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Abstract

Specialization is observable in many complex adaptive systems and is thought

by many to be a fundamental mechanism for achieving optimal efficiency

within organizations operating within complex adaptive systems. This chapter

presents a survey and critique of collective behavior systems designed using

biologically inspired principles, where specialization that emerges as a result

of system dynamics and is used problem solver or means to increase task

performance. The chapter presents an argument for developing design

methodologies and principles that facilitate emergent specialization in

collective behavior systems. Open problems of current research and future

research directions are highlighted for the purpose of encouraging the

development of such emergent specialization design methodologies.
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Abstract

Specialization is observable in many complex adaptive systems and is thought

by many to be a fundamental mechanism for achieving optimal efficiency

within organizations operating within complex adaptive systems. This chapter

presents a survey and critique of collective behavior systems designed using

biologically inspired principles, where specialization that emerges as a result

of system dynamics and is used problem solver or means to increase task

performance. The chapter presents an argument for developing design

methodologies and principles that facilitate emergent specialization in

collective behavior systems. Open problems of current research and future

research directions are highlighted for the purpose of encouraging the

development of such emergent specialization design methodologies.

Introduction

Specialization is observable in many complex adaptive systems1 and is

thought by many to be a fundamental mechanism for achieving optimal

efficiency within organizations operating within complex adaptive systems. In

complex ecological communities, specializations have evolved over time as a

means of diversifying the community in order to adapt to the environment

(Seligmann, 1999). Over the course of evolutionary time, specialization in

biological communities has assumed both morphological (Wenseleers,

Ratnieks, & Billen, 2003) and behavioral forms (Bonabeau, Theraulaz, &
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Deneubourg, 1996). For example, the morphologically specialized castes that

have emerged in certain termite colonies (Noirot & Pasteels, 1987), and honey

bees that dynamically adapt their foraging behavior for pollen, nectar, and

water as a function of individual preference and colony demand (Calderone &

Page, 1988). The consequence of such specializations is that labor is efficiently

divided between specialized castes2 and individuals for the benefit of

accomplishing group tasks. In such a sense, specialization can be viewed as an

adaptive mechanism in a complex adaptive system.

Many artificial collective behavior systems have used design principles

which draw their inspiration from examples of specialization in nature. Such

examples include complex ecological communities such as social insect

colonies (Noirot & Pasteels, 1987), (Wenseleers et al., 2003), (Seligmann, 1999),

(Calderone & Page, 1988), (Bonabeau et al., 1996), (Bonabeau, Sobkowski,

Theraulaz, & Deneubourg, 1997), biological neural networks (Baev, 1997),

multi-cellular organisms (Hawthorne, 2001), economies of a nation,

companies, corporations and other business organizations (Resnick, 1997),

(Abdel-Rahman, 2001), (Ng & Yang, 1997). Such biologically inspired design

principles are especially prevalent in multi-robot (Potter, Meeden, & Schultz,

2001) swarm intelligence (Bonabeau, Dorigo, & Theraulaz, 1998) and artificial

life systems (Nishimura & Takashi, 1997) where it is highly desirable to

replicate the success of biological collective behavior systems.

Chapter Scope and Goals: Specialization as a Problem Solver

The chapters scope is a survey and critique of collective behavior systems

designed using bottom-up methodologies (Brooks, 1990) and biologically
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inspired design principles that include self-organization, learning and evolution.

Where, emergent specialization is utilized for the purpose of attaining a level

of task performance that could not otherwise be attained without

specialization. The nomenclature we use is biologically inspired collective behavior

systems3. That is, distributed systems where specialization emerges as a

property of a collective behavior that emerges concurrently as a result of

system dynamics.

Another important issue is which type of specialization4 should be

instituted for the benefit of a collective behavior system. We have elected to

only survey research literature concerned with behavioral specialization. The

decision to adopt this focus was based on the discovery that with relatively

few exceptions (section: Types of Specialization) the majority of research

concerning the use of emergent specialization for improving task performance

is restricted to simulated systems. This is so, given the obvious engineering

challenges and inherent complexity of dynamically creating morphologically

specialized robots and computer components, that represent effective

solutions to emerging challenges in a physical task environment (Parker &

Nathan, 2006), (Pfeifer, Iida, & Gomez, 2006), (Watson, Ficici, & Pollack,

1999b). Figure 1 presents the scope of the chapter within the dimensions of

emergent phenomena and behavioral specialization. That is, the study of

behavioral specialization within the context of emergent phenomena in

collective behavior systems.

This chapter aims to present an argument for utilizing emergent

behavioral specialization as a problem solving method in collective behavior
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systems. Such methods would be advantageous given the numerous real

world applications where specialization is beneficial (section: Collective

Behavior Tasks and Specialization). The chapter’s argument is supported via

research that has successfully used emergent specialization as a means of

increasing task performance or responding to dynamically arising task

challenges in simulated or physical environments.

Types of Specialization

Specialization in collective behavior systems has been studied from many

different perspectives (Nolfi, Deneubourg, et al., 2003), (Campos, Theraulaz,

Bonabeau, & Deneubourg, 2001), (Haynes & Sen, 1996), (Bongard, 2000),

(Stone & Veloso, 2002), (Bryant & Miikkulainen, 2003), (Whiteson, Kohl,

Miikkulainen, & Stone, 2003), (Blumenthal & Parker, 2004b) and is thus often

defined in accordance with the goals of researchers conducting the study.

Within collective behavior literature, specialization is either studied as an

emergent property of the system, or is explicitly pre-programmed into the

systems components. With notable exceptions such as (Funes, Orme, &

Bonabeau, 2003), there are few examples of research that successfully specifies,

a priori, what exactly the behavior of system components should be, in order to

produce a specifically desired, yet emergent collective behavior.

Non-Emergent Specialization

Non-emergent specialization is that which is explicitly pre-specified to be

apart of the design of system components and global behavior of a system.

Such approaches are either static, or utilize learning algorithms so as to
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ascertain which type of behavioral specialization, selected from a given set, is

most appropriate for solving a given task. Such approaches are useful for

solving collective behavior tasks that require specialization, where the degree

of specialization required can be sufficiently described a priori (Arkin & Balch,

1999), (Balch, 2002a), (Balch, 2002b).

Emergent Specialization

Emergent specialization is that which emerges from the interaction of system

components in response to a dynamic task that requires varying degrees, or

types of specialization, in order to effectively accomplish. Such approaches

have become popular in collective behavior task domains where one does not

know, a priori, the degree of specialization required to optimally solve the given

task (Stanley, Bryant, & Miikkulainen, 2005b), (Waibel, Floreano, Magnenat, &

Keller, 2006), (Gautrais, Theraulaz, Deneubourg, & Anderson, 2002), (Potter et

al., 2001), (Luke & Spector, 1996), (Theraulaz, Bonabeau, & Deneubourg,

1998b), (Murciano & Millan, 1997), (Murciano, Millan, & Zamora, 1997).

Morphological versus Behavioral Specialization

It is possible to further categorize specialization into two distinct classes:

morphological (Martinoli, Zhang, Prakash, Antonsson, & Olney, 2002), (Zhang,

Martinoli, & Antonsson, 2003) and behavioral (Li, Martinoli, & Mostafa, 2002),

(Bonabeau et al., 1997).

The term morphological specialization is applicable to situated and embodied

agents, operating in simulated or physical task environments, with

embodiment (sensors and actuators) structured so as to yield an advantage in
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accomplishing the task (Watson et al., 1999b), (Watson, Ficici, & Pollack,

1999a), (Watson, Ficici, & Pollack, 2002). Examples of morphological

specialization include the evolution of optimal arrangements of sensors and

actuators in the design of simulated automobiles (Martinoli et al., 2002),

(Zhang et al., 2003), evolution of agent morphologies and controllers for

various forms of motion in simulated environments (Sims, 2004), evolution of

physical electric circuits for control (Thompson, Harvey, & Husbands, 1996),

and evolving robot morphology for accomplishing different forms of physical

motion (Lipson & Pollack, 2000).

The term behavioral specialization is applicable to agents with behaviors that

are advantageous for accomplishing specific types of tasks (Balch, 2002a),

(Balch, 2002b), (Nolfi & Parisi, 1997), (Nolfi & Floreano, 2000). Examples of

behavioral specialization include the use of machine learning methods that

activate certain behaviors with a particular frequency as a response to

dynamically arising tasks (Gautrais et al., 2002).

Collective Behavior Models of Specialization

There is some agreement amongst researchers as to the models of

specialization that are appropriate for particular collective behavior tasks. The

following is by no means an exhaustive set, but rather several examples that

have recently received particular research attention.

Division of Labor Models

The use of behavioral threshold and division of labor models have been

investigated within the context of ant-based (Deneubourg, Goss, Pasteels,
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Fresneau, & Lachaud, 1987) and resource allocation (Bonabeau et al., 1997)

models. Such models typically utilize feedback signals given to agents of the

same caste (Kreiger & Billeter, 2000), in order to encourage the emergence of

specialization for a specific task. Many variations of these models exist

(Bonabeau et al., 1998), (Deneubourg et al., 1987), (Bonabeau et al., 1997),

(Robson & Traniello, 1999), (Bonabeau & Theraulaz, 1999), (Theraulaz, Goss,

Gervet, & Deneubourg, 1991), (Theraulaz, Gervet, & Semenoff, 1991),

(Bonabeau et al., 1996), including those that use evolutionary algorithms

(Tarapore, Floreano, & Keller, 2006), (Waibel et al., 2006), and reinforcement

learning models (Murciano & Millan, 1997), (Murciano et al., 1997) in order to

derive threshold values. The goal of such models is typically to optimize

global task performance. Such models are appealing as their evolutionary

dynamics and emergent properties can usually be described with a

mathematical representation and the results of such models are thus typically

amenable to a mathematical analysis (Wu, Di, & Yang, 2003).

Mathematical, Economic and Game Theory Models

Linear, non-linear and dynamic models based in mathematical, economic and

game theory (Axelrod, 1984), (Solow & Szmerekovsky, 2004) have many

applications for resource assignment problems in business. For example, the

maximum matching algorithm developed by (Edmonds, 1965), was designed

to determine the maximum number of people that can be assigned to tasks in

such a way that no person is assigned to more than one task. Thus, it is

assumed that each person specializes in performing at most one task. Such

models are advantageous as results can be subject to a formal analysis.
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However, they are limited by their abstract nature, and assume that the task

domain can be mathematically or otherwise formally represented.

Cooperative Co-Evolution Models

Cooperative co-evolution models have been implemented both in the context

of modified genetic algorithms, for example, Cooperative Co-evolutionary Genetic

Algorithms (Potter & DeJong, 2000), and in the context of neuro-evolution

methods, for example, Enforced Sub-Populations (ESP) (Gomez, 1997). In both

cases the genotype space is decomposed into a set of sub-populations, where

each generation, the evolutionary process selects the best performing genotype

components from each sub-population so as to construct a complete genotype

as a solution. Decomposition of the genotype space into sub-populations,

genotype construction from multiple sub-populations, and genotype to

phenotype mapping depends upon the approach used. For example, the ESP

method encodes separate neurons as genotype components to be distributed

between sub-populations, where the composition of neurons encodes a

complete neural network. Advantages of such models include their versatility,

and applicability to a broad range of complex, continuous, and noisy task

domains. Also, the representation of the genotype space as a set of

sub-populations provides a natural representation for many collective

behavior tasks, and often effectuates the derivation of specialized phenotypes.

A key disadvantage of such approaches is slow derivation of viable solutions

in complex task domains due to inherently large search spaces. Also, the

genotype representations that produce desired results can typically not be

easily interpreted.
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Reinforcement Learning Models

There exists a certain class of reinforcement learning models that provide

periodic feedback signals to agent groups attempting to accomplish a

collective behavior task (Sutton & Barto, 1998). A reinforcement signal is either

local or global. Local reinforcement signals are calculated by, and given to a

single agent, or a caste, upon task accomplishment. Global reinforcement

signals are calculated by and given to the entire agent group at the end of a

reinforcement learning trial (Li, Martinoli, & Yaser, 2004). The main advantage

of reinforcement learning approaches is that agents are able to effectively

operate in complex and noisy environments, with incomplete information.

However, approaches that utilize only a global reinforcement signal, do not

typically effectuate specialization in the group, even if task performance could

be increased with specialized agents (Li et al., 2002), (Li et al., 2004).

Approaches that utilize local reinforcement signals have been demonstrated as

being appropriate for deriving specialized agents (Li et al., 2004), (Li et al.,

2004) however such approaches suffer from the credit assignment problem

(Grefenstette, 1995), (Sutton & Barto, 1998) which potentially leads to

sub-optimal collective behavior solutions.

Heterogenous versus Homogenous Design of Emergent Specialization

In collective behavior research, approaches to designing emergent

specialization, usually adopt either homogeneous or heterogeneous methods for

designing system components. Homogeneous approaches utilize a single

agent behavior for every agent in a group of agents. Agent behavior may be
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encoded as one genotype representation, or in some cases simply defined by a

given set of parameters which are copied for each agent in the group (Quinn,

Smith, Mayley, & Husbands, 2003). Heterogeneous approaches utilize different

behaviors for each agent in a group of agents. The set of different behaviors is

sometimes encoded as different populations of genotypes, as in the case of

cooperative co-evolutionary genetic algorithms (Parker, 2000). Alternatively,

different agent behaviors may simply be represented as different sets of

parameters (Campos et al., 2001).

Designing emergent specialization has been studied via specifying

homogeneity versus heterogeneity within both the genotypes and phenotypes

of individual agents as well as entire agent groups. Specialization is often

closely associated with, and sometimes synonymous with, heterogeneity in

collective behavior systems (Balch, 1998), (Potter et al., 2001). Heterogeneity

can be hardwired or plastic, and may assume either behavioral (Bryant &

Miikkulainen, 2003), (Whiteson et al., 2003), (Noirot & Pasteels, 1987) or

morphological (Schultz & Bugajska, 2000), (Zhang et al., 2003), (O’Riain, Jarvis,

Alexander, Buffenstein, & Peeters, 2000) forms. Plastic heterogeneity is when a

group adapts its degree of heterogeneity as a function of environment and task

constraints, where as, hardwired heterogeneity is when the degree of

heterogeneity in the group remains static (Li et al., 2002).

Certain researchers have attempted to outline generalized guidelines as

when to use either homogeneous or heterogenous design approaches. For

example, (Balch, 1998) suggested that collective behavior task domains where

all individuals are able to perform the task, such as collective gathering, are
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particularly suited for homogeneous design. Whilst, task domains that

explicitly require complementary roles, such as RoboCup soccer, are more

suitable for heterogeneous approaches. However such guidelines, as with

studies of specialization, are usually defined according to the goals and

perspectives of the researcher. Hence, one can readily find examples of when

homogeneity and heterogeneity have been used in a manner incongruent to

any given set of design principles or guidelines.

Homogeneous Approaches

In homogeneous approaches specialization is typically studied at the group

level, since emergent specialization depends upon the local interactions of

cloned behaviors. At the genotype level, the key advantage of a homogeneous

approach is that the search space size is kept minimal since an algorithm need

only optimize a single behavior. At the phenotype level, homogeneous groups

are potentially more adaptive than heterogeneous groups at coping with the

loss of group members. Also, homogenous groups typically have greater

flexibility in coordinating behaviors so as to produce an effective collective

behavior (Stone & Veloso, 1999). The key disadvantage of such approaches is

that system homogeneity, either at the genotype or phenotype level, does not

facilitate specialization, so it is likely that such collective behavior systems will

converge to a non-specialized solution, even if specialization is advantageous

in the given task domain.
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Heterogeneous Approaches

Heterogeneous approaches typically study emergent specialization at either

the local (agent) or global (entire group) level. The key advantage of

heterogeneity is that it encourages and facilitates emergent specialization, both

at the individual and group level. The key disadvantage of heterogeneous

approaches is that the search space is usually (for complex tasks) prohibitively

large comparative to homogeneous approaches, since many different agent

behaviors need to be optimized or otherwise adapted for task accomplishment.

Collective Behavior Tasks and Specialization

In the design of collective behavior systems, it remains an open research

question as to which task domains are most appropriately solved using

specialization. However, there is some agreement amongst researchers that if

the task can be naturally decomposed into a set of complementary sub-tasks

then specialization is often beneficial for increasing collective task performance

(Arkin, 1998), (Arkin & Balch, 1999), (Balch, 2002a), (Balch, 2002b). Examples

of such collective behavior task domains include: collective gathering (Bonabeau

et al., 1997), (Bonabeau et al., 1998), (Holldobler & Wilson, 1990), (Gotwald,

1995), (Noirot, 1990), (O’Riain et al., 2000), (Calderone & Page, 1988), (Huang &

Robinson, 1996), (Bonabeau et al., 1996), (Waibel et al., 2006), (Perez-Uribe,

Floreano, & Keller, 2003); collective construction (Theraulaz & Bonabeau, 1995),

(Murciano & Millan, 1997); resource assignment and distribution (Bonabeau et al.,

1997), (Campos et al., 2001); predator prey (Miller & Cliff, 1996), (Nishimura &

Takashi, 1997); pursuit-evasion (Haynes & Sen, 1997); collective herding (Potter et

al., 2001); collective transport (Kube & Bonabeau, 1999); coordinated movement
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(Quinn et al., 2003), (Nolfi, Deneubourg, et al., 2003), (Bonabeau et al., 1998);

RoboCup soccer (Kitano & Asada, 2000), (Stone & Veloso, 1999), (Luke, Farris,

Jackson, & Hendler, 1998), (Luke & Spector, 1996), (Andre & Teller, 1999);

multi-agent computer games (Revello & McCartney, 2002), (Stanley, Bryant, &

Miikkulainen, 2005a), (Stanley, Bryant, Karpov, & Miikkulainen, 2006), (Bryant

& Miikkulainen, 2003), (Stanley & Miikkulainen, 2002), (Cremer, Kearney, &

Willemsen, 1997), (Wray, Laird, Nuxoll, Stokes, & Kerfoot, 2005), (Stanley et al.,

2005b); collective sensing, survey, or search and find tasks (Brooks & Flynn, 1989),

(Amat, Mantaras, & Sierra, 1995), (Thakoor, 2000), (Thakoor et al., 2003),

(Kitano et al., 1999). Each of these task domains mandates some degree of

collective behavior, where specialization is beneficial for improving task

performance.

Collective Gathering and Construction Tasks

Cooperative gathering and construction tasks are based upon the social insect

metaphor and have been studied in both simulated multi-agent and physical

multi-robot systems, as well as artificial life simulations (Bonabeau et al., 1997),

(Bonabeau et al., 1998), (Holldobler & Wilson, 1990), (Gotwald, 1995), (Noirot,

1990), (O’Riain et al., 2000), (Calderone & Page, 1988), (Huang & Robinson,

1996), (Bonabeau et al., 1996), (Waibel et al., 2006), (Perez-Uribe et al., 2003)

(Bonabeau et al., 1996), (Bonabeau et al., 1997), (Theraulaz, Bonabeau, &

Deneubourg, 1998a), (Waibel et al., 2006), (Campos et al., 2001), (Theraulaz et

al., 1998b) (Bonabeau, Theraulaz, Arpin, & Sardet, 1994), (Deneubourg,

Theraulaz, & Beckers, 1991), (Ijspeert, Martinoli, Billard, & Gambardella, 2001),

(Mataric, 1997), (Kreiger & Billeter, 2000), (Murciano & Millan, 1997),
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(Bongard, 2000). Such studies typically draw inspiration from empirical

evidence (Jeanne, 1991), (Karsai & Wenzel, 1998), (Karsai & Wenzel, 2000),

(Traniello, 1978) and theoretical analyzes (Bourke, 1999), (Anderson & McShea,

2001) of biological social insect societies.

The collective gathering task domain requires that a group of agents

search for, collect, and transport resources in the environment from their initial

locations to some particular part of the environment. Such gathering tasks

typically require that the group of agents allocate their labor efforts to

particular sub-tasks so as to derive a collective behavior that maximizes the

quantity of resources gathered5. Thus such tasks are typically viewed as

optimization problems and have been traditionally studied with mathematical

or otherwise analytical models (Theraulaz et al., 1998a), (Gautrais et al., 2002)

(Bonabeau et al., 1996), (Bonabeau et al., 1996). Collective construction is

typically viewed as an extension of the collective gathering task, in that it

requires the agents to construct a particular structure, with gathered resources,

at a home area of the environment. Specialization is typically required for

building complex structures from many different types of component

resources (Theraulaz & Bonabeau, 1995), (Murciano & Millan, 1997),

(Murciano et al., 1997). Many researchers investigating collective gathering

and construction tasks in the fields of artificial life and multi-robot systems

have observed emergent specialized behavior, similar to that generally

observed among eusocial insects6.

Specialization in Multi-Agent Systems via Learning

(Murciano & Millan, 1997) and (Murciano et al., 1997) applied Reinforcement
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Learning (RL) methods to a group of homogeneous agents operating in a

discrete simulation environment, given a collective gathering task. The task

mandated the utilization of specialized behavior, derived at the individual

agent level, which facilitated the emergence of collective behaviors that were

able to achieve an optimal, or near optimal, task performance.

The authors used a RL method that independently modified action

selection parameters within the controller of each agent. The RL method used

either global or local RL signals so as to effectuate the learning of specialized

behaviors. Behavioral specialization took the form of an agent learning to

consistently select one action from a set of possible actions. The global RL

signal measured group performance, and the local RL signal measured

individual performance. The global RL signal was given at the end of a RL

trial, where the signal was equal for all agents in the group. The local RL signal

was given to individual agents, where the signal was calculated in terms of the

agents own successes or failures.

(Murciano et al., 1997) conducted experiments that tested the impact of

local versus global RL signals upon the learning of specialized behaviors in a

homogenous group of agents with no communication. The goal of these

experiments was for agents to specialize via learning to gather specific object

types so as to construct complex objects. Thus, when agents interacted an

effective collective gathering and construction behavior emerged. Group task

performance was measured as the number of complex objects assembled in a

given RL trial.

In the same experimental setup (Murciano & Millan, 1997) conducted



17

experiments that utilized only global RL signals for the purpose of facilitating

emergent specialization within a homogeneous group of communicating

agents. The task of individual agents and the group was to maximize the

number of objects gathered over the course of a RL trial. The goal of

experiments was for agents to specialize to different behaviors so as

communication would facilitate the collective gathering of an optimal number

of objects.

One criticism of the research of (Murciano et al., 1997), and (Murciano &

Millan, 1997) derives from the use of RL signals in effectuating specialized

behavior. Experimental results indicated that a global RL signal successfully

motivated emergent specialization, given the assumption that all agents

contribute equally to the task, and the signal was translated so as it could be

meaningfully interpreted by each agent in a homogenous group. This casts

doubt upon the applicability of global RL signals to heterogenous groups.

Likewise, the applicability of local RL signals was not tested in complex task

domains that provided more realistic simulations of multi-robot systems. The

possibility of applying the RL method to facilitate specialization in continuous

simulation and physical task domains seems unlikely given the sparse

reinforcement limitations of global RL signals and the noisy nature of local RL

signals (Sutton & Barto, 1998) that inhibit learning.

One aim of the research was to demonstrate that specialization emerges as

a function of task constraints on the environment and agent group, irrespective

of the type of reinforcement signal used. Achieving scalability in the learning

of behavioral specialization is especially prevalent for tasks that require an
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increasing degree of heterogeneity, and complexity in collective behavior, as a

response to dynamically emerging task challenges (Thakoor, 2000). However,

the scalability of the RL method as a mechanism for encouraging behavioral

specialization remains unclear since only two group sizes (10 and 30 agents),

and a discrete environment of one size (54 x 54 grid cells) was tested. Also, the

impact of more dynamic versions of the simulation environment upon the RL

algorithm, were not tested. That is, only one redistribution of objects, during

given RL trials, was tested.

Finally, the RL method assumed that the given task environment could be

abstracted to the form of a multi-objective function which could be optimized.

In this case the function was represented as a set of agent affinities that

determined an agents propensity to adopt particular behavioral roles. This

severely limited the applicability of the RL method to more general and

complex task environments.

Learning Behavioral Specialization for Stick Pulling

The research of (Li et al., 2004) addressed the important issue of attempting to

specify the concepts of heterogeneity and specialization in a formal definition,

so as emergent heterogeneity and specialization7 would be measurable within

the larger context of collective behavior and distributed systems research. In a

case study that compared centralized and distributed learning methods, the

authors qualitatively measured the diversity and specialization of a simulated

multi-robot system given a stick-pulling task that mandated specialized and

cooperative behavior. One research goal was to investigate the impact of

diversity, in the form of heterogeneity in behaviors, upon emergent
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specialization and in turn the impact of specialization on task performance.

In all experiments the authors presented a learning method that effectively

operated within a multi-robot simulator, where specialization emerged as a

function of task constraints and environmental conditions regardless of

whether local or global reinforcement signals were used. The authors

explanation for this result was that if behavioral diversity (heterogeneity) is

beneficial to task performance, then the learning method facilitates emergent

specialization as a means of taking advantage of this behavioral diversity.

The key criticism of this research is the dependency between emergent

specialization and the learning method used, and consequently the methods

applicability to more generalized optimization tasks. Results supported a

hypothesis that if behavioral diversity in a group was beneficial to task

performance, then specialization was likely to emerge and increase

accordingly with behavioral diversity and task performance. However, these

results largely depended upon the type of learning method, the model of the

task environment, robot controller parameters that defined membership to a

caste, and the task related parameters that the learning method sought to

optimize. Thus, the degree to which emergent specialization, depended upon

the underlying adaptation process, remains an open question. Also, the system

designer needed to select task environment parameters for the learning

method. This cast doubt upon the possibility of applying the learning method

to more complex and dynamic task environments, where pertinent task

environment parameters that the learning method would require in order to

encourage diversity, specialization, and increased task performance, could not
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be identified a priori.

Furthermore, the number of castes composing a group was determined by

the system designer and not by the adaptive process. Experiments that

analyzed emergent caste formation would be necessary in order to effectively

ascertain the relationship between heterogeneity, specialization and collective

behavior task performance. An adaptive process where a particular number of

castes emerges in response to simulation environment and task constraints,

would make such a process applicable to complex task environments where

task challenges dynamically arise.

Collective Resource Distribution and Allocation

In a series of research endeavors inspired by social insects (Bonabeau et al.,

1996), (Bonabeau et al., 1997), (Theraulaz et al., 1998a), (Campos et al., 2001),

(Theraulaz et al., 1998b), studied emergent specialization using response

threshold models in simulations of homogenous agent groups that were

implemented within the context of mathematical frameworks.

Division of Labor for Dynamic Task Allocation. (Theraulaz et al., 1998a)

extended a previous formalization for the regulation of division of labor

(Bonabeau et al., 1996) in simulated social insect colonies so as to include a

Reinforcement Learning (RL) process. A formal variable response threshold

model was implemented for purpose of facilitating emergent specialization in

the form of division of labor.

The collective behavior goal was for agents to sufficiently satisfy

numerous tasks in the environment. The model assumed that their were m
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tasks to be performed, where each of these tasks was associated with a

stimulus. The stimulus for a given task increased if an insufficient number of

agents were working upon the task, and decreased if too many agents were

working upon the task. The model also assumed that each of n agents had a

response threshold for a given task and its associated stimuli. An agent

engaged in a given task with a probability determined by its response

threshold. The more time an agent spent upon a given task, the lower the

stimuli associated with that task. Assuming the other tasks were not being

accomplished by other agents, the stimuli for these tasks would increase.

Agent i was considered specialized if that agents response threshold for task j

was low, where the stimuli associated with task j was a function of time spent

upon the task by agent i. The authors used this model in order to empirically

test several hypotheses regarding the allocation of specialized labor to tasks,

and convergence to specialized roles as a function of task stimuli.

Results found that agents adjusted their activities so as to maintain the

stimulus for a given task at a low level. This resulted in a division of labor at

the group level such that each agent became specialized to a given task. The

consequence was that an appropriate number of agents were allocated to each

task for a sufficient time such that all tasks were optimally satisfied during the

given simulation time. These results were validated in an experiment where

specialized agents were removed for a variable amount of time, before being

reintroduced into the group. The result was that the remaining agents in the

group adapted their response thresholds so as to specialize to multiple tasks,

including the tasks for which there was a deficiency, which was incurred by

the agents removed. In their conclusions, the authors highlighted similarities



22

between their results and observations made within biological social systems

where specialist workers were dynamically allocated based upon sub-task

demand within a collective behavior task (O’Donnell, 1998).

Division of Labor for Dynamic Flow Shop Scheduling. (Campos et al.,

2001) introduced a division of labor model and applied it as a method for

assigning resources within a dynamic flow shop scheduling task. The task

entailed assigning trucks to paint booths in a factory, where trucks moved

along an assembly line at a given pace. The color of a truck was predetermined

by customer order. Three minutes was needed to paint a truck, but an

additional three minutes was required if the color of a paint booth was to be

changed for the truck. There was also a cost associated with paint changeover

for a booth. A division of labor model was applied to minimize the number of

such changeovers. Such paint fit-and-finish tasks are traditional bottleneck

problems that can significantly reduce production throughput and thus

require optimal solutions (Morley & Ekberg, 1998).

Response thresholds determined the probability of a given booth

accepting a given unassigned truck to be painted. Response thresholds were

regulated with respect to a global demand for each color, and the relative

priorities of trucks exiting the assembly line. A genetic algorithm (Eiben &

Smith, 2003) was employed to evolve the most appropriate response threshold

for each paint booth. An agents fitness was measured as the total cost of paint

booth changeovers. The genetic algorithm was tested on several different

configurations of the task, which included different distributions of paint

colors, various probabilities that paint booths would become inoperable, and
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different rates with which trucks would exit the assembly line.

The result of this evolutionary process was that response thresholds were

adapted such that each paint booth specialized to a given color. Results were

compared with a market-based approach for solving the task. It was

highlighted that the division of labor model performed significantly better in

terms of minimizing the number of paint booth changeovers and maximizing

the number of trucks painted. One conclusion was that the comparatively

higher performance of the division of labor model resulted from paint booths

specializing to particular colors. However, the focus of the research was to

highlight that a biologically inspired division of labor model could optimally

solve such a dynamic scheduling and resource allocation task.

Division of Labor as a Function of Group Size. (Gautrais et al., 2002)

implemented a variable response threshold model to demonstrate that

increasing agent group size, and demand for tasks generated specialized

agents. As with previous research (Theraulaz et al., 1998b), (Theraulaz et al.,

1998a), (Bonabeau et al., 1996) the response threshold model provided each

agent in a group with an internal threshold for activating a particular behavior.

Each agents response threshold was influenced by the level of demand for a

particular task, and agents allocated themselves so as to satisfy demand for

these tasks.

Experiments used two tasks, and it was assumed that each task was

encountered with an equal probability. Experiments tested various group sizes

and task demands. All agents were initially given the same unspecialized

behavior. That is, a response threshold value with an equal predisposition to
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each task. The authors found that specialization emerged only when a critical

group size was reached. Groups smaller than this critical size consisted of

unspecialized agents, where as, groups larger than the critical size contained

both active specialized agents and inactive unspecialized agents. Results

demonstrated not only the emergence of specialized agents given a large

enough group size, but also the emergence of elitism, which increased

collective behavior performance. Elitism was the case where some agents

performed a disproportionately large percentage of group labor. These

findings were corroborated by similar findings in empirical theoretical biology

studies (Chen, 1937b), (Chen, 1937a), (Robson & Traniello, 1999), (Bourke,

1999), (Jeanne, 1986), (Karsai & Wenzel, 1998), (Karsai & Wenzel, 2000). The

authors main conclusion was that their response threshold model

demonstrated emergent specialization to be function of group size in the given

resource allocation task, where group sizes exceeding a critical threshold value

contained specialized agents, and group sizes below the critical threshold

value contained only unspecialized agents.

Division of Labor for a Postal Service. (Bonabeau et al., 1997) modeled

emergent specialization in the form of a division of labor algorithm that

regulated the distribution and allocation of resources to tasks in an agent

group. The research was based on a model of response thresholds and division

of labor in a eusocial species of wasps (Robinson, 1987), (Robinson, 1992),

(Robinson & Page, 1988), (Page & Robinson, 1991). As in related research

(Theraulaz, Gervet, & Semenoff, 1991), each agent implemented a set of

response thresholds, where each threshold was associated with a specific task.

Reinforcement learning adapted response thresholds such that the more an
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agent performed a task, the lower its response threshold for that task, and

vice-versa. The authors implemented their adaptive task allocation algorithm

within the context of a mail retrieval and distribution task. The task was

implemented as a discrete grid, which represented a large city. Agents had to

gather resources, representing letters, according to local demand, from one

location and deliver them to another location within a given amount of time. It

was therefore the goal of the algorithm to allocate agents to various local

demands that dynamically arose, so as to minimize global demand. At every

simulation iteration, demand increased by a given amount in randomly

selected grid cells.

Experiments examined the affect of removing specialized agents. That is

those agents dedicated to gathering from, and delivering to specific locations.

Results found that if one specialized agent was removed, then another agent

lowered its response threshold with respect to the location of the removed

agent, so as to become newly specialized for that location. However, if two

agents specialized for given locations were removed this caused the global

demand to become too high, meaning that each agent necessarily became

specialized to multiple locations. As a result response thresholds oscillated

over time, as agents dynamically switched between gathering and delivering

at different locations. The authors argued that such results were indicative of

the flexibility and robustness of the algorithm. The authors illustrated that the

results showed a remarkable agreement with results yielded from biological

studies of response thresholds and dynamic task allocation in ant colonies

(Wilson, 1985).
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Division of Labor Models for Collective Resource Distribution and

Allocation: Overall Comments and Criticisms. Such response threshold

models represent a very simple, yet powerful, self-regulating feedback system

that assigns the appropriate numbers of agents to different tasks. It is obvious

that the study of such biologically inspired formalizations of specialization are

worthy of future research attention given their applicability to a broad range of

optimization tasks including dynamic scheduling and resource allocation. The

models of (Theraulaz et al., 1998a), (Campos et al., 2001), (Gautrais et al., 2002),

(Bonabeau et al., 1997) were prevalent in that they eloquently demonstrated

how behavioral specialization emerged as a result of self-regulating task

assignment and accomplishment, for which there exists a large amount of

corroborating biological literature and empirical evidence (Chen, 1937b),

(Chen, 1937a), (Robson & Traniello, 1999), (Deneubourg et al., 1987),

(Theraulaz, Gervet, & Semenoff, 1991), (O’Donnell, 1998).

The main appeal of this set of research examples was their successful

modeling of specialized behavior in the form a set of equations. These

equations were successfully applied as a method for regulating the

specialization of agents to specific tasks, in order to optimally accomplish a

collective behavior task. However, in many cases the adaptive nature of

response threshold regulation was never tested for more than one group or

environment size, and more than two tasks. Also, the removal of specialized

agents to test the adaptation process was limited to two agents. This was an

important aspect of the adaptive nature of response thresholds, since if task

allocation becomes too dynamic, or oscillatory, it is conceivable that the

advantages of specialization could be lost as an agent spends all of its time
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switching between tasks, and consequently never dedicates enough time to

accomplish a given task.

In each case, a simple set of experiments illustrated the importance and

necessity of utilizing models of biological social behavior as a step towards

understanding such social behavior, and then applying the underlying

techniques, namely response thresholds, as a means of designing problem

solving methods for optimization tasks. The main advantage of division of

labor models is their eloquence and simplicity of formal specification. Also,

such models yield results that are amenable to a mathematical or formal

analysis. However, such models are also limited to task domains that can be

completely represented via the mechanics of a mathematical model. This

makes the contributions of such models limited to optimization tasks that can

be formally represented, or to supporting empirical results evident in related

biological literature.

Multi-Agent Computer Games

The application of biologically inspired methods to multi-agent computer

games (Fogel, Hays, & Johnson, 2004), (Laird & vanLent, 2000) has recently

achieved particular success and gained popularity. For example, there has

been particular research interest in the creation of adaptive interactive

multi-agent first-person shooter games (Cole, Louis, & Miles, 2004), (Hong &

Cho, 2004), (Stanley et al., 2005b), as well as strategy games (Bryant &

Miikkulainen, 2003), (Revello & McCartney, 2002), (Yannakakis, Levine, &

Hallam, 2004) using artificial evolution and learning as design methods for

agent behavior. Research work has primarily focused on the derivation of
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game playing multi-agent strategies, using either online or off-line adaptation

methods in both continuous and discrete multi-agent games (Agogino, Stanley,

& Miikkulainen, 2000), (Bryant & Miikkulainen, 2003), (Stanley &

Miikkulainen, 2004), (Moriarty & Miikkulainen, 1995), (Moriarty &

Miikkulainen, 1996), (Richards, Moriarty, McQuesten, & Miikkulainen, 1997).

However, the study of specialized game playing behaviors, in teams of

agents, has received relatively little research attention. Specialization is

beneficial since it is often necessary for teams of agents to formulate collective

behavior solutions in order to effectively challenge a human player, where an

increasingly difficult level of agent performance is expected as game time

progresses.

Legion-I: Neuro-Evolution for Adaptive Teams

(Bryant & Miikkulainen, 2003) utilized the Enforced Sub-Populations (ESP)

neuro-evolution method (Gomez, 1997) for the derivation of collective

behavior in a multi-agent strategy game called Legion-I. The research

hypothesis was that a team of homogeneous agents, where agents were

capable of adopting different behavioral roles would be advantageous in terms

of task performance, comparative to heterogeneous groups, composed of

agents with static complementary behaviors.

These experiments highlighted the effectiveness of the ESP method for

deriving a dynamic form of emergent behavioral specialization motivated by

division of labor. Results supported the hypothesis that for the Legion game, a

homogenous team, where individuals could dynamically switch between

specialized behaviors was effective.
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However, the analysis of emergent specialization was only at a behavioral

level, so one could not readily ascertain the relationship between behavioral

specialization and the evolved genotypes responsible for such behaviors. This

would make an exploration of the mechanisms responsible for emergent

specialization resulting from division of labor problematic. The task

environment used a discrete simulation environment popular in multi-agent

strategy games, but this was not sufficiently complex or dynamic in order to

adequately test and support suppositions stating the advantages of behavioral

specialization in homogenous teams. Also, the task performance of

homogenous groups was not compared with heterogenous groups. Valuable

insight into the capabilities of homogenous versus heterogenous agent groups

for facilitating emergent specialization, could be gained by a comparison

between groups represented by one neural controller, versus each agent within

a group being represented by a different neural controller.

NERO: Neuro-Evolution of Augmenting Topologies

(Stanley et al., 2005b), (Stanley et al., 2006), (Stanley et al., 2005a) introduced a

neuro-evolution method for the online evolution of neural controllers that

operated in the context of an interactive multi-agent computer game called

Neuro-Evolving Robotic Operatives (NERO). NERO is a first-person perspective

shooter game, where a human player competes with teams of agents, and

agents compete against each other. The rtNEAT neuro-evolution method was

used for evolving increasing complex agent neural controllers using a process

known as complexification. This was an extension of the Neuro-Evolution of

Augmenting Topologies (NEAT) method (Stanley & Miikkulainen, 2002) that
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operated using online evolution. The authors demonstrated the effectiveness

of the rtNEAT method for dynamically adapting agent controllers within a

team playing against other agent teams or a human player in real time. Agent

game playing behavior became increasingly sophisticated over successive

generations as a result of changing neural network topological structure as

well as evolving network connection weights.

As an extension of the NEAT method, rtNEAT used online evolution to

yield impressive results in terms of facilitating effectively competitive

collective behaviors in the game playing time of NERO. The NEAT and

rtNEAT methods successfully implemented a speciated representation of the

genotype space, and a distance measure for genotype similarities, that

provided a clear method for relating observed behaviors with a given set of

genotypes.

However, the specialized controllers evolved were primarily determined

by a training phase of NERO. Agent teams evolved specializations that were

suitable for a given environment. Given that simulation environments were

the same for both training and a subsequent battle phase, it remains unclear

how suitable evolved teams would be for generalized collective behavior

games. The true potential and beneficial nature of the rtNEAT method for

evolving specialized behaviors in an online evolutionary process, for purpose

of increasing team task performance, was not tested in other simulated

multi-robot task domains. In realistic collective behavior tasks where the

environment is dynamic and its structure and layout are not known a priori,

training phases would only be partially effective since controllers trained in a
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simulation of the environment would simply be representing a best guess

behavior. Currently, it remains unclear if rtNEAT could be successfully applied

to collective behaviors tasks where there is a significant disparity between a

training simulation and a subsequent actual simulation (called the battle phase

in NERO). Such an issue is especially prevalent if online evolution of

controllers is to eventually be applied for accomplishing multi-robot tasks,

with time and energy constraints, in dynamic and complex physical task

environments.

RoboCup Soccer

A distinct relation to multi-agent game research is RoboCup (Kitano & Asada,

2000). RoboCup is a research field dedicated to the design and development of

multi-robot systems for the purpose of playing a robotic form of soccer. It is

widely recognized as a specific test bed for machine learning algorithms, and

engineering challenges (Noda & Stone, 2001). The very nature of the RoboCup

game demands the existence of several types of behavioral specialization, in

the form of different player roles. Such behaviors must be complementary and

able to interact in such a way so as to produce a desired global behavior. That

is, a team strategy that wins the game in a competitive scenario. Several

researchers have focused on machine learning, evolutionary computation, and

neuro-evolution methods that derive task accomplishing collective behaviors

within groups of two or three soccer agents. Although, specialized behaviors

of individual soccer agents was either specified a priori or was derived in

simplistic game scenarios (Matsubara, Noda, & Hiraki, 1996), (Stone & Veloso,

2002), (Stone & Veloso, 1998a), (Stone & Veloso, 1998b), (Whiteson et al., 2003),
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(Hsu & Gustafson, 2001), (Hsu & Gustafson, 2002), (Luke et al., 1998). Each of

these research examples has been critiqued elsewhere (Nitschke, 2005), from

the perspective of emergent cooperative behavior. Each is an example of the

essential role of behavioral specialization, emergent or otherwise, for

facilitating effective collective game playing behaviors.

Predator-Prey and Collective Herding Behaviors

The investigation of emergent specialization remains a relatively unexplored

area of research in the pursuit-evasion domain (Miller & Cliff, 1996), the

collective herding variation (Potter et al., 2001), as well as more traditional

predator-prey systems (McCauley, Wilson, & deRoos, 1993), (Nishimura &

Takashi, 1997). The research of (Haynes & Sen, 1996) and (Yong &

Miikkulainen, 2001) which specifically investigated the contribution and

advantages of emergent specialization in prey-capture tasks that mandate

cooperative behavior, have been reviewed in related work (Nitschke, 2005),

and are thus not included here.

Evolving pursuit-evasion behavior with hexapod robots

(Blumenthal & Parker, 2004b), (Blumenthal & Parker, 2004c), (Blumenthal &

Parker, 2004a) expanded previous work via combining a Punctuated Anytime

Learning (Parker, 2000), (Blumenthal & Parker, 2006) method with an

evolutionary algorithm within a co-evolution scenario. Although not the main

research focus, this work addressed the issue of using morphological

differences in agents in order to effectuate the derivation of behavioral

specialization, and consequently a collective prey-capture behavior. The



33

co-evolution scenario operated within a simulated multi-robot system of five

hexapod robots where the goal was to derive an effective prey-capture

behavior within four predator robots, and a predator-evasion behavior within

one prey robot.

This study effectively illustrated the derivation of prey-capture behavior

based upon specialized behaviors that utilized differences in simulated

hexapod robot morphology. Such as, the least maneuverable robot adopting a

passive defensive position, whilst the fastest and most maneuverable robots

adopted proactive pursuit behaviors. However, the morphological differences

between the robots were simple, leading one to speculate that a higher degree

of complexity in specialized behavior may have emerged if differences in

sensors and controller structure were included along with a greater disparity

in actuator capabilities. Also, the prey was always initially placed at the center

of the simulation environment, which made it easier for predators to form an

effective prey capture behavior, and influenced the types of prey-capture

behaviors that could emerge. Though not explicitly stated as a being a goal of

this research, a valuable contribution to this research, would have been a

methodological study that described a mapping or set of principles linking

types of sensor and actuator capabilities to resulting forms of emergent

behavioral specialization. Such a study could potentially form the basis of

multi-robot system design methodologies that use evolution and learning

mechanisms that capitalize on morphology in order to produce desired

collective behaviors for solving a given task.
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Evolving predator-prey strategies in the Serengeti world

(Luke & Spector, 1996) investigated the application of three different Genetic

Programming (GP) methods and three team coordination methods for the

evolution of collective prey-capture behaviors in a predator-prey simulation

environment. GP was used to evolve predator groups where the genotype of

each each group was represented as a single GP tree. Branches of the GP tree

represented individual predators, and thus potentially their individual

behavioral specializations. Thus, the performance of any one group member

was greatly influenced by other group members. The authors comparatively

tested homogeneous and heterogeneous GP breeding approaches, where

heterogeneity and homogeneity was defined in terms of GP breeding

strategies. In both cases a single population of GP trees was used. However,

the homogeneous approach used a single GP tree to represent each predator in

a group. Genotype populations under the homogenous approach were

attained by cloning the single GP tree n times, where as the heterogenous

approach constructed n GP trees via recombining corresponding parts of

different GP trees. Two different kinds of breeding strategies were tested for

heterogeneous teams. Free Breeding allowed any GP tree (predator group) to

freely breed with any other GP tree (predator group). Restricted Breeding

dictated that a specific predator (part of a GP tree) could only breed with the

corresponding part of another GP tree (a predator in another group). This

breeding strategy did not take advantage of the diversity inherent in a GP tree

representation of a predator group, but took advantage of any individual

predator specialization represented by GP tree branches.
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The key criticism to be drawn from this research is that the evolution of

heterogenous teams hinged upon the size of the GP tree. In this case,

heterogeneity was defined by different parts of a GP tree representing different

behaviorally specialized group members. That is, the emergence of

specialization within a group, depended upon the GP tree representing the

group having enough genetic diversity. Whilst it was advantageous in terms of

computational time and complexity to utilize only a single population of

genotypes (GP trees). This limited the likelihood that specialization would

emerge and limited the complexity of emergent specialization, and hence

prey-capture behaviors.

In the heterogenous design approach several group members were

represented in a single GP tree. This closely linked the contributions of one

group member to all others, and in turn affected the contributions of other

group members, making it difficult for the evolutionary process to isolate and

distinguish good and specialized parts of a solution. Hence, it remains unclear

if this heterogenous design approach would be applicable for deriving

specialized behavior in other collective behavior task environments, or in a

more complex predator-prey tasks that included obstacles or an adaptive prey

behavior.

Evolving herding behavior in a multi-robot system

The research of (Potter et al., 2001) investigated the evolution of homogeneous

versus heterogeneous controllers within a simulated multi-robot system that

was given a collective herding task. A group of Nomad 200s were simulated

within the TeamBots simulator (Balch, 1998). The research hypothesis was that
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as task difficulty increased, heterogeneity and specialization become essential

for successful task accomplishment. Heterogeneity was defined as the number

of different behaviors one robot could select from, as well as the number of

behaviors in the group. This hypothesis was tested with experiments that

introduced a predator into the environment. The goal was to encourage the

emergence of specialized defensive behaviors in addition to herding behaviors.

Experiments effectively illustrated that emergent behavioral

specialization, for the benefit of collective behavior task performance, could be

facilitated in a heterogenous team of agents. Furthermore, results supported a

hypothesis that constructing a collective behavior task such that multiple

behaviors are required, increases the need for heterogeneity, and in turn

specialization. However, the inducement of emergent specialization via

increasing the number of behaviors required, and not simply task complexity,

was only investigated within a single case study.

The key criticism lies in the comparison of homogenous and heterogenous

groups for deriving collective herding behaviors. Particularly, it is unclear why

the authors opted to use only two genotype populations to represent a group

of three shepherds in the heterogenous design approach. The impact of

homogeneity and heterogeneity on emergent specialization was not validated

with larger groups of shepherds. Also, only one increment in the complexity of

the task environment was tested. That is, the addition of the predator to the

collective herding task. Complete validation of the authors hypothesis that

specialization emerges not as a consequence of task complexity, but rather as a

result of the number of behaviors required to solve the task, would require
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several comparative case studies. Such studies would need to test tasks of

varying degrees of difficulty versus tasks that require numerous

complementary, and potentially specialized behaviors. Such a comprehensive

study would yield a valuable contribution to ones understanding of the

relation between heterogeneous and homogenous design approaches, task

performance, task complexity, and emergent specialization.

Moving in Formation and Cooperative Transportation Tasks

Certain collective behavior research endeavors, mainly in the fields of artificial

life and multi-robot systems, have aimed to model and reproduce various

forms of social phenomena that are observable in biological systems

(Reynolds, 1987), (Zaera, Cliff, & Bruten, 1996). Coordinated movement and

cooperative transport is sometimes studied within the context of a gathering

task, and has been studied separately in both physical and simulated

environments. Cooperative transport is inspired by biological prey retrieval

models, which present many examples of the value of specialization, such as

the pushing versus pulling behaviors exhibited in stigmatic coordination that

allows several ants to transport a large prey (Kube & Bonabeau, 1999). Such

inspiration was used by the research of (Dorigo et al., 2004), (Nolfi,

Baldassarre, & Parisi, 2003) which described the evolution of coordinated

motion, and self-assembly in a simulated multi-robot system for the purpose

of cooperatively transporting objects. Similarly, the research of (Nolfi,

Baldassarre, & Parisi, 2003) described the evolution of particular group

formations in a simulated multi-robot system, which allowed efficient forms of

coordinated group movement across an environment towards a light or sound
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source. The research of (Baldassarre, Nolfi, & Parisi, 2003), (Dorigo et al., 2004),

(Nolfi, Baldassarre, & Parisi, 2003) has been reviewed in related work

(Nitschke, 2005), from the perspective of emergent cooperation, and is thus not

comprehensively described here.

Conclusions and Future Directions

In drawing conclusions for this chapter, it is important to note that the

chapters goal was not to present an exhaustive list of research relating to

emergent specialization, but rather to identify and present a set of pertinent

research examples that used biologically inspired design approaches for the

purpose of facilitating emergent behavioral specialization. Such research

examples were selected based upon results that indicated emergent behavioral

specialization as being beneficial for solving collective behavior tasks. Many

collective behavior task domains were highlighted throughout the chapter,

however, research examples were selected for review from collective gathering

and construction, collective resource distribution and allocation, pursuit-evasion,

collective herding, and multi-agent computer games.

Consequent of a review of this prevalent literature, two distinct forms of

specialization were identified. The first was termed behavioral and was defined

by specific functionality in an agents controller which dictated an agents motor

actuated output in response to its sensory inputs. The second was termed

morphological and was defined by specific functionality in an agents sensors

and actuators. However, chapter scope was limited to emergent behavioral

specialization. Specifically, the chapter was concerned with behavioral diversity

that emerges as a result of agents in a collective behavior system attempting to
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accomplish a common task.

The binding theme of the chapter argued, that the majority of collective

behavior research is currently analyzed and evaluated from empirical data

gathered and emergent behavioral specialization observed, without analytical

methods for identifying the means and cause of emergent specialization. That

is, a lack of principled design methodologies that would yield the advantage

and contribution of allowing researchers to construct collective behavior

systems so as to motivate desired forms of emergent specialization and thus

use it as a problem solver.

Another common theme of the literature reviewed, was that the use of

biologically inspired concepts which included evolution, self-organization,

and learning as design methods is still in a phase of research infancy.

Consequently, emergent specialization derived using such biologically

inspired design concepts is currently constrained to simple forms, dictated by

the limitations of equally simple collective behavior systems.

Given this general evaluation of the literature, it was possible to identify

several unresolved issues that inhibit the development of biologically inspired

design methods for synthesizing emergent specialization which could be

applied as a problem solver in collective behavior tasks.

First, it was evident that many researchers deem the simulation of

collective behavior systems to be an effective approach for investigating

emergent behavioral specialization, given that simulations provide a

convenient means for studying the conditions under which specialization

emerges. For example, the effects of parametric changes can be observed in a
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relatively short space of time. However, with notable exceptions, such as

SwarmBots (Dorigo et al., 2004) the identification and transference of

mechanisms motivating emergent specialization observed in simulation to

counter-part algorithms operating in physical collective behavior systems,

such as multi-robot systems, is not yet plausible. In the case of SwarmBots

(Dorigo et al., 2004), a simple task environment made the transference to a

physical environment possible, and emergent specialization was not

necessarily a problem solver for dynamic challenges in the environment, but

rather a solution to a given task that was emergent but not necessarily desired.

Second, in the pertinent research examples reviewed, the complete

potential of biologically inspired design, and the advantages of emergent

specialization were not always effectively exploited. For example, many

collective behavior systems, with notable exceptions such as division of labor

models applied to optimization tasks (Bonabeau et al., 1997), were simply

attempting to synthesize emergent specialization, or to demonstrate the

veracity of concepts such as self-organization, learning, and evolution for

deriving novel agent behaviors. Such concepts were rarely applied to the

formulation of design methods that aimed to derive emergent specialization as

a means of increasing task performance or addressing accomplishing

unforseen challenges in collective behavior tasks.

Third, there is currently no standardized benchmark or research test-bed

for testing, interpreting, evaluating, and classifying emergent specialized

behavior. RoboCup was included as an honorable mention in the chapter,

given that it provides an effective platform for testing and evaluating various
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forms of collective and individual behavior, emergent or otherwise,

implemented either within an agent simulator or a physical multi-robot

system. That is, collective behavior is simply evaluated within a competitive

game scenario, so collective behavior performance is determined according to

the evaluation criteria of the game. Another exception is collective gathering

and dynamic scheduling in distributed systems, which can be represented as

optimization tasks. In this case, standardized benchmarks exist in the form of

performance results yielded by classical adaptive approaches. This makes the

results of biologically inspired and classical methods to such tasks comparable.

However, with exceptions such as (Bonabeau et al., 1997), and (Theraulaz &

Bonabeau, 1995) many optimization tasks do not benefit from the use of

emergent behavioral specialization. Thus, the testing, interpretation, and

evaluation of emergent specialized behavior within the context of collective

behavior systems, is currently conducted according to the performance

benchmarks of the researchers own experimental simulation platform. This

means that the experimental results can only be compared within the context

of their own simulation environment. The development of methods and

principles for the design emergent specialization that could be equally applied

to physical collective behavior systems would remove this critical constraint.

Given these open research problems, one may conclude that if the notion

of emergent specialization as a problem solver within collective behavior tasks

is to gain any maturity and credibility, then collective behavior systems must

be built upon design principles or a methodologies that effectuate emergent

behavioral specialization for the benefit of collective behavior. Ideally, such

principles and methodologies must be proven for convergence to desired
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forms of collective behavior (achieved as a consequence of emergent

specialization), scalable and transferable to a counterpart situated and

embodied collective behavior task environment. However, the existence of the

open research problems described herein is both understandable and

justifiable given the preliminary nature of most collective behavior research

that aims to use emergent behavioral specialization as a means to solve, or

improve task performance.

However, it is evident from the research examples reviewed, that many

different forms of behavioral specialization have been successfully derived

within the context of collective behavior systems using concepts such as

learning and evolution as ad hoc design methods. As a logical progression, if

emergent specialized behavior is to be used as a means of adapting to and

deriving solutions to complex and dynamic task challenges in both simulated

and physical collective behavior systems, such as envisioned for swarm

robotic systems (Beni, 2004), then future research is obliged to look towards

addressing open problems delineated from current collective behavior

research results.
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Footnotes

1Examples of complex adaptive systems include social insect colonies,

biological neural networks, traffic jams, economies of a nation, as well as

industrial infrastructures such as energy and telecommunications networks

(Resnick, 1997). We deem intelligent complex systems to be a subset of

complex systems where autonomous software (simulated) or physically

embodied (robots) agents operate in order to solve a given task.

2The terms task, activity, role, and caste are defined as follows. Task: what

has to be done; Activity: what is being done; Role: the task assigned to an

individual within a set of responsibilities given to a group of individuals;

Caste: a group of individuals specialized in the same role (Kreiger & Billeter,

2000).

3The terminology biologically inspired artificial social system and collective

behavior system is used interchangeably throughout the chapter.

4Various definitions for numerous types of specialization have been

proposed across a broad range of disciplines. In The Wealth of Nations (Smith,

1904) Adam Smith described economic specialization in terms of division of

labor. Specifically stating that in industrialism, division of labor represents a

qualitative increase in productivity, and regarded its emergence as the result of

a dynamic engine of economic progress. Smith viewed specialization by

workers as leading to greater skill and greater productivity for given tasks,

which could not be achieved by non-specialized workers attempting to

accomplish those same tasks.
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5The allocation of agent labor within a group of agents is analogous to

resource allocation which derives from economic and game theory studies

(Axelrod, 1984). Such studies attempt to derive models that efficiently allocate

a limited amount of resources so as to accomplish a given task with the highest

degree of performance possible.

6The term eusocial describes the most highly developed form of animal

societies, such as those of colonial ants, termites, wasps, and bees. Typically

there is extensive division of labor and cooperation, with various castes

specializing in particular tasks, such as food-gathering, defense, or tending to

the young (Dictionary, 2000).

7Heterogeneity, and hence behavioral diversity, was defined as the

number of castes in the group, and specialization was the part of diversity that

was required to increase task performance.
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Figure Captions

Figure 1. Types of Specialization in Biologically Inspired Collective Behavior Systems.

The top left-hand side quadrant defines the scope of this chapter. Specifically, adaptive

systems that use heterogenous or homogenous design approaches with the aim of

deriving emergent behavioral specialization for solving collective behavior tasks. See

section Types of Specialization for details.




