those factors into account in the MC states
and the transition probabilities. The number of buyers and sellers standing at the
auction, the arrival rates of future buyers and sellers, and the distribution of buy
and sell prices are among the factors modeled in the MC model.

Note that, in the UMDL auction where the clearing price is determined at the
seller’s offer price, sellers have somewhat stronger incentives to bid above cost, as
they always set the market price and this affects their tradeoff between the

w xprobability of trading and the profit earned 11, p. 288 . Therefore, we use the
p-strategy seller when explaining the MC model of the auction process. Of course,
buyers have incentives, although somewhat weaker, to behave strategically as well
Ž .i.e., to bid below valuation , and the p-strategy buyer’s MC model can be
constructed in a similar fashion.

Ž U .Each state in the MC model represents the status of the auction. The bbss
state, for example, represents the case where there are two standing buy offers and
two standing sell offers and the sell offer of the p-strategy seller doing the

Ž U .reasoning represented as s is higher than the other seller’s offer. If we assume
that offers arrive at most one at a time, the auction can go to any of the following

Ž U . Ž .states from the bbss state see Figure 4 :

v
UŽ .bbss : No offer arrives during the clearing interval.

v
UŽ .bbs : A buy offer arrives, and it is matched with the lowest seller.

v
UŽ .bbbss : Because of no match, a new buy offer becomes a standing offer.

v
UŽ .bss : A sell offer arrives, and it is matched with the highest buyer.

v
UŽ .bbss s : Because of no match, a new sell offer becomes the highest standing

offer.
v

UŽ .bbsss : A new sell offer becomes a standing offer, but the p-strategy seller’s
offer is still the highest.

Ž U .Figure 4. Transitions from the bbss state. Each transition represents the clearing of the auction and
the arrival of a new buy of sell offer, if any.
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Figure 5 depicts the MC model for the UMDL auction with a maximum number
of standing buy and sell offers of five each. That is, to manage the size of the
auction, we limit the number of buy and sell offers standing in the auction not to

Ž . Ž .exceed five each. When an additional buyer seller arrives, the buyer seller with
Ž .the lowest highest offer will be kicked out of the auction first.

The number of MC states increases with the size of the auction. When the
maximum number of standing offers is limited to m buyers and n sellers, the

Ž . ŽŽ . .number of MC states is m q 1 = n q 1 n r2 q 2. Of course, one may shrink
the size of the MC model, while sacrificing the accuracy of the model. For example,
the p-strategy seller may consider the states with more than a certain number of
sellers with the offer prices lower than its offer price as a failure. To have a chance
of getting matched, the p-strategy seller should wait until all the sellers with lower

Ž .offer prices are matched which may take a long time , so considering those states
as a failure is a good approximation in practice.

Using the MC model and its transition probabilities, the p-strategy agent is able
to capture various factors that influence the utility value and tradeoffs associated
with those factors. Figure 6 shows an example of tradeoffs between the number of
standing buyers and sellers when deciding on the best offer price. In general, the

Žseller raises its best offer price when there are more standing buyers to increase
. Žthe profit of a possible match . When the number of standing sellers is five at the

.right end of the graph , however, the p-strategy seller bids a lower price when there
is one buyer than when there is no buyer. That is, the p-strategy seller lowers its

Žoffer to increase the probability of a match instead of increasing the profit of a
.match . Offering a higher price in this case would have served to price it out of the

auction when it might otherwise have been able to trade profitably.
Intuitively, agents with complete models of other agents will always do better in

the auction, but without repeated encounters complete models are unattainable. In
the UMDL, an agent in its lifetime meets many different agents, and as a result its
model of other agents is incomplete. Instead of modeling individual agents,
therefore, the p-strategy uses a model of the auction process.

4. Advantages of the p-strategy

The p-strategy models the auction process stochastically and thus ignores the fact
that the other agents in the auction may also behave strategically. This might
sound like a bad engineering decision, especially for the UMDL auction where
agents do try to outsmart other agents.

In this section, we demonstrate that the p-strategy works well in the dynamic
Ž .UMDL auction, by comparing the profit of the p-strategy seller p-seller with

three different types of sellers. They are:

v Ž .A seller who bids its cost plus some fixed markup FM-seller ,
v

4Ž .A seller who bids its cost plus some random markup ZI-seller , and
v

5Ž .A seller who bids the clearing price of the next transaction CP-seller .
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Figure 6. Tradeoffs between the number of buyers and sellers standing at the auction. The best offer
price is determined based on the tradeoffs between the probability of a match and the profit of a match.

4.1. Experimental setting

The experimental settings are as follows.

v Auction

The auction clears every three seconds. The value of the clearing interval does
not affect the results from our experiments, provided that on average at most one
offer arrives at the auction each interval. When more than one offer arrives at an
auction, they are saved in a queue and retrieved by the Auction Agent one by one.

v Buyers

A single agent simulates multiple buyers by submitting multiple bids. In our
experiments, every six seconds the buyer submits its bid with a probability of 0.8.
By adjusting the offer interval and the offer rate of the single buyer, we can change
the arrival rate of buy offers to the auction.6 The buyer offers valuations that are
drawn randomly from a uniform distribution between 10 and 30.

v Sellers

For each experiment, we compare the profits of two sellers: p-seller and the
Ž .opponent either FM-seller, ZI-seller, or CP-seller . Both sellers submit their bids

every 24 seconds on average. In addition, similar to the buyer case, a single agent
simulates all the other sellers at the auction. Its offer interval and offer rate are set
at 12 and 0.8, respectively.

The costs of all the sellers are based on their loads, which are computed from
Žthe message traffic and the current workload. That is, cost s a = number of

. Ž .messages per minute q b = number of matches per minute . The cost function
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Figure 7. Comparison of the profits of the sellers.

represents economies of scale. As we expect the workload from matches to be
higher than that from communication in most cases, we set a to one, and b to five
for our experiments.

4.2. Experimental results

In the first set of experiments, we have compared the profits of the p-seller and the
FM-seller. When competing with FM-sellers with various markups, the p-seller
always gets a higher profit. This is not surprising, since the p-seller is able to use

Ž .extra information about the auction. Figure 7 a shows the accumulated profits of
Žthe p-seller and the FM-seller who bids its cost plus seven as its offer i.e.,

.fixed-markup s 7 . The best markup will vary depending on the auction situations,
but seven is the best markup for this particular auction setting.

Ž .Figure 7 b shows the profits of the p-seller and the ZI-seller. The ZI-seller
works poorly against the p-seller, which indicates the randomization strategy does
not work. The ZI-seller can be thought of as a naive strategy that fails to take

w xadvantage of potential profit margin 8 .
In the final experiment, we have compared the p-seller with the CP-seller. The

CP-seller receives a price quote from the auction}the clearing price were the
auction to clear at the time of the quote}and submits it as its offer as long as it is
higher than its cost.7 Note that the clearing price is hypothetical, since it changes

Ž .when new offer s arrive during the time between the clearing-price quote and the
CP-seller’s offer.

Ž .As shown in Figure 7 c , the p-seller usually gets a higher profit when competing
Žwith the CP-seller. Since the CP-seller gets more matches than the p-seller but its

.profit per match is smaller on average, however, the CP-seller works better when
Ž .getting more matches does not increase its cost much e.g., when b is zero .

Bidding the next clearing price seems like a good heuristic, especially when
Žclearing prices do not change much i.e., the hypothetical clearing-price quote is

.more likely to be the actual clearing price .
The p-strategy works well in the UMDL auction due to its dynamics. No agent

can have a complete, deterministic view about the current and future status of the
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Figure 8. Experimental setting.

auction, and naturally, an agent strategy should be able to take into account the
dynamics and the resulting uncertainties. In our experiments, the p-strategy that
models the auction process stochastically receives higher profit than the other
strategies. In particular, the p-strategy seller works well when the auction is
dynamic and the negotiation zone between the buyer and the seller is wide.

5. Collective behavior of p-strategy agents in the UMDL auction

ŽGiven that the p-strategy is effective in the UMDL auction from the previous
.section , nothing prohibits any self-interested agent from adopting the p-strategy.

We expect many p-strategy agents to coexist in the UMDL, and thus are interested
in the collective behavior of such agents. In this section, therefore, we investigate
Ž .1 how the absolute and relative performance of a p-strategy agent changes

Ž .against other p-strategy agents, and 2 how the UMDL is affected by multiple
p-strategy agents.

5.1. Experimental setting

Figure 8 shows six experimental settings with seven buyers and seven sellers.
Although we fix the number of buyers and sellers, by changing their offer rates and
offer intervals, we can simulate a large number of agents and different levels of
activities in the auction. By increasing the offer rates or decreasing the offer
intervals, for instance, we can simulate a more dynamic auction. In this set of
experiments, the portion of p-strategy agents in the total population is important. It
is also the case that a large number of agents who bid infrequently have the same
effect on the auction as a small number of agents who bid more frequently.

In this experiment, we deliberately set supply to be higher than demand to
emphasize competition among sellers; each buyer submits its bid every 30 seconds
with a probability of 0.5, while the offer interval and the offer rate of each seller
are set to 30 seconds and a probability of 0.7, respectively. Each experiment ran for
five hours.
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The buyers bid their true valuations, while the sellers bid their sell prices based
on their strategies. In Session 1, all seven sellers bid their true costs. Since traders
honestly report their reservation prices, Session 1 gets the most matches and serves
as a benchmark for comparing market efficiency. From Session 2 through Session
6, we introduce more p-strategy agents into the auction.

In the experiments, we measure efficiency of the system in two ways. First, we
measure the efficiency of allocation, by comparing the p-strategy seller’s absolute
and relative profits. This measurement indicates how the p-strategy seller’s perfor-
mance changes with an increasing number of other p-strategy sellers in the system.
Second, we measure the efficiency of the market, using the number of matches
made and the total profit generated. The market-efficiency result shows how much
having multiple p-strategy sellers undermines the overall system performance.

5.2. Experimental Results

Although we have shown that the p-strategy agent has an upper hand over
other-strategy agents, this advantage may not hold in the presence of other

Ž .p-strategy agents. To test this, we compare the profits of Seller 7 p-strategy agent
Ž .across Sessions 2 to 6. As shown in Figure 9, the profit of the p-strategy smart

Ž .agent decreases as the number of p-strategy equally smart agents increases.
Now that we have established that the profit of the p-strategy agent decreases as

more agents use p-strategy, another question arises. How will a simpler strategy
agent perform in the presence of multiple p-strategy agents? In Figure 10, by

Ž .replacing Seller 1 with the fixed-markup seller with markup s 5 , we measure the
relative performance of the FM-seller and the p-seller. The FM-seller’s profit is
generally less than that of the p-seller, but the difference decreases with an

Figure 9. Profits of p-seller.

Figure 10. Profits of FM-seller and p-seller.
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Figure 11. Efficiency measured by the number of matches in the auction process.

increase in the number of p-strategy agents.8 That is, the disadvantage of being
‘‘less smart’’ decreases as the number of smart agents increases.

This result indicates that an agent may want to switch between using the
p-strategy and using a simpler strategy depending on what the other agents are
doing. By dynamically switching to a simpler strategy, an agent can achieve a

Žsimilar profit to that of using the p-strategy, while exerting less effort time and
.computation on computing bids.

We also measure the number of total transactions made in the auction process,
as shown in Figure 11. When the number of p-strategy agents increases, the
number of matches decreases, since the p-strategy agents usually get fewer matches
but more profit per match. The number of matches is not an exact indication of the
market efficiency, as the average profit per match differs across the different
settings. If the Auction Agent requires a service charge per transaction, however, it
may serve as an indication of how much it can profit from the auction process.

In addition, we measure the market efficiency using the total profit accrued by
Ž .buyers and sellers see Figure 12 . The buyer’s profit is its valuation minus the

clearing price when the deal is made, and zero otherwise. The seller’s profit is the
clearing price minus its cost when deal is made, and zero otherwise. The total
profit eventually decreases with increasing numbers of p-strategy agents, as the
market becomes inefficient due to strategic misrepresentation of p-strategy agents
Ž .and, therefore, missed opportunities of matches .

The total profit, however, does not decrease as sharply as we had expected. It
turns out that the CDA, even without strategic agents, is not very efficient because
it continuously clears rather batching offers and finding the most efficient matches
possible. Hence, the introduction of more strategic agents does not make a
significant difference. A periodic, clearing-house style double auction is unrealistic

Figure 12. Efficiency measured by the total profit.
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for the UMDL system where the participants of the auction change and matches
should be made quickly.

ŽWe conjecture that having multiple p-strategy sellers compared to naıve-strategy¨
.sellers poses interesting tradeoffs between strategic inefficiency and surplus ex-

traction. By misrepresenting their true costs, the strategic sellers miss possible
Ž .transactions i.e., strategic inefficiency . By anticipating the future arrival of buyers,

Ž .on the other hand, they are able to seize more surplus i.e., surplus extraction .

5.3. Lessons learned

A conventional way of designing a system that exhibits certain properties is to
engineer it. Incentive engineering, however, is unsuccessful in the UMDL system
because of the system’s complexity and dynamics. Instead, by making the p-strategy
available to the agents, we have studied the effects of ubiquitous strategic agents in
the UMDL system.

We summarize our observations as follows. First, although a self-interested agent
in the UMDL system has the capability of complex strategic reasoning, our
experiments show that such reasoning is not always beneficial. As shown in Figure
9, the advantage of being smart decreases with the arrival of equally smart agents.

Second, if all the other agents use the p-strategy, an agent with a simple strategy
Ž .e.g., fixed markup can do just as well, while incurring less overhead to gather
information and compute bids. This result indicates that an agent may want to
switch between a complex strategy and a simple one depending on the behavior of
other agents. As the overhead of complex reasoning becomes more costly, an
adaptive strategy that dynamically decides on which strategy to use will be more
desirable.

Third, we expect the UMDL is likely to evolve to a point where some agents use
simpler strategies while some agents use more complex strategies that are more

Ž .knowledge intensive such as the p-strategy . It follows from the above observation
that if enough other agents use complex reasoning, an agent can achieve additional
profit even when it continues using a simple strategy.

Ž .Finally, the market efficiency of the UMDL represented by the total profit will
not decrease sharply with increasing number of strategic agents. As shown in
Figure 12, having multiple p-strategy agents increases the market efficiency slightly
up to some point. Moreover, the profit-seeking behavior of self-interested agents
will keep the UMDL agent population mixed with agents of various strategies.
Even though the market efficiency eventually decreases with an increase in the
number of p-strategy agents, because of its mixed agent population, the UMDL
will not suffer market inefficiency of the worst case.9

6. Related work

Ž .Early distributed artificial intelligence DAI research described how to apply the
power of multiple, distributed agents to a problem. The emphasis of this research
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was getting multiple agents to work together to solve a problem in a coherent,
robust, and efficient manner. Typically, individual agents were assumed to be

Ž .cooperative e.g., share tasks, communicate truthfully , and exchange of tasks
among agents was based on suitability}adjacency, processing capability, current
agent load, etc. This line of work is often called cooperative distributed problem

Ž .solving CDPS . In mid eighties, however, a group of researchers challenged CDPS’
assumption of cooperative agents. That is, agents are basically self-interested. This
branch of work is called MAS.10

Ž . ŽIn cooperative systems like the early DAI systems , a designer or a group of
.designers sharing common goals set shared goals and control both the global

mechanism design and the individual-agent design. For instance, agents and
Žmechanism can be built in certain ways e.g., share information, be honest, and so

.on conducive to cooperation. In MAS, on the other hand, the system architects
Ž .have no or limited control over the preferences and goals of individual agents.

Ž .Note that the goal of CDPS achieving the competence of a system differs from
Ž .that of MAS studying the properties of a system . The design problem in MAS is

different from CDPS, as a result of relaxing the assumption on cooperative agents.
In MAS with self-interested agents, system architects need to design a proper rule

Ž .to ensure some desired property honesty of agents, for example rather than
assuming it.11

It is no surprise then that many researchers turned to game theory to design and
analyze strategic interaction in MAS. A multi-agent interaction is in essence a
game played among a set of agents, and such settings have been studied in

w xeconomics, especially in noncooperative game theory 14, 22 . Many examples of
game-theoretic approaches can be found in MAS. Rosenschein and Zlotkin identi-
fied two building blocks of a multi-agent system, protocol and strategy,12 and
focused on designing a protocol that ‘‘ . . . motivates agents towards telling the

w xtruth . . . ’’ 17 . Game-theoretic approaches for global mechanism design for MAS
w xcan be found in various papers 1, 20, 21, 23 .

ŽWhile game theory provides a symmetric, stable solution e.g., a set of equilib-
.rium strategies where no agent wishes to change its part of the strategy , it has

Žsome weaknesses, such as the rationality assumption what happens if agents are
. Ž .not rational? , multiple equilibria how to choose among them? , and so on.

Furthermore, game theory tends to be applied to highly abstract and simplified
settings, and can be difficult to apply to more complex situations. We do not use
game theory because the UMDL auction is too complex to model and because we
cannot assume rationality in the game-theoretic sense.

Note that the information required in game theory and our stochastic-modeling
method, respectively, is different. In the former, all the information about strate-
gies and payoffs of all the agents involved should be known. In the latter, we
require less information by ignoring strategic behavior of other agents. This kind of
strategy seems well-suited for the dynamic systems where modeling the dynamics is
more important than modeling the individual behavior.

The use of microeconomics theory is not limited to the game-theoretic analysis
of the MAS with self-interested agents. The MAS community has borrowed many
other concepts from economics, such as the concepts of utility functions, payments,



PARK ET AL.48

Žmarginal-cost calculations, supply and demand, consumer and producer buyer and
.seller , auctions, and so on. Market-based approaches have become increasingly

attractive to MAS researchers because of the ready availability of underlying
formal models from microeconomics. Microeconomics provides techniques and
theories that can be used in designing and analyzing both systems for CDPS and
MAS with self-interested agents. In addition, market-based approaches have con-
ceptual advantages; the decentralized approach of microeconomics corresponds
well to MAS, and it is a natural fit for e-commerce transactions, as in the UMDL
system.

We are particularly interested in multi-agent auctions because of their potential
role in e-commerce. In physical markets dominated by standardized industrial
goods and posted prices, examples of elaborate negotiation are limited to high-value

Ž .items e.g., houses, automobiles, collectibles, etc . In the electronic commerce, on
the other hand, several factors, e.g., the trend toward customization, proliferation
of agents, increasing interaction between buyers and sellers, favor negotiated prices
w x3 . As a result, developing mechanisms for negotiation and designing individual
agents for automated negotiation has become an important research area. In this
context, auctions are an important research paradigm, as they have regular yet
flexible structure, the interaction protocols are clearly defined, and many variations
of protocols can be instantiated.

The agents in the auctions are assumed to be self-interested}agents will try to
maximize their utilities in all possible ways given the current interaction protocols.
There is a potential gain for an agent in taking other agents into account. Research
questions then are how to design an efficient strategy for self-interested agents and
what are the system-wide properties of markets populated with self-interested
agents.

To address the question of what an agent should do in multi-agent interactions,
some researchers have developed a new solution concept based on a recursive

Ž . w xmodel of other agents i.e., what they think what I think and so on 7 . While
game-theoretic agents are ultra-smart and super-rational, such that they can

w xreason about this whole recursive hierarchy ad infinitum 2 , the recursive modeling
Ž .method RMM assumes that agents can only build a finite nesting of models

Ž .because of practical limitations on acquiring such knowledge .
Basically, RMM is a decision-theoretic approach to game theory, which is

advocated by some as a practical solution concept for developing an agent strategy.
Our p-strategy can be viewed as 1-level RMM, as it models the behavior of other

Ž .agents but not the other agents’ ‘‘interior’’ reasoning processes .
w xRust et al. 18 have carried out a double auction tournament to investigate

appropriate agent strategies. Their results show that a very simple ‘‘waiting in the
background’’ trading strategy emerges as the winner of the tournament. We have
not used this winning strategy in our experiments, as the auctions are differently
configured. In Rust et al., the timing of a bid is an important decision factor, while
timing is not a factor in the UMDL auction setting.

Another approach to designing multi-agent systems with self-interested agents is
to let manipulation from agents happen and live with it. Preventing strategic
behavior of individual agents is unrealistic for many complex systems. Instead, by
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studying how the individual, strategic agents impact the overall system behavior, we
gain insights on properties of agent societies, such as characterizing the types of

wenvironments and agent populations that foster social and antisocial behavior 25,
x26 . Our approach falls into this category, as one of our goals is to explain how

Ž .strategic agents in particular the p-strategy sellers affect the UMDL in terms of
market and allocation efficiency.

Studies on system-level analyses of the multiple agents, investigating the roles of
w xsystem-wide properties are found in other papers 9, 10, 12, 13, 26 . Some results

show that in large markets with significant uncertainty, taking ones’ effect on prices
into account does not pay off. This is, of course, a positive indication, since it
implies that agents in large markets are not encouraged to speculate about their
effect on prices. At the same time, we can expect many different, complex
interactions among agents that are hard to predict, as shown in this paper.

7. Conclusion and future work

In this paper, we have used the p-strategy to examine the collective behavior of
strategic agents in the UMDL system. We have first shown the performance of the
p-strategy seller against other types of sellers. Having established that the p-strategy
works better, we have then examined the market and allocation efficiency with
varying numbers of p-strategy agents.

The findings are useful to both system designers and agent designers. It is
reassuring from the system designers’ viewpoints that the market efficiency of the
UMDL does not decrease sharply and that the worst-case market inefficiency is

Žnot likely to be realized since even though self-interested agents have the
.capability of complex strategic reasoning, not all of them will behave so . At

present, we cannot determine the exact demographics of the agent population for
the best market efficiency, but we are continuing experiments on many different
types of agent populations to get a better understanding of the overall system
behavior.

From the allocation-efficiency perspective, on the other hand, agent designers
learn that using the p-strategy does not always pay off, and that a simple strategy is
sometimes as effective. We are currently developing an adaptive p-strategy to
dynamically determine when to use the p-strategy and when not to. An adaptive
p-strategy will be beneficial not only to a self-interested agent but also to the
overall system efficiency.
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Notes

w x1. This is an extended version of our ICMAS-98 paper 16 .
2. Vickrey’s auction mechanism may be inappropriate for certain settings. For limitations of Vickrey

w xauctions, see the work by Sandholm 19 .
3. The clearing price can be set in many different ways. For example, it can be set at the middle of the

buyer’s and the seller’s offer prices. By setting the clearing price at the seller’s offer price, we
deliberately make the sellers to be more strategic. See Section 3 for more details.

4. ZI stands for Zero-Intelligence. The ZI-seller is a ‘‘budget-constrained zero-intelligence trader,’’
w xwho generates random bids subject to a no-loss constraint 8 .

5. The clearing price is the price quoted by the auction agent. The auction agent hypothetically
answers the question of ‘‘what price would a seller need to offer to get matched, given the state of
the other agents’ bids at present?’’

Ž .6. Arrival-rate-of-buy-offers ( offer-rateroffer-interval = clearing-interval. The arrival rate varies,
however, since the agent is allowed to submit a new offer immediately after a match, even when it
has not reached the next offer interval.

7. When the cost is higher than the clearing-price quote, the CP-seller bids its cost plus some fixed
markup. That is, it behaves like the FM-seller when its cost is higher than the clearing-price quote.

Ž .8. The FM-seller’s profit exceeds that of the p-seller in Session 5 in Figure 9 , but at present we
cannot conclude whether this is statistically significant. We are statistically analyzing the experimen-

Žtal results with many different auction settings by varying the number of buyers and sellers, arrival
.rates, and negotiation zone .

9. The worst-case inefficiency happens when all the sellers use the p-strategy, as shown at Session 6 in
Figure 12.

10. Lately the whole field of DAI has been called MAS, while CDPS is often viewed as a subfield. Our
definition of MAS captures the self-interestedness of agents, in contrast to cooperative agents in
CDPS. Readers may refer to the paper by Durfee and Rosenschein for more discussion about

w xCDPS and MAS 6 .
11. We note, however, the agents in cooperative setting may end up competing for resources as well.

For instance, if agents do not know how their actions will affect the global state or have only partial
Ž .incorrect information, they may end up working at cross purposes based on their incomplete view
of the overall problem

12. Protocol and strategy correspond to mechanism and individual agent strategy in our terminology,
respectively.
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