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The stable functionality of networked systems is a hallmark of their natural abil-

ity to coordinate between their multiple interacting components. Yet, real world

networks often appear random and highly irregular, raising the question of what

are the naturally emerging organizing principles of complex system stability. The

answer is encoded within the system’s stability matrix — the Jacobian — but is

hard to retrieve, due to the scale and diversity of the relevant systems, their broad

parameter space, and their nonlinear interaction dynamics. Here, we introduce the

dynamic Jacobian ensemble, which allows us to systematically investigate the fixed-

point dynamics of a range of relevant network-based models. Within this ensemble,

we find that complex systems exhibit discrete stability classes. These range from

asymptotically unstable, where stability is unattainable, to sensitive, in which sta-

bility abides within a bounded range of the system’s parameters. Alongside these

two classes, we uncover a third asymptotically stable class, in which a sufficiently

large and heterogeneous network acquires a guaranteed stability, independent of

its microscopic parameters and of external perturbation. Hence, in this ensemble,

two of the most ubiquitous characteristics of real-world networks - scale and het-

erogeneity - emerge as natural organizing principles to ensure fixed-point stability

in the face of changing environmental conditions.

The study of complex systems is often directed towards dramatic events, such as cascading

failures1–5 or abrupt state transitions.2,4,6,8,10 In reality, however, these represent the exception

rather than the rule. In fact, the truly intriguing phenomenon is that, despite enduring constant

perturbations and local obstructions, many systems continue to sustain reliably stable dynam-

ics.7,11,12,14 This is achieved in the absence of a detailed design, as indeed, the dynamics of the

majority of complex systems are mediated by random, often extremely heterogeneous, networks,

comprising a large number of interacting components, and driven by a vast space of microscopic

parameters. What then are the roots of this observed stability?
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The answer lies in the system’s linear stability matrix, namely its Jacobian J , whose principal

eigenvalue λ determines its response to perturbation.15,16 According to linear stability theory,

perturbations may either grow exponentially (Re(λ) > 0), capturing instability, or decay expo-

nentially (Re(λ) < 0), if the system is stable. The challenge is that the structure of J remains

elusive, given the scale, diversity and multiple parameters characterizing real-world complex

systems.

To address this we derive the dynamic Jacobian ensemble, showing that for a rather broad

class of dynamics, stability is determined by a small set of analytically accessible parameters.

We further show that this ensemble predicts an emergent stability, asymptoticaly robust in

the thermodynamic limit (N → ∞). Therefore, it offers precisely, the desired natural design

principles to ensure complex system stability.17–19

Results

Fixes-point dynamics. Consider a complex system of N interacting components (nodes),

whose dynamic activities x(t) = (x1(t), . . . , xN (t))> are driven by pairwise interactions, po-

tentially nonlinear. The system’s fixed-points xα capture static states, which, unperturbed,

remain independent of time. The dynamics in the vicinity of these fixed-point can be examined

through the system’s response to small perturbations δx(t), which, in the linear regime, can be

approximated by

dδx

dt
= Jδx +O(δx2). (1)

Here J , an N × N matrix, represents the system’s Jacobian around xα, which approximates,

through a set of linear equations, the original nonlinear system’s dynamics in the perturbative

limit, i.e. small activity changes x(t) = xα+δx(t). Hence, J ’s spectral properties, and specifically

its principal eigenvalue λ, are crucial for characterizing the system’s fixed-point behavior.

Two factors shape J - the system’s topology, i.e. who interacts with whom, and its internal

dynamics, namely what is the nature of these interactions:

Topology. The first ingredient that impacts the structure of J is the network topology A, a

binary matrix (Aij ∈ (0, 1), Aii = 0), typically sparse and often highly heterogeneous.3 Designed

to capture the linear response between i and j, J ’s off-diagonal terms vanish if there is no direct

i, j link, i.e. Aij = 0 ⇐⇒ Jij = 0 for all i 6= j. If, however Aij = 1, then the relevant term is

assigned a weight Wij that captures the strength of the i, j linear dependence. Together, this

leads to

J = (A− I) ◦W, (2)

where the Hadamard product ◦ represents matrix multiplication element by element, and I is

the N × N identity matrix. In (2) the network structure (A) determines the non-vanishing

terms in J , and W determined their weights. The diagonal entries Jii are introduced through

the second term, I ◦W , where Wii quantifies xi(t)’s self-linear dependence.

Dynamics - the random matrix paradigm. To complete the construction of (2) we must

assign all weights W . In many of the traditional analyses these unknown weights are extracted

from two pre-selected probability densities, P0(w) and P1(w), for the diagonal and off-diagonal

terms, respectively. This gives rise to the Jacobian ensemble E(A,P0, P1), in which one first sets
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the topology A, then extracts weights from P0(w) and P1(w); Fig. 1a-c.

As a classic example for this ensemble, we consider May’s8 construction, in which A is an

Erdős-Rényi (ER) network, the off-diagonal weights follow Wij ∼ N (0, σ2), a zero-mean normal

distribution, and the diagonal entries are taken uniformly as Wii = 1. Hence, the interaction

strengths are potentially random, but the self-dynamics are driven by the system’s intrinsic

relaxation timescales, here normalized to unity. In Methods Section 1 we discuss more detailed

constructions, that later built on this random matrix paradigm.

The E(A,P0, P1) ensemble, described above, has two crucial shortcomings: (i) it provides no

explicit guidelines on how to connect P0(w) and P1(w) with the system’s specific nonlinear

interactions; (ii) by assigning A and W independently, it ignores the potential interplay between

the network structure and J ’s dynamic weights. This stands in sharp contrast with the frequently

observed fact that similar networks potentially exhbit profoundly distinct response patterns.22–24

How then do we appropriately assign the wights W in (2) to capture this interplay between

structure and dynamics?

The dynamic Jacobian ensemble

To construct predictive J matrices we consider each system’s specific interaction mechanisms.

For example, in epidemic dynamics, individuals interact through infection and recovery,9,26,27

in biological networks, proteins, genes and metabolites are linked through biochemical pro-

cesses11,12,29,31 and in population dynamics, species undergo competitive or symbiotic exchanges.13,15,33,35

Quite generally, these dynamic mechanisms can be represented by

dxi
dt

= M0

(
xi(t), f0i

)
+ g

N∑
j=1

AijM1

(
xi(t), f1i

)
GijM2

(
xj(t), f2j

)
, (3)

a dynamic framework recently introduced by Barzel and Barabási.22 Here M0(xi, f0i) captures

the self-dynamics of all nodes, and the product function M1(xi, f1i) ×M2(xj , f2j) describes the

i, j pairwise interaction. Each of these functions, Mq(x, fqi), q = 0, 1, 2, is characterized by

a set of parameters fqi, or - collectively f , capturing rate constants, that may be potentially

distributed across the system’s components. Hence, the functional form of Mq(x) is uniform

throughout the network, yet the specific rates and coefficients f are node/link specific. In a

similar fashion, the global interaction rate g increases/decreases the strength of all interactions,

while the specific i, j interaction strength is governed by the potentially diverse weight matrix

Gij . Together, (2.1) provides a generic template, allowing, by appropriately selecting Mq(x),

to cover a range of frequently used models in social,9,26 biological11–13,29,31 and technological36

systems (Fig. 2; see Methods Section 4 and Supplementary Section 1 for an expanded discussion

of Eq. (2.1)).

Dynamic Jacobians (Fig. 1h). To obtain J we relinquish the random matrix construction

E(A,P0, P1), and extract the Jacobian directly from Eq. (2.1). In Supplementary Section 2, we

show that this leads to a currently unexplored matrix ensemble, in which the Jacobian weights

W in (2) are strongly intertwined with the weighted topology A,G via

Wii ∼ C(f , g)dηnnd
µ
i (4)

for the diagonal weights Jii = −Wii, and
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Wij ∼ dνiGijd
ρ
j (5)

for the off-diagonal weights Jij = AijWij (i 6= j). In (4) and (2.4) di =
∑N

j=1AijGij represents

the weighted degree of node i, and

dnn =
1

N

N∑
i=1

1

di

N∑
j=1

AijGijdj (6)

represents the average weighted degree of a nearest neighbor node.2 Together these two pa-

rameters, di and dnn, capture the role of the weighted network topology (Fig. 1g). The four

exponents, Ω = (η, µ, ν, ρ) are determined by the dynamics, i.e. the functions Mq(x), hence

capturing the role of the system’s internal driving mechanisms (Fig. 1e). In case of multiple

fixed-points, we have Ω1,Ω2 etc., a potentially distinct exponent set per each fixed-point. The

analytical extraction of Ω from Mq(x) is summarized in Methods Sections 2,3. Finally, the

coefficient C(f , g) > 0 is governed by the rate constants f and g in (2.1), which do not play a

role in the scaling exponents Ω (Fig. 1f).

The resulting dynamic Jacobian in (4) and (2.4), our first key result, is fundamentally distinct

from the existing random matrix based constructions. On the one hand, the network structure

A continues to determine the non-zero entries, similar to the classic ensemble E(A,P0, P1). Also,

the typical magnitude of the diagonal entries depends on the system’s rates parameters through

C(f , g), once again, analogous, albeit not identical, to the selection of P0(w) in the existing

ensemble. However, the similarity ends there, as (4) and (2.4), in contrast to E(A,P0, P1), also

capture the role of the system’s nonlinearity. Specifically, they predict emergent patterns in the

structure of J , that are rooted in the interplay between topology and dynamics: the degrees

dnn, di, dj are extracted from the weighted network topology A ◦ G (Fig. 1g), while the scaling

exponents Ω are derived from the dynamic functions Mq(x) (Fig. 1e).

Therefore, we arrive at a new Jacobian ensemble E(A,G,Ω), which, unlike the random E(A,P0, P1),

accounts for the effect of the system-specific nonlinear interaction dynamics. Consequently, in

E(A,G,Ω), identical networks may give rise to highly distinctive Jacobian matrices, depending

on whether the interactions are, e.g., social, biological or ecological, or even on the specific

fixed-point within each type of interaction. This is thanks to the unique set of exponents Ω,

characterizing each of these systems/states (Fig. 1h).

Testing E(A,G,Ω). To examine predictions (4) and (2.4) we constructed a broad testing ground,

including seven relevant dynamic models from different domains: Epidemic - the SIS model9,26,27

for disease spreading; Regulatory - the Michaelis-Menten model11 for gene regulation; Inhibitory

- growth suppression in pathogen-host interactions;15 Biochemical - protein-protein interac-

tions12,29,31 in sub-cellular networks; Population 1, 2 - two models of mutualistic13 interactions

in population dynamics; and finally, Power - load distribution in electric transmission networks.

Applying each of these dynamics to five different model and relevant empirical networks, we

arrive at a total of 35 combinations of networks/dynamics, upon which we test our predicted

J-ensemble (a detailed description of all models/networks appears in Supplementary Sections 4

and 7; additional dynamics appear in Supplementary Section 5).

In Fig. 2 we present, for each system, its dynamic equation (blue), and the list of relevant

networks upon which it was tested (violet). In some cases the system features several fixed-
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points, for example, Epidemic (Fig. 2a) exhibits a healthy state (inactive x0) and a pandemic

state (active x1). These states are presented using a 3D visualization. The network is laid out on

the x, y plane, and the activities xi of all nodes are captured by the vertical z-axis displacement.

Hence under x0 all nodes remain on the x, y plane (z = 0), while in the active state x1 they

all have xi > 0. Finally, we display our predicted dynamic exponents Ω = (η, µ, ν, ρ) for each

system around its active state (orange); see Supplementary Section 4, where we also derive Ω

for the inactive states.

Perturbing the system around its active fixed-point, we constructed the Jacobian matrix J for

each of our 35 systems (Supplementary Section 7.2). In Fig. 3 we find that, indeed, the diagonal

(Wii) and off-diagonal (Wij) weights of our numerically obtained J (blue symbols) follow the

predicted scaling of (4) and (2.4) (orange solid lines). For example, in Epidemic we predict µ = 1,

while for Regulatory we have µ = 0, both scaling relationships clearly evident in Fig. 3b,d. This

means that extracting all diagonal terms independently from P0(w), as in E(A,P0, P1), misses

the distinct patterns that arise from the nonlinear Epidemic/Regulatory dynamics. Similarly,

the off-diagonal terms are proportional to d−1
i Gijd

0
j in Epidemic (Fig. 3c) and d0

iGijd
−2
j in

Regulatory (Fig. 3e) - once again, in striking agreement with our theoretical predictions (orange

solid lines). And yet, in stark contrast with the random construction E(A,P0, P1), where Wij

are extracted blindly from P1(w).

Our analysis further predicts that Ω depends only on Mq(x), thus independent of network

structure A, weights G, or coefficients f and g. We examine this in Fig. 3, by testing each of our

dynamics on a diverse set of networks, with different degree/weight distributions. As predicted,

we find that η, µ, ν and ρ are, indeed, universal, conserved across our diverse model (Erdős-

Rényi, Scale-free 1, Scale-free 2) and relevant empirical (Social 1,2, PPI 1,2, etc.) networks.

Hence, Ω captures the intrinsic, and most crucially, hitherto overlooked, contribution of the

nonlinear dynamics to the structure of J .

Together, our derivation demonstrates that: (i) Actual J are fundamentally distinct from the

commonly used random ensembles; (ii) Contrary to these ensembles, they feature non-random

scaling patterns in which topology (dnn, di, dj) and dynamics (Ω) are deeply intertwined; (iii)

These patterns can be analytically traced to the system’s dynamics Mq(x) through Eqs. (4) and

(2.4), giving rise to our new dynamic Jacobian ensemble E(A,G,Ω). Next, we use E(A,G,Ω)

to derive the conditions for Eq. (2.1)’s dynamic stability.

Dynamic stability

The dynamic stability around a given fixed-point is governed by J ’s principal eigenvalue λ,

requiring that Re(λ) < 0. To obtain λ, let us first focus on the role of the network topology

A,G. The ingredients of J ∈ E(A,G,Ω), as expressed in Eqs. (4) and (2.4), suggest that λ

is strongly linked to the network’s weighted degree density function P (d). This is indicated

directly through the dependence on di and dj , but also indirectly through the nearest neighbor

degree dnn, whose magnitude depends on the system’s degree-heterogeneity.1 For instance, in a

randomly wired network we have dnn = 〈d2〉/〈d〉,2,38 in which the second moment 〈d2〉 increases

with P (d)’s variance, and consequently with A,G’s heterogeneity. In case P (d) is fat-tailed, we

have1

dnn ∼ Nβ, (7)
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an asymptotic divergence with system size. Hence, β helps characterize the network’s degree-

heterogeneity, being β = 0 for homogeneous networks, in which P (d) is concentrated around its

mean, and β > 0 for heterogeneous A,G, where the variance is unbounded.

The remaining ingredients in (4) and (2.4) that may impact λ are Ω = (η, µ, ν, ρ) and C(f , g).

Combining all three contributions together, we show in Supplementary Section 3 that in E(A,G,Ω),

the principal eigenvalue asymptotically follows

Re(λ) ∼ NQ

(
1− C(f , g)

NS

)
, (8)

where Q = β
(
1 + ν + ρ− η/2

)
and

S = β(s + ν + ρ− µ− η). (9)

In (3.30), the parameter s depends on the sign of the interactions, being s = 1 under cooperative

interactions (positive Jij), such as in Epidemic or Regulatory, and s = 0 if the interactions are

adversarial (negative Jij), e.g, Inhibitory or Biochemical.

Equations (8)-(3.30), our second key result, uncover the asymptotic behavior of λ in the limit

of a large complex system N → ∞. Contrary to E(A,P0, P1), in which λ is fully determined

by A and G, here the exponents S and Q depend also on dynamics, via Ω. Most importantly,

these equations have crucial implications regarding the system’s fixed-point stability, giving rise

to three potential stability classes, uniquely predicted within our dynamic J-ensemble (Fig. 1i):

Asymptotic instability (S > 0, Fig. 1i, red). In case S in (8) is positive, we have, for suf-

ficiently large N , Re(λ) ∼ NQ > 0. Therefore, as the system size N is increased, such states

inevitably become unstable. Asymptotic stability (S < 0, Fig. 1i, blue). For S < 0 we have

NS → 0, the r.h.s. of (8) is dominated by the negative term, and hence Re(λ) < 0. Conse-

quently, here as N → ∞ stability becomes unconditionally guaranteed. Sensitive stability

(S = 0, Fig. 1i, green). Under S = 0 the system lacks an asymptotic behavior, and therefore,

its stability depends on C(f , g) in (8). If C(f , g) > 1 the system is stable, otherwise it becomes

unstable. Hence, in this class stability is not driven by the system size N , but rather by the

coefficient C(f , g), and consequently by Eq. (2.1)’s rate parameters f and g.

Stability classifier. The stability classifier S in (3.30) helps group all J ∈ E(A,G,Ω) into

distinct stability classes. It achieves this by identifying the relevant topological (β) and dynamic

(Ω) control parameters that help analytically predict the stability of any system within the form

of Eq. (2.1). We can therefore use S to predict a priori whether a specific combination of

topology and dynamics will exhibit stable functionality or not.

To examine S’s predictive power, we tested it extensively against a diverse set of complex

networks. Specifically, we used our model and empirical networks to extract 7, 387 Jacobian

matrices from the E(A,G,Ω) ensemble, with different sets of η, µ, ν and ρ. In Fig. 4a we show

the principal eigenvalue Re(λ) vs. S for the entire 7, 387 Jacobian sample. As predicted, we find

that the parameter S sharply splits the sample into three classes. The asymptotically unstable

class (red, top-right) has S > 0 and consequently also Re(λ) > 0, a guaranteed instability.

The asymptotically stable class (blue, bottom-left) is observed for S < 0, and has, in all cases

Re(λ) < 0, i.e. stable dynamics. Finally, for S = 0 we observe sensitive stability, with Re(λ)

having no asymptotic behavior, positive or negative (green). A small fraction (∼ 8%) of our
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sampled J matrices were inaccurately classified by S (grey), an expected consequence of the

approximate nature of S’s derivation (Supplementary Section 3).

The ingredients of dynamic stability

The parameter S in (3.30) reduces Eq. (2.1)’s dynamic stability into five relevant exponents.

The first four Ω = (η, µ, ν, ρ) are determined by the system’s intrinsic dynamics Mq(x), around

each of its fixed-points. The remaining exponent in (3.30), β, is independent of the dynamics,

determined solely by A,G, specifically by their weighted degree density function P (d), through

(3.1). Therefore, together, S captures the roles of both topology and dynamics, whose interplay

determines the system’s stability class around a specific fixed-point - stable, unstable or sensitive.

The only remaining factor in (8) is the coefficient C(f , g), whose value is driven by Eq. (2.1)’s

rate parameters f , g. Yet, as our analysis indicates, this factor is sidelined when N →∞ under

S 6= 0. We interpret this to mean that under asymptotic stability or instability, the system’s

countless microscopic parameters turn irrelevant, and the stable/unstable fixed-points of (2.1)

become ingrained into the system’s intrinsic dynamics, i.e. the functional form of Mq(x); see

Methods Section 4 and Supplementary Section 1 for an expanded discussion on this distinction.

To gain deeper insight, consider, for example, the factors that drive a system towards the

loss of stability. Most often such events result from external stress or changes in environmental

conditions.2 Such forces impact the system by perturbing its dynamic parameters, e.g., changing

the rates of specific processes. Seldom, however, do these environmental perturbations affect

the system’s built-in interaction mechanisms. Indeed, these mechanisms are ingrained in the

physics of the interacting components, and therefore they are unaffected by external conditions.

Hence, asymptotic stability (S < 0, N →∞) depicts robust dynamic states, that are insensitive

to changes in environmental conditions.

The role of degree-heterogeneity. The dependence of S in (3.30) on β highlights the crucial

role that P (d) plays in dynamic stability. To understand this, consider a homogeneous network,

such as ER with randomly assigned weights. Here P (d) follows a Poisson distribution, having

β = 0. Under these conditions we have S = 0 in (3.30), the system has no defined asymptotic

behavior, and hence it is sensitively stable - i.e. its stability depends on model parameters via

C(f , g). Hence, our predicted asymptotically stable/unstable classes depend on β > 0, indicating

that they emerge as a direct consequence of degree-heterogeneity. This suggests that a fat-tailed

P (d), indeed - among the defining features of many real-world complex systems,3 serves as a

dynamically stabilizing structure, locking-in specific fixed-points, in the face of a persistently

fluctuating environment.

To further uncover the roots of asymptotic stability/instability, we consider again E(A,G,Ω)’s

principal eigenvalue λ in (8). Its structure portrays stability as a balance between the posi-

tive, i.e. destabilizing, effect mediated by the network interactions, vs. the negative, stabilizing,

feedback, driven by the parameter C(f , g) in J ’s diagonal in Eq. (4); Fig. 4b. It is, therefore,

natural to enhance stability by increasing C(f , g), which, in effect, translates to strengthening

each node’s intrinsic self regulation. Equation (8) predicts that J becomes stable if C(f , g)

exceeds a critical value

C0 ∼ NS , (10)

beyond which λ turns negative. For asymptotically stable states (S < 0) we have, for sufficiently
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large N , C0 → 0, a guaranteed stability even under arbitrarily small C(f , g). In contrast, for

asymptotically unstable states (S > 0) we have C0 →∞, hence such systems are impossible to

stabilize even under extremely large C(f , g). We emphasize that C(f , g) is the only component in

(8) that is dependent on the system’s tunable parameters, and therefore having an unbounded

range of C-values under which the system remains stable (or unstable) guarantees that λ is,

indeed, unaffected by parameter perturbation, e.g., changing environmental conditions.

To test Eq. (10), in Fig. 4c-k we extract a set of three specific J matrices from E(A,G,Ω), repre-

senting systems from our three stability classes: JAS, asymptotically stable with Ω = (2, 2, 2,−1);

JSS, sensitively stable with Ω = (0,−1,−2, 0); and JAU, asymptotically unstable with Ω =

(1,−2,−1, 2). For each of these we plot C0 vs. N , capturing the level of negative feedback

required to ensure the system’s stability. Under ER (β = 0, Fig. 4i-k) we do not observe a

defined asymptotic behavior. The critical C0 does not scale with N , indicating that sufficient

perturbation to the model parameters can, indeed, affect J ’s stability.

In contrast, the same J matrices on our scale-free network SF1 (β = 0.6) exhibit a clear asymp-

totic behavior, congruent with prediction (10). For JAS we have C0 ∼ N−1.2, while under JAU

we observe C0 ∼ N1.8 (Fig. 4f-h, squares), precisely as predicted (solid lines). Finally, in JSS,

having S = 0, the system, again lacks an asymptotic behavior, and therefore can be stabilized

(or destabilized) under finite C0, independently of system size N (Fig. 4g).

Together, Eq. (10) helps us link the scale N of a complex system with its observed stability. As

opposed to the random matrix viewpoint of E(A,P0, P1), in which N has a destabilizing effect,

and hence large systems become unstable,8 our dynamic ensemble uncovers broad conditions

where the contrary is true, and N →∞, is, in fact, what anchors the system’s stability (Fig. 5).

Next, we return to our testing ground of dynamical systems (Fig. 2) to examine this asymptotic

stability, not just on artificially constructed J , but under the full nonlinear setting of Eq. (2.1).

Emergent stability. The stabilizing/destabilizing effect of N and P (d) is especially relevant

if (2.1) exhibits multiple fixed-points, for example, an undesirable x0 and a desirable x1. In

E(A,G,Ω) these two states can be potentially characterized by two different exponent sets Ω0

and Ω1, and consequently a different stability profile. If e.g., x0 is asymptotically unstable

(S > 0) and x1 is asymptotically stable (S < 0), then a large (N → ∞) heterogeneous (P (d)

fat-tailed) network will firmly reside only in x1, unaffected by perturbation to f or g.

To observe this we return to our testing ground of Fig. 2, this time focusing on dynamic models

that have multiple fixed-points. This includes Regulatory, Epidemic and Inhibitory, each of

which exhibits on top of its active state x1, in which all xi > 0, an inactive state x0 = (0, . . . , 0)>,

where all activities vanish (Population 1,2 also exhibit an inactive x0, however it is never stable,

see Supplementary Section 4.3).

First, we simulated Regulatory on an ER network, and varied the model’s two parameters fi,

the individual node degradation rate, and g, the global interaction strength. We find that when

the average 〈f〉 is large or, alternatively, when g is small the system resides in x0, whereas in

the opposite limit, it favors x1 (Fig. 6c-e, diamonds). This is precisely the sensitive stability, in

which the system’s fixed-point behavior is driven by its microscopic parameters. Repeating the

same experiment on our scale-free network SF1, we observe that x1 is sustained for a broader

range of 〈f〉 and g, hence SF1 is comparably insensitive to changes in these parameters (Fig.

6d-f, triangles). This robustness is a direct outcome of our classifier: x0 has Ω0 = (0, 0, 0, 0),

which in (3.30) predicts S = β > 0, while x1 has Ω1 = (0, 0, 0,−2), and hence S = −β < 0.

Therefore, on a large (N →∞) scale-free (β > 0) network, x0 becomes asymptotically unstable,
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and the system is forced to reside in the asymptotically stable x1.

To observe this systematically we seek the critical global weight gc, below which x1 becomes

unstable, and the system transitions to x0. Varying the system sizeN over 4 orders of magnitude,

from 10 to 2× 104, we observe first hand x1’s asymptotic stability: while under ER gc is almost

independent of N (Fig. 6g, diamonds), in SF1 it scales negatively with system size, approaching

gc → 0 in the limit N →∞ (triangles). Hence, as predicted, SF1’s x1 state remains stable even

under arbitrarily small gc, a stability entrenched by system size. This reconfirms prediction (10),

but this time, not on theoretically constructed J from E(A,G,Ω), as shown in Fig. 4f-k, but

rather on the actual numerically simulated dynamics of Eq. (2.1). Similar stability patterns are

also observed in Epidemic and Inhibitory (Fig. 6h,i and Supplementary Sections 4.1 and 4.5).

The role of the hub nodes. We, therefore, observe a qualitative difference between homo-

geneous vs. fat-tailed P (d), in which degree-heterogeneity can potentially afford the network a

guaranteed stability, that is asymptotically independent of microscopic parameters. This phe-

nomenon is rooted in the dominance of the hub nodes, whose dynamic behavior forces the entire

system towards stability/instability. In that sense, one can think of our classifier S as a mathe-

matical tool to predict precisely what will be the dynamic role of the hubs - whether the hubs

serve as stabilizers (S < 0), destabilizers (S > 0) or neither (S = 0).

Discussion and outlook

The linear stability matrix J carries crucial information on the dynamic behavior of complex

systems. Here, we exposed distinct patterns in the structure of J that arise from the nature

of the system’s interaction dynamics. These patterns are expressed through the four dynamic

exponents Ω = (η, µ, ν, ρ), which we link analytically to the system’s dynamic functions, Mq(x),

independently of the weighted network topology A,G or parameters f , g. We interpret this to

mean that Ω is hardwired into the system’s innate interaction dynamics, determined by the

dynamic model, e.g., Epidemic or Regulatory, but not by the specific model parameters or the

system’s underlying connectivity patterns. Therefore, our predicted Jacobian ensemble in (4)

and (2.4), as well as its associated stability classifier S in (3.30), both capture highly robust

and distinctive characteristics of the system’s dynamics, that cannot be perturbed or otherwise

affected by shifting environmental conditions.

Graph spectral analysis represents a central mathematical tool to translate network structure

into dynamic predictions.39–41 A network’s spectrum, i.e. its set of eigenvalues and eigenvectors,

captures information on its dynamic timescales, potential states, and - in the present context -

its dynamic stability. Most often, spectral analysis is applied to the network topology, namely

we seek the graph’s eigenvalues, thus overlooking information on the nonlinear dynamics that

occur on that graph. As an alternative, our E(A,G,Ω) ensemble suggests to apply spectral

analysis, not to the topology A (or the weighted A ◦ G), but rather to J , which, thanks to Ω

preserves the information of both structure and dynamics.

Strictly speaking, our analysis covers the Barzel-Barabási family of equations in (2.1). With

that said, it also shows strong numerical indications for broader relevance beyond this family

(Methods Section 5; Supplementary Section 5). Most importantly, it motivates a departure from

the decades old random matrix paradigm (E(A,P0, P1)), by showing that real-world Jacobians

are anything but random. Hence, while the analytically predictable scaling patterns observed

here are specific to Eq. (2.1), the notion that such patterns dominate the structure of J is,

likely, much more general, and should be pursued as a systematic road map by which to analyze

9



complex system dynamics.
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The dynamic Jacobian ensemble 𝔼(𝑨, 𝑮,𝛀)

𝑱 ∈ 𝔼 𝑨, 𝑮, 𝛀

(e) (f) (g)

(d)

(h) (i)

𝒅𝒊
𝝂𝒅𝒋

𝝆

𝒅𝒊
𝝁

𝑴𝟎,𝑴𝟏,𝑴𝟐 𝐟, 𝒈 𝑨𝒊𝒋, 𝑮𝒊𝒋

The random ensemble 𝔼(𝑨, 𝑷𝟎, 𝐏𝟏)

𝑷𝟎(𝒘)
Network Weights 

𝑷𝟏(𝒘)
𝑱 = 𝑨 − 𝑰 ⊗𝑾

𝑱 ∈ 𝔼(𝑨, 𝑷𝟎, 𝑷𝟏)
(a) (b) (c)

Parameters

𝑪(𝐟, 𝒈)

Figure 1: The dynamic Jacobian ensemble. To predict dynamic stability we seek the sys-
tem’s stability matrix J . (a)-(b) The classic approach is to structure J around the network
topology A, with weights extracted from two distributions: P0(w) for the diagonal entries Jii
and P1(w) for the interactions strengths Jij , i 6= j. (c) This provides J ∈ E(A,P0, P1), a
random-matrix based construction, whose stability is determined by the structure A and the
random weights W . (d) The dynamic J ensemble features emergent patterns that arise from: (e)
The functional form of Mq(x) (orange), capturing the system’s ingrained dynamics, e.g., social,
biological or technological. We derive Ω in Eqs. (4) and (2.4) directly from these three func-
tions. (f) The microscopic parameters f , g (turquoise) that provide the specific rate-constants
for (2.1)’s dynamic processes. For example, the infection rate in Epidemic (top), or the degra-
dation rate in Biochemical (bottom). These parameters are tunable, following changes in social
behavior (Epidemic) or temperature (Biochemical). Their impact on J is encapsulated within
the coefficient C(f , g) in (4). (g) A,G represent the weighted network (purple), expressed in J
via the density function P (d), the nearest-neighbor degree dnn in (6) and β in (3.1). (h) The
resulting J-ensemble, E(A,G,Ω), exhibits non-random scaling patterns. Similar to the random
E(A,P0, P1), the non-vanishing terms correspond to the network links, however, in contrast to
the random weights of E(A,P0, P1), here the weight of the i, j entry depends on di and dj , as
well as on Ω (orange captions). The result is a dynamic ensemble, in which identical networks
(A,G) yield highly distinctive J matrices depending on Mq(x), e.g., Regulatory (left), Epidemic
(center) or Biochemical (right). (i) The stability of J boils down to the classifier S in (3.30),
whose value depends on degree heterogeneity (β, purple) and on Ω (orange terms), but not on
the parameters f , g. Therefore, it provides a robust classification into stable (blue) or unstable
(red) dynamics, asymptotically insensitive to changes in f , g. Under S = 0 the system becomes
sensitive (green), and stability is driven precisely by f , g.
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Testing ground for 𝔼(𝑨, 𝑮,𝛀)

Model networks: 

Size: 𝑁 = 6,000,Av. degree 𝑘 = 6, Av. weight 𝐺 = 1.

• Erdős-Rényi. 𝐺𝑖𝑗 ∼ 𝒩(1, 0.1)

• Scale-free 1. 𝑃 𝑘 ∼ 𝑘−2.5, 𝐺𝑖𝑗 ∼ 𝒩(1,0.1)

• Scale-free 2. 𝑃 𝑘 ∼ 𝑘−2.5, 𝑃 𝐺 ∼ 𝐺−3

Empirial networks:

• Social 1/2. Epoch/UCIonline social networks

• PPI 1/2. Protein interactions in yeast/human 

• Microbial 1/2. Human gut microbiome

• Power 1/2. Power grids G.B. and Poland
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Extended dynamics 

Figure 2: Testing ground for the E(A,G,Ω) ensemble. We constructed different com-
binations of (weighted) networks A,G and dynamics Mq(x) to examine our J-ensemble. (a)
Epidemic. We implemented the susceptible-infected-susceptible (SIS) dynamics (grey box) on
a set of model and real-world networks (violet box). This system exhibits two potential fixed-
points (3D plots): inactive x0, in which all activities vanish, i.e. healthy, and active x1, where
all xi > 0, namely pandemic. In this 3D visualization the nodes i = 1, . . . , N are laid out on the
x, y plane and their fixed-point activity xi is represented by color (red - low, blue - high) and
vertical displacement (z-axis). Therefore, in x0 all nodes are on the x, y plane (z = 0), and in x1

they are distributed along z > 0 and range from red to blue. In each of these states the system
has a different set of exponents Ω and hence a different Jacobian J . Here we present Ω and S
for the non-vanishing state x1 (orange box). The remaining panels follow a similar format. (b)
Regulatory. Sub-cellular dynamics following the Michaelis-Menten model. Here Ω, S depend on
the model exponents a, h. (c) Population 1. Mutualistic interactions in, e.g., microbial communi-
ties. (d) Inhibitory. Suppression dynamics, e.g., between hosts and pathogens. (e) Biochemical.
Protein-protein interactions modeled via mass-action kinetics. This system exhibits a single
fixed-point. (f) Power. Synchronization dynamics between power system components. (g) Pop-
ulation 2. Mutualistic population dynamics with non-additive interactions, namely replacing
the term

∑N
j=1AijGijM2(xj) in Eq. (2.1) by M2(

∑N
j=1AijGijxj). (h) Our networks, including

Erdős-Rényi and scale-free with both normally and power-law distributed weights, together with
relevant empirical networks. A detailed description of all networks appears in Supplementary
Section 7.4. Together we arrive at a set of 35 combinations of networks/dynamics upon which
we test our theoretical framework. A detailed analysis of all dynamic models appears in Sup-
plementary Section 4. Note that Population 2 and Power (panels f,g) are not in the form of Eq.
(2.1), and hence they expand our testing ground beyond the bounds of our analytical framework
(Supplementary Section 5).
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Figure 3: Emergent patterns in the dynamic ensemble E(A,G,Ω). We implemented our
seven dynamic models, Epidemic, Regulatory etc., on relevant model and empirical networks, as
detailed in Fig. 2; see legend at bottom. Perturbing all nodes around their numerically obtained
fixed-point (x1) we constructed the Jacobian J . (a) The numerical simulations incorporate the
full complexity of Eq. (2.1): weighted network (purple), diverse parameters (turquoise) and non-
linear mechanisms (orange). This provides actual Jacobian matrices, obtained from numerical
runs of the nonlinear network models (Simulation, blue, top). We compare our simulation re-
sults with our predictions in (4) and (2.4) (Theory, orange, bottom). (b) The diagonal weights
Wii vs. di as obtained from Epidemic dynamics (symbols). We observe our predicted scaling (4)
with µ = 1 (orange solid line). The scaling is independent of A,G, observed consistently on all
our model/empirical networks - intrinsic to the Epidemic dynamics, as predicted. (c) The off-
diagonal weights Wij vs. our theoretical prediction of (2.4) with ν = −1, ρ = 0 (symbols). Once
again, we observe a perfect agreement between simulation (blue symbols) and theory (orange
solid line). We also include two relevant empirical networks, Social 1 and Social 2 (light blue
circles/squares), capturing online social dynamics. (d)-(e) Similar results are observed under
Regulatory (µ = ν = 0, ρ = −2) on both model and empirical networks (PPI 1 and PPI 2); (f)-
(g) Population 1 dynamics (µ = ν = 1, ρ = −2, empirical networks: Microbial 1 and Microbial
2); (h)-(i) Inhibitory dynamics (µ = 1, ν = 1/2, ρ = −1, empirical networks: PPI 1 and PPI
2); (j)-(k) Biochemical dynamics (µ = 1, ν = −1, ρ = 0, empirical networks: PPI 1 and PPI 2).
(l)-(m) Power dynamics (µ = 1, ν = ρ = 0, empirical networks: Power 1 and Power 2); (n)-(o)
Population 2 dynamics (µ = 0, ν = −2, ρ = 0, empirical networks: Microbial 1 and Microbial
2). In all systems, we find that real Jacobian matrices (blue symbols) are well-approximated
by our theoretically predicted scaling laws (orange solid lines). Data in all panels are logarith-
mically binned.18 Details on numerical calculation of J , log-binning and all networks appear in
Supplementary Section 7. 13
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Figure 4: Three classes of dynamic stability. We extracted 7, 387 Jacobian matrices
from the E(A,G,Ω) ensemble, using combinations of model/empirical networks with different
dynamic exponents Ω. For each J we calculated the principal eigenvalue λ and the stability
classifier S in (3.30). (a) Re(λ) vs. S for all 7, 387 J-matrices. We observe the three predicted
classes: Asymptotically unstable (red) in which S > 0 and hence, as predicted, we have also
Re(λ) > 0; Sensitively stable (green), where S = 0 and Re(λ can be both positive or negative;
Asymptotically stable (blue), where S < 0 and therefore Re(λ) < 0. Our classification showed ∼
4% inaccuracy on binary networks, ∼ 5% on weighted networks and ∼ 15% on weighted/negative
networks - a total discrepancy of ∼ 8% (grey dots) over the entire ensemble. (b) The value of
λ emerges from the competition between J ’s off-diagonal terms, representing positive feedback,
and the strength of the diagonal terms Jii (negative feedback). Therefore one can force a system
towards stability (Re(λ) < 0) by increasing the coefficient C in (4). (c)-(e) Taking three specific
J matrices, we plot Re(λ) vs. C, seeking the critical C0, in which Re(λ) becomes negative (grey
lines). This represents the critical C, above which stability is ensured. (f) For the stable JAS

(S = −1.2) we find that C0 decreases with N (squares), capturing the asymptotic stability, in
which as N → ∞ stability is sustained even under arbitrarily small C. The theoretical scaling
predicted in Eq. (10) is also shown (solid line, slope −1.2). (g) For JSS we have S = 0, the
critical C0 is independent of N , hence the system’s stability can be affected by finite changes
to its dynamic parameters. (h) The asymptotically unstable JAU (S = 1.8) has C0 →∞ in the
limit of large N , in perfect agreement with Eq. (10) (solid line). Here, no matter how large is
C, the fixed-point associated with JAU is always unstable. (i)-(k) For a homogeneous P (d), e.g.,
Erdős-Rényi, β vanishes and hence S = 0 in (3.30). Under these conditions, regardless of Ω, the
system is always sensitively stable and therefore C0 does not scale with N . This demonstrates
the role of degree-heterogeneity for ensuring stability in the face of changing environmental
conditions.

14



Random matrix paradigm
Unstable
𝑵 → ∞

𝒅𝒊
𝝂𝒅𝒋

𝝆

𝒅𝒊
𝝁

Dynamic Jacobian ensemble

Asymptotically stable 
states 𝑺 < 𝟎

(a)

(b)

Figure 5: Will a large complex system be stable? This question, first posed by May in
1972,8 captures a long standing challenge, fueled by the seeming contradiction between theory
and practice. (a) While empirical reality answers with an astounding yes, May’s mathemat-
ical analysis, based on random matrix theory, suggested the contrary, that large systems are
inevitably unstable, giving rise to the well-known diversity-stability debate. Here, the series of
growing networks (left to right) becomes increasingly unstable as we drift towards N → ∞.
In the works that followed it became clear that real-world complex systems are not random.
Rather they incorporate unique structural43–45 and dynamic18,19,46 constraints - or organizing
principles - that can potentially enhance stability. (b) Our dynamic Jacobian ensemble offers
such organizing principles, that emerge quite naturally in a variety of real-world systems (Fig.
2). This is expressed through the built-in scaling patterns in J (orange), which, in turn, predict
a broad class of asymptotically stable dynamic states (middle). In this class (S < 0) system
size plays a stabilizing, rather than a destabilizing role. Consequently, we arrive at quite broad
conditions where May’s original question receives a clear answer: large complex systems not only
can, but, often must be stable.
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Figure 6: Emergent stability in large heterogeneous networks. (a)-(b) Regulatory dy-
namics exhibit two fixed points (3D plots), each with its own J ∈ E(A,G,Ω), shown to the right
of each plot. The inactive x0 has Ω = (0, 0, 0, 0) and S = β > 0 - hence it is asymptotically
unstable. The active x1 has a different J , with Ω = (0, 0, 0,−2) and S = −β < 0, asymptotically
stable. (c) The state of Regulatory as obtained from numerical simulations on our Erdős-Rényi
(ER) network under varying g. The system transitions from x1 (right) to x0 (left) under small
g. This represents sensitive stability, as indeed predicted for ER, in which parameters, here g,
affect the state of the system. (d) To examine this systematically we plot the mean activity
〈x〉 vs. g as obtained for ER (diamonds) and for our scale-free network SF1 (triangles). Both
systems exhibit a critical gc, below which x1 becomes unstable and the system transitions to
x0. The crucial point is, however, that thanks to its heterogeneity SF1 exhibits an increased
robustness against g variations, with gc an order of magnitude lower than that observed for ER.
(e) 〈x〉 vs. 〈f〉 shows a similar behavior (here increasing 〈f〉 causes the system to collapse to
x0). (f) The state of SF1 under the same four conditions shown in panel (c). As predicted,
SF1 remains at x1 even when ER has already collapsed to x0. (g) gc vs. the system size N
as obtained from numerically simulating Regulatory dynamics. For ER we observe gc ∼ const
(diamonds), hence there is a typical gc below which the system transitions to x0. Consequently
x1 can be destabilized via parameter perturbation. Note that while N spans over four orders of
magnitude, gc varies by a mere ∼ 40%. In contrast, for SF1 we find that gc exhibits negative
scaling with N , approaching gc → 0 in the limit N →∞. This captures precisely the predicted
asymptotic stability, in which a sufficiently large and heterogeneous network is guaranteed to
stably reside in x1 even under arbitrarily small g (or large 〈f〉). (h)-(i) Repeating this exper-
iment for Epidemic and Inhibitory, we continue to observe our predicted asymptotic stability:
under SF1 we have gc → 0 as N →∞, whereas under ER gc is (almost) independent of N .
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Methods

1. Random matrix based Jacobian constructions

The random matrix paradigm was first introduced by May,8 seeking precisely the question we

address here (Fig. 5): will a large complex system be stable? In this original construction all

diagonal weights in (2) were set to Wii = 1, while the off-diagonal weights were extracted from

a zero-mean Gaussian distribution. The rationale is that the self regulation of all components is

uniform, driven by the system’s intrinsic timescales (normalized to unity), while the interaction

strengths vary randomly around zero. Such construction is a particular case of our Wii in (4),

setting C(f , g) = 1 and η = µ = 0. While the first assumption about C(f , g) has no significant

bearing on our analysis, the second, which ignores the dynamic exponents η, µ, is precisely the

crux of our proposed novelty. Indeed, in our framework, it is these two exponents (together

with ν and ρ) that capture the role of the nonlinear dynamics, ignored in the random matrix

constructions.

In the works that followed May’s abstract construction, researchers systematically introduced

more realism into J . First, by considering more realistic Aij , for example, small-world47 or

scale-free networks,38 which have, indeed, been shown to impact (2)’s spectral properties. Other

advances tackled P0(w) and P1(w), showing that different dynamics may lead to more specific

weight distributions, rather than the originally assumed Gaussian distribution. This is achieved

by conditioning P0(w) and P1(w) to account for specific patterns that arise from known dynamic

processes. For example, in predator prey relationships a positive Wij is often matched with a

negative Wji,
43 capturing the asymmetry in the benefit/loss of the predator and its prey. More

complex dynamic constraints may further impact the statistical properties of W , limiting the

Jacobian to a selected subset of the random matrix ensemble.46

2. Deriving the dynamic Jacobian ensemble

While we provide a complete and rigorous derivation of the E(A,G,Ω) ensemble in Supplemen-

tary Sections 1-3, below we include a shorthand version of this derivation, tracking the main

steps and important mathematical transitions leading to Eqs. (4), (2.4) and (3.30). For simplic-

ity, in this abbreviated analysis, we limit ourselves to systems with uniform weights/parameters.

Hence, in Eq. (2.1) we set the global and individual weights to g = Gij = 1, and take fqi = fqj
for all i, j = 1, . . . , N . Under these simplifications, we rewrite Eq. (2.1) as

dxi
dt

= M0

(
xi(t)

)
+M1

(
xi(t)

) N∑
j=1

AijM2

(
xj(t)

)
, (11)

omitting the link weights g,Gij and the parameters fqi, which are now identical for all nodes.

We emphasize that in our full derivation, as well as in our reported results and simulations,

we do not rely on these simplified assumptions, and only employ them here for brevity and

conciseness.

Fixed-point analysis. Starting from (11), we seek the system’s potential fixed-points via

M0(xi) +M1(xi)
N∑
j=1

AijM2(xj) = 0, (12)

where we use xi (omitting the t dependence) to denote the fixed-point xi = xi(t → ∞). To

express the summation over j in the l.h.s. we use
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〈M2(x)〉i� =
1

di

N∑
j=1

AijM2(xj), (13)

capturing a weighted average over M2(xj) across all of i’s nearest neighbors. Here, with all

link weights set to unity, di =
∑N

j=1Aij represents i’s binary degree. This generalizes to i’s

weighted degree if we reintroduce our weights g,Gij . In (13) we use the notation � to represent

a neighborhood average, namely an average over i’s surrounding nodes i�. Substituting (13)

into (2.6) we obtain

M0(xi) + diM1(xi)〈M2(x)〉i� = 0, (14)

which we further simplify to

R(xi) = qi (15)

where R(x) = −M1(x)/M0(x) and

qi =
1

〈M2(x)〉i�di
(16)

is node i’s inverse weighted degree. In Eq. (15), the function R(x) is only defined in case

M0(x) 6= 0. The treatment of M0(x) = 0 is done separately in Supplementary Section 2.5. We

can now extract the fixed-point xi by inverting R(xi) to obtain

xi = R−1(qi), (17)

allowing us to express the fixed-point activity of node i in function of its inverse degree qi. Here,

we rely on the implicit assumption that R(x) is invertible, allowing us to write R−1(qi) in (17).

As above, we employ this assumption here only for simplicity; in our complete derivation in

Supplementary Section 2, we show how to obtain xi also under non-invertible R(x).

Jacobian scaling - diagonal weights Wii. We now return to Eq. (11) to extract the Jacobian

weights Wii and Wij around the fixed-point obtained in (17). Starting with the diagonal terms,

we write

Wii =
∂ẋi
∂xi

∣∣∣∣
xi=R−1(qi)

=

M ′0(xi) +M ′1(xi)

N∑
j=1

AijM2(xj)


∣∣∣∣∣∣∣
xi=R−1(qi)

, (18)

where M ′q(x) = ∂Mq/∂x. Equation (18) represents a derivative of the r.h.s. of (11) taken around

the fixed-point xi, which we express via (17) as R−1(qi). Next we use R(x) = −M1(x)/M0(x)

to write M0(x) = −M1(x)/R(x), allowing us to express the first derivative on the r.h.s. of (18)

as

M ′0(xi) = −M
′
1(xi)

R(xi)
+
M1(xi)R

′(xi)

R2(xi)
, (19)

which, setting xi = R−1(qi), provides
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M ′0(x) = −
M ′1
(
R−1(qi)

)
qi

+
M1

(
R−1(qi)

)
R′
(
R−1(qi)

)
q2
i

. (20)

To obtain the denominators, qi and q2
i on the r.h.s. of (20) we used the fact that R(R−1(qi)) = qi.

We can now use (13) to express the sum on the r.h.s. of (18) as
∑N

j=1AijM2(xj) = di〈M2(x)〉i�,

which, according to (16) is equal to 1/qi. Collecting all the terms we arrive at

Wii = −
M ′1
(
R−1(qi)

)
qi

+
M1

(
R−1(qi)

)
R′
(
R−1(qi)

)
q2
i

+
M ′1
(
R−1(qi)

)
qi

, (21)

which in turn provides

Wii =
1

q2
i

Y
(
R−1(qi)

)
, (22)

where Y (x) = M1(x)R′(x).

Equation (22) expresses the diagonal Jacobian weight Wii in terms of i’s inverse degree qi ∼ d−1
i .

In the asymptotic limit of large di (small qi) we can approximate (22) by expanding Y (R−1(qi))

around qi = 0. We, therefore, express this function as a Hahn5 power series expansion in the

form

Y
(
R−1(qi)

)
=
∞∑
n=0

Bnq
Φn
i , (23)

allowing us below to examine the limit qi → 0. The Hahn series in (23) represents a generalization

of the Taylor expansion to allow for negative and real powers, hence Φn ∈ R captures a sequence

of real powers in ascending order, i.e. Φ0 < Φ1 and so on. In the limit qi → 0 we take only the

leading term qΦ0
i , which in (22) provides the scaling relationship

Wii ≈ B0q
−µ
i = B0

(
〈M2(x)〉i�di

)µ
, (24)

where µ = 2− Φ0. In the last step of (24) we reintroduced di using the definition of qi in (16),

hence also adding the i neighborhood average 〈M2(x)〉i�.

Equation (24) describes the weight of the diagonal Jacobian entry associated with a specific

node i. It is found to depend on the node’s degree di, but also on the activity of its neighboring

nodes via 〈M2(x)〉i�. To complete the scaling of Wii with i’s degree di we must characterize the

di-dependence of 〈M2(x)〉i�. The crucial point is that 〈M2(x)〉i� captures an average over i’s

neighborhood, not over the node i itself, and hence, on average, it is only indirectly affected by

i’s degree di. To express this more rigorously we write

〈M2(x)〉i� ≈ 〈M2(x)〉�f(di), (25)

replacing the average over i’s neighborhood (i�) with the ensemble average (�). This en-

semble average 〈M2(x)〉� = (1/N)
∑N

i=1〈M2(x)〉i� represents an aggregation over all nodes in

the network, and hence it is independent of i or di. To account for the potential di depen-

dence, we include, on the r.h.s. of (25), the implicit function f(di). This function, defined as

f(di) = 〈M2(x)〉i�/〈M2(x)〉�, captures the distinction between the conditional i-neighborhood

average (i�) vs. the network’s ensemble average (�). It, therefore, helps quantify potential
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statistical dependencies between i and its interacting neighbors i�. Hence, if the network is

randomly wired, i.e. lacks degree-correlations,1 we have f(di) = 1, independently of i. However,

if correlations are present, it will be expressed through a non-trivial f(di).

Extracting only the terms that depend on di we rewrite Eq. (24) as Wii ∼ fµ(di)d
µ
i , omitting

the terms B0, 〈M2(x)〉�, which are independent of di. Finally, if f(di) is sub-polynomial, it does

not contribute to the di scaling in the limit of large di. This allows us to write

Wii ∼ dµi , (26)

recovering the asymptotic scaling relationship of Eq. (4). In (26) we eliminated all terms that

do not contribute to the polynomial dependence on di, thus focusing solely on the obtained

scaling relationship. These terms may, however, depend on other parameters of (2.1). For

example, quite expectedly the term 〈M2(x)〉�, an average driven by the activity of all nearest

neighbor nodes, is, potentially dependent on the nearest neighbor degree dnn in (6). Similarly,

the coefficient B0 is, most often, a function of the parameters f and g in (2.1). These additional

dependencies are precisely what gives rise the pre-factors C(f , g)dηnn in (4), which we ignored in

the present derivation (see Supplementary Section 2 for the complete derivation, which covers

also these terms).

The substitution leading to Eqs. (25) and (26) represents our first approximation, where we

assume that 〈M2(x)〉i� is only weakly dependent on i’s degree di. This weak dependence is

precisely defined by the assumption that f(di) is sub-polynomial, e.g., f(di) ∼ log di. This

implies that the neighbors of a node i with degree di are, to a sufficient degree, statistically

similar to those of j whose degree is dj . Under this approximation, averaging over a node’s

neighborhood, conditional on that node’s degree, as we do in the r.h.s. of (24) is (almost)

the same as averaging over the neighbors of any other node, independently of degree (indeed,

up to the sub-polynomial correction f(di)). In Supplementary Section 1.2 we elaborate on the

relevance of this approximation, and in Supplementary Fig. 2 we explicitly measure f(di) for our

entire testing ground of networks/dynamics. We find that f(di) is, indeed, at most logarithmic,

supporting the relevance of our approximation for our set of real/model networks.

Off-diagonal weights Wij . To extract the off-diagonal terms i 6= j of E(A,G,Ω) we return to

Eq. (11), this time writing

Wij =
∂ẋi
∂xj

∣∣∣∣∣xi=R−1(qi)
xj=R

−1(qj)

=
∂

∂xj

M0(xi) +M1(xi)
N∑
n=1

AinM2(xn)


∣∣∣∣∣∣∣xi=R−1(qi)
xj=R

−1(qj)

. (27)

Keeping only the terms that explicitly depend on xj we obtain

Wij = M1(xi)AijM
′
2(xj)

∣∣∣xi=R−1(qi)
xj=R

−1(qj)

= M1

(
R−1(qi)

)
AijM

′
2

(
R−1(qj)

)
, (28)

helping us identify the two relevant dynamic functions M1

(
R−1(qi)

)
and M ′2

(
R−1(qj)

)
, whose

leading powers determine the scaling of Wij . Expressing these functions as Hahn series we write
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M1

(
R−1(qi)

)
=

∞∑
n=0

Knq
Πn
i (29)

M ′2
(
R−1(qj)

)
=

∞∑
n=0

Lnq
Θn
j , (30)

and in the limit of large di and dj (small qi, qj) take only the leading terms ∼ qΠ0
i and ∼ qΘ0

j .

Substituting these terms into (2.56), and using the fact that qi ∼ d−1
i , we arrive at

Wij ∼ dνiAijd
ρ
j , (31)

where ν = −Π0 and ρ = −Θ0, recovering the prediction of Eq. (2.4), under the current setting

of Gij = 1, i.e. unweighted.

The obtained exponents µ, ν and ρ are all extracted from the leading powers of our derived

dynamic functions Y (R−1(x)) in (23), M1(R−1(x)) in (29) and M ′2(R−1(x)) in (30). These

functions, in turn, are directly linked to Mq(x) in (2.1), and hence offer a direct procedure by

which to extract the E(A,G,Ω) Jacobian scaling relationships, as outlined in Fig. 1. The forth

and final exponent η in (4) can be extracted in a similar fashion, as we show in Supplementary

Section 2.

3. Practical summary - calculating Ω

While the derivation in Methods Section 2 may be elaborate, its practical outcome is rather

straightforward, providing a step-by-step recipe by which to construct the exponent set Ω =

(η, µ, ν, ρ) in Eqs. (4) and (2.4). First, we use the dynamic functions M0(x),M1(x) and M2(x)

of Eq. (2.1) to construct the three secondary functions

R(x) = −M1(x)

M0(x)
, Y (x) = M1(x)R′(x), Z(x) = R(x)M2(x). (32)

The functions R(x) and Y (x) are introduced in Methods Section 1 above; Z(x) is derived in

Supplementary Section 2. From (2.66) we extract four additional functions, which we express

through a Hahn power-series expansion as

M2

(
Z−1(x)

)
=

∞∑
n=0

Gnx
Ψn , Y

(
R−1(x)

)
=

∞∑
n=0

Cnx
Φn ,

M1

(
R−1(x)

)
=

∞∑
n=0

Knx
Πn , M ′2

(
R−1(x)

)
=
∞∑
n=0

Lnx
Θn

. (33)

We use R−1(x) and Z−1(x) to denote the inverse functions of R(x) and Z(x). The leading

powers (n = 0) in these Hahn series directly provide Ω via

µ = 2− Φ0, ν = −Π0, ρ = −Θ0, η = −Ψ0(µ− ν − ρ). (34)

Hence, to construct J ∈ E(A,G,Ω) we first generate the weighted network A ◦G, then extract

the weighted degrees di, dj of all nodes and the nearest neighbor degree dnn of Eq. (6). The
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resulting J satisfies

Jii ∼ −C(f , g)dηnnd
µ
i (35)

Jij ∼ dνiAijGijd
ρ
j , (36)

where the coefficient C(f , g) > 0 encapsulates the system’s specific rate parameters (we do

not attempt to predict this coefficient in the current formalism). The detailed derivation of Ω

appears in Supplementary Section 2, followed by a step by step application on all our testing

ground dynamics (Fig. 2) in Supplementary Section 4.

In the above formulation we have assumed that R(x) and Z(x) are invertible, writing R−1(x) and

Z−1(x) in (2.67). In Supplementary Section 2 we explain how to properly treat non-invertible

R(x), Z(x). In these sections, we also demonstrate how to extract J for system’s with multiple

fixed-points, and, specifically, in Supplementary Section 2.5, how to construct J around a trivial

fixed-point x = (0, . . . , 0)>.

4. The ingredients of E(A,G,Ω)

In Eq. (2.1) we distinguish between the nonlinear form of the functions Mq(x) and their specific

parameters fqi. The former, we argue, are designed to mathematically represent the nodes’

intrinsic driving mechanisms, distinguishing between, e.g., Epidemic vs. Biochemical dynamics.

The latter, on the other hand, describes the specific rates of these mechanistic processes, which

may, potentially change across nodes/links, or under different environmental conditions. To root

this distinction on mathematical grounds we refer again to the Hahn expansion, and express each

of the functions Mq(x, fqi) via

Mq(xi, fqi) =
∞∑
n=0

Cqn(fqi)x
Γqn
i . (37)

In (1.2) we distinguish between the role of the powers Γqn and that of the coefficients Cqn.

The powers, in most cases, characterize the functional form of Mq(x, fqi), differentiating, for

example, between Mq(x, fqi) ∼ x2 or Mq(x, fqi) ∼ x/(1 + x). These different functions are

designed to represent, mathematically, distinct microscopic mechanisms, e.g., social interactions

vs. biological processes. As these mechanisms are ingrained into the physics of the interacting

components, we take them, in our formulation, to be fixed and uniform across all nodes/links. In

contrast, the coefficients Cqn are often tunable, depending on the particular rates characterizing

each node’s dynamics, and hence they depend on the node specific parameters fqi.

To better understand this distinction let us consider a specific example of logistic growth, a

common mechanism in population dynamics. Within the dynamic framework of Eq. (2.1) this

mechanism is captured by M0(xi) = bixi(1 − xi/ci), which written in the form (1.2), provides

M0(xi) = bixi − (bi/ci)x
2
i . Namely the coefficients are C00 = bi and C01 = −bi/ci, and the

corresponding powers are Γ00 = 1 and Γ01 = 2. The crucial point is that while bi and ci, i.e.

the species growth rate and the system’s carrying capacity, are node dependent, and potentially

affected by environmental conditions, the functional form Mq(xi) ∼ xi(1 − xi) is intrinsic to

logistic growth, and cannot be easily perturbed. This is precisely captured by the separate role

of powers vs. coefficients: the tunable parameters bi, ci are expressed only within Cqn, whereas

the logistic growth functional form is embedded within the powers Γqn - here describing linear

growth (Γ00 = 1) followed by quadratic attenuation due to intra-species competition (Γ01 = 2).

Hence, from a strictly mathematical perspective, we define parameters as the factors affecting

the coefficients Cqn in (1.2), and functional form via the set of participating powers Γqn. Our
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interpretation of this mathematical distinction is that the powers are more intrinsic than the

coefficients. Indeed, in our logistic growth example, the two powers arise from the system’s

ingrained driving mechanisms - of growth (linear) vs. competition (quadratic). In contrast, the

coefficients depend on the parameters bi, ci, which may assume any value within the logistic

growth framework, and can even change due to external conditions.

The crucial point is that our Jacobian scaling exponents Ω depend only on the powers Γqn,

and are unrelated to the coefficients Cqn. Hence, in our example, all systems driven by logistic

growth (and a matching interaction dynamics) will have similar Ω, regardless of the specific

parameters bi, ci. This portrays Ω and its resulting S, as an innate built-in characteristic of the

system’s dynamics, detached from its multitude of microscopic parameters. Consequently, our

asymptotic stable/unstable classes are intrinsic to the system’s dynamics, insensitive to external

perturbation or to microscopic discrepancies.

5. Generality and limitations the E(A,G,Ω) ensemble

Dynamic limitations. Our ensemble E(A,G,Ω) was analytically derived under the conditions

defined by the Barzel-Barabási equation (2.1). Despite its general structure, we wish to empha-

size that this equation still excludes several families of dynamics. For example, non-additive

interactions or threshold models.49 Similarly, if the system incorporates a mixture of distinct

interaction mechanisms, such that every node/link is driven by its own idiosyncratic processes,

the dynamics cannot be cast into the form M0(x),M1(x),M2(x).

We note, however, that while our analytical derivations are, indeed, bounded by these restric-

tions, the family of potential dynamics included within the E(A,G,Ω) ensemble may, in fact,

be broader. Specifically, in Supplementary Section 5 we consider several expansions to Eq. (2.1)

that help us examine the applicability limits of our dynamic Jacobians:

• Non-factorizable interactions. Our testing ground includes Power dynamics, in which

the interaction term cannot be partitioned into a product M1(xi)M2(xj), but rather incor-

porates a diffusive mechanism of the form M(xj−xi). Such dynamics, excluded from (2.1),

arise in different contexts, from reaction-diffusion to synchronization,50,51 and despite the

fact that they are not covered by our anaytical framework, our analysis of Power indicates

that they continue to fall within E(A,G,Ω).

• Non-additive interactions. Another outlier in Fig. 2 is Population 2, in which the linear

sum
∑N

j=1M2(xj) is replaced by M2(
∑N

j=1 xj), again - outside the bounds of (2.1). Still,

as shown, e.g., in Fig. 3n,o, this system also has J ∈ E(A,G,Ω).

• Mixed dynamics. The last assumption we challenge is the notion that all components

are driven by similar dynamic processes, as expressed by the uniform functional form of

Mq(x) across all nodes. In Supplementary Sections 5.4 and 5.5 we examine, numerically,

systems with two or three competing self or interaction dynamics. The Jacobians of such

systems, we find, exhibit coexisting scaling relationships with exponent sets Ω1,Ω2, . . . ,

corresponding to the network’s distinct dynamic mechanisms. This captures a natural

generalization of E(A,G,Ω), that indicates the potential qualitative insight offered by our

analysis, even beyond Eq. (2.1)’s technical limits.

Topological limitations. Our predicted asymptotic stability/instability is driven by the limit

of large d, i.e. the hubs. It is therefore mainly relevant for degree-heterogeneous networks.

While extreme heterogeneity is, indeed, common in many biological and social systems, there

are areas, such as in ecological systems,52 were the networks tend to be more homogeneous.
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Under such conditions, our theory predicts that the system is in the sensitive class: it could be

stable, but its stability is not guaranteed in the face of parameter perturbation.

Finally, our asymptotic predictions capture the system’s global stability, but have no bearing on

the dynamic stability of small motifs or sub-networks, which may be locally unstable. Still in an

asymptotically stable system, the global impact of such unstable motifs, vanishes in the limit of

large N , and hence the system as a whole remains insensitive to these local discrepancies. We

discuss this in detail, including extensive numerical support in Supplementary Section 6.

Data availability. All empirical network data to retrieve the results shown here is available on-

line at: https://gitlab.com/meenachandrakala/Dynamic Stability/-/tree/master/Dynamic Stability.

Code availability. All code to reproduce the results shown here is available online at: https://gitlab.

com/meenachandrakala/Dynamic Stability/-/tree/master/Dynamic Stability.

26

https://gitlab.com/meenachandrakala/Dynamic_Stability/-/tree/master/Dynamic_Stability
https://gitlab.com/meenachandrakala/Dynamic_Stability/-/tree/master/Dynamic_Stability
https://gitlab.com/meenachandrakala/Dynamic_Stability/-/tree/master/Dynamic_Stability


Emergent stability in complex network dynamics

Supplementary information

April 25, 2023



Contents

1 Analysis framework 1

1.1 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Weighted topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Additional approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The Jacobian ensemble E(A,G,Ω) 7

2.1 The fixed-points x∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Diagonal terms Wii and W (d) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Evaluating 〈Mµ
2 (x)〉� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The off-diagonal terms Wij and W (d1, d2) . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Piecing together the Jij puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Impact of P (d) and dnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 J around a trivial fixed-point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Principle eigenvalue of J ∈ E(A,G,Ω) 23

3.1 Jacobians with positive weights s = 1 . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Jacobians with negative weights s = 0 . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Analyzing the dynamic models 30

4.1 Epidemic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Regulatory dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Population 1 dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Biochemical dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Inhibitory dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Extended dynamics 42

5.1 Power dynamics - testing Assumption 2 . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Non-additive dynamics - testing Assumption 3 . . . . . . . . . . . . . . . . . . . 43

5.3 Extinction dynamics - testing Assumption 4 . . . . . . . . . . . . . . . . . . . . . 45

5.4 Mixed-dynamics - testing Assumption 1 . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 Distributed powers - testing Assumption 1 . . . . . . . . . . . . . . . . . . . . . . 49

6 Local vs. global stability 51

7 Methods and data analysis 53

7.1 Numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.1.1 Numerical analysis of Power dynamics . . . . . . . . . . . . . . . . . . . . 53

7.2 Numerically estimating J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Logarithmic binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.4 Model and empirical networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



1 Analysis framework

Our work is based on two main pillars: (i) Analytical derivations, leading to our Jacobian

ensemble; (ii) Numerical simulations, examining the relevance of our theoretical predictions.

Naturally, our analytics rest on a set of approximations and clean model assumptions, as we

outline below. Our numerical support, on the other hand, incorporates the full complexity of

the system, using both model and empirical networks, and implementing the complete nonlinear

dynamics of our testing ground illustrated in Fig. 2 of the main text (i.e. not linearized or

otherwise approximated). This allows us to test the performance of our analytical assumptions

in realistic settings. Below we outline the main assumptions upon which we build our analytical

advances, and also list the extended numerical tests we perform to examine the applicability

limits of each of these assumptions.

We begin with Eq. (3) of the main text, which we write here again, for convenience

dxi
dt

= M0

(
xi(t), f0i

)
+ g

N∑
j=1

AijM1

(
xi(t), f1i

)
GijM2

(
xj(t), f2i

)
. (1.1)

The equation has three components: The weighted network topology A,G; the rate parameters

g and fi = (f0i, f1i, f2i), which we denote collectively by f ; and the dynamic functions Mq(x),

q = 0, 1, 2. We now list the assumptions we make on each of these components.

1.1 Dynamics

Assumption 1. In (1.1) we assume that the dynamic functions can be expressed as a Hahn

power series around xi = 0, writing

Mq(xi, fqi) =
∞∑
n=0

Cqn(fqi)x
Γqn
i (1.2)

for q = 0, 1, 2. Here Γqn represents a sequence of real powers, Γqn ∈ R, generalizing the classic

Taylor expansion to include also negative, rational or irrational powers. This allows us to

express via (1.2) practically any relevant nonlinear function including ones that cannot be Taylor

expanded around zero.

In (1.2) we distinguish between the coefficients Cqn and the powers Γqn. The former, we assume,

depend on fqi, and may therefore be distributed across all nodes. The latter, on the other hand

are uniform, capturing the shared dynamic processes across all network components. Hence,

our formulation asserts that the powers that participate in (1.2) define the system’s dynamics,

while the coefficients capture each node’s potentially idiosyncratic rate parameters. This, we

emphasize , is our assumption, that the dynamics can be expressed in this way, i.e., node/link

specific coefficients, but fixed powers. The interpretation and rationale behind this assumption

we discuss in the main text, and, in more detail, through the examples below.

Assumption 1’s motivation. To get a sense of Assumption 1 in practice we consider three

functions that appear in our testing ground - logistic growth (Population), mass-action kinetics

(Biochemical) and the Hill function (Regulatory). The first of these three can be expressed via

(1.2) as
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Mq(xi, fqi) = bixi

(
1− xi

ci

)
= bixi −

bi
ci
x2
i (1.3)

having coefficients bi and −bi/ci, and powers x1
i and x2

i . This can be cast on the form of (1.2)

by setting C00 = bi, C01 = −bi/ci and Γ00 = 1,Γ01 = 2. Here, in this context, Assumption 1 is

taken to mean that all nodes undergo the same process of logistic growth, following the form ∼
xi(1−xi), i.e. the powers 1 and 2. However this logistic process may be characterized by different

node-specific rates, namely, bi, the growth rate and ci, the environment carrying capacity, are

potentially i-dependent. This potential diversity is expressed via the coefficients C00 and C01,

which are indeed the only factors in (1.3) that depend on bi, ci. This clearly demonstrates

the different role of the two factors: the powers capture the defining features of logistic growth

- linear reproduction (x1
i ) attenuated by quadratic competition (−x2

i ) and therefore they are

identical for all nodes; the coefficients, on the other hand, incorporate the specific rates of these

two processes, which may change across nodes or due to shifting environmental conditions.

In mass-action-kinetics we consider interaction processes of the form aXi+ bXj
g−→ Xij , in which

a copies of Xi and b copies of Xj combine to form the compound molecule Xij . This, in (1.1)

leads to an interaction term following gGijx
a
i x

b
j , having the rate constant gGij (potentially link-

specific) and the powers a, b. Here the powers represent the order of the interaction, which

is determined by stoichiometry, and hence cannot be easily perturbed. On the other hand,

the coefficient is the reaction rate, which is, indeed, subject to external perturbation by, e.g.,

changing temperature or chemical affinity.

As our third example, we consider a Hill function, often encountered in regulatory or population

dynamics, following

Mq(xi, fqi)
xhi

1 + (xibi)
h

=

(
1

bi

)
xhi −

(
1

bi

)2

x2h
i + · · · =

∞∑
n=0

(−1)n
(

1

bi

)n+1

x
(n+1)h
i . (1.4)

Here we have Cqn(fqi) = (−1)n(1/bi)
n+1 and Γqn = (n + 1)h. Therefore, in this example, bi is

considered a rate parameter, affecting the coefficients, whereas h is intrinsic, embedded in the

powers. Indeed, h here affects the functional form of Mq(x), by controlling the saturation rate of

the Hill function, while bi determines the upper value of the saturation, which, as our formalism

indicates, is less intrinsic.

To summarize: we consider all (potentially nonlinear) functions Mq(x) that can be expressed

via (1.2); we allow diversity in the coefficients Cqn, but assume uniform powers Γqn. Hence all

Mq(x) are of the same family or functional form, e.g., ∼ bix(1 − x/ci), but with distributed

parameters bi, ci. Therefore, parameters, in our definition, are factors that affect Cqn, but do

not feed into the powers Γqn.

Outcome 1 - derivative functions. Throughout our derivation we apply different mathe-

matical operations on Mq(x), such as multiplication (M1 ×M2), division (M0/M1), derivation

(M ′1), inversion (M−1
0 (x)) or composition (M0(M1(x))). Each of these operations preserves the

separation between Cqn and Γqn, and hence our distinction between the node/link dependent co-

efficients vs. the uniform powers is equally preserved. For example, in case F (x) = M1(x)×M2(x)

it yields a new Hahn series, whose coefficients comprise products of the form C1nC2m and whose

powers are constructed from sums of the form Γ1n+Γ2m. Therefore, F (x)’s expansion continues

to have parameter dependent coefficients alongside parameter independent powers. A similar
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separation is preserved for each of the other operations mentioned above.

Testing the limits of Assumption 1. In Supplementary Sections 5.4 and 5.5 we challenge

Assumption 1 and analyze systems with mixed-dynamics, in which nodes/links are characterized

by two or more different power sets Γqn, or by a continuum of powers. This helps generalize

(1.1) to treat systems with several competing dynamic mechanisms.

Assumption 2. In (1.1) we take the interaction term to be factorizable, writing it in product

from M1(x) ×M2(x). This is, indeed, a common structure, observed in our range of social,

biological and technological systems, as can be observed in Fig. 2 of the main text. It excludes,

however, several forms of dynamics, most notably - diffusive dynamics, in which the interaction

follows M(xj − xi).

Testing the limits of Assumption 2. This assumption, while helping our analytical deriva-

tions, is by no means essential, and can, in practice, be relaxed. We demonstrate this by deriving

the Jacobian from our Power dynamics (Supplementary Section 5.1, in which the interaction is

given by M(xi, xj) ∼ sin(xj − xi).

Assumption 3. Our final dynamic assumption is that the interactions are additive, allowing us

to express them as
∑N

j=1AijGij · · ·M2(xj). More generally, one can also writeM2(
∑N

j=1AijGijxj),

in which i receives a nonlinear cumulative input from its surrounding neighbors.

Testing the limits of Assumption 3. This assumption is challenged by our application to

Population 2 dynamics in Sec. 5.2, which is specifically designed around the form M2(
∑

j · · · )
rather than

∑
j · · ·M2(xj).

Assumption 4. Equation (1.1) exhibits at least one fully positive fixed-point x∗ = (x1, . . . , xN ), xi ≥
0, around which we seek to construct J and assess its stability. In this notation we denote the

fixed-point by omitting the t dependence, i.e. xi instead of xi(t), expressing the fact that these

are stationary states.

Testing the limits of Assumption 4. In Sec. 5.3 we investigate population dynamics with a

mixture of cooperative and adversarial interaction (positive/negativeGij), under which a varying

fraction of nodes undergoes extinction. We seek the limits of our framework’s applicability under

these conditions by observing our predicted J-patterns on the set of surviving nodes.

1.2 Weighted topology

The weighted network topology is given by A ⊗G, where the Hadamard product ⊗ represents

matrix multiplication element-by-element. The N × N adjacency matrix A is large (N → ∞)

sparse (
∑

i,j Aij/N
2 � 1), has no isolated components and binary (Aij ∈ {0, 1}) with a vanishing

diagonal (Aii = 0). The elements of the weight matrix G ≥ 0 are drawn at random from P (G),

capturing the probability density for a random weight to have Gij ∈ (G,G+δG). We categorize

all nodes via their binary and weighted degrees

ki =
N∑
j=1

Aij , di =
N∑
j=1

AijGij , (1.5)

the former discrete (ki = 1, 2, . . . ) and the latter continuous (di ∈ R). The network is, therefore,

characterized by the degree-distribution P (k), capturing the probability that a randomly selected

node i has ki = k, and by the density function P (d), capturing the probability density that

di ∈ (d, d+ δd). For simplicity, we use a loose notation P (x) to denote both discrete probability
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functions (P (X = x) and continuous density functions (PX(x)). Therefore, the specific meaning

of P (x) should be deduced from context, based on the nature of x, continuous or discrete.

In (1.1) both P (k) and P (d) can take any arbitrary form, including homogeneous (e.g., Poisson,

exponential) or fat-tailed distributions (e.g., scale-free). This is clearly observed, for instance, in

Fig. 3 of the main text, where we implement our analysis on both Erdős-Rényi (ER) networks

and scale-free (SF) networks with different weight distributions, alongside an array of empirical

networks. Having said that, we also emphasize that many of our results are linked to degree-

heterogeneity, from the scaling of Jij with di, dj to the asymptotic stability that relies on β > 0 in

Eq. (9) of the main text. Therefore, such heterogeneity in P (k) or P (d), while, strictly speaking,

is not a necessary condition, does, in fact, represent an underlying motivation for parts of our

analysis.

In our analysis we encounter several average quantities extracted from P (k), P (d). Most nat-

urally, the average degree 〈k〉 or the average weighted degree 〈d〉. Beyond these immediate

statistics we also encounter neighborhood averages, which we denote by

〈X〉i,� =
1

di

N∑
j=1

AijGijXj . (1.6)

This captures the weighted average over observable Xj extracted from node i’s direct network

neighbors. In (1.6) we use the symbol � to represent a neighborhood, hence i,� is the group

of i’s direct neighbors. For example, 〈d〉i,� represents the average weighted degree of all nodes

surrounding i. This allows us to express the average neighbor node dnn, appearing in main text

Eq. (6), via

dnn = 〈d〉� =
1

N

N∑
i=1

〈d〉i,�. (1.7)

Here, in addition to our paper’s notation dnn, we also used our currently introduced � to express

the neighborhood average. This form of neighborhood averaging is, in fact, naturally ingrained

in our dynamic equation (1.1), where we can use (1.6) to express the summation on the r.h.s. as

N∑
j=1

AijGijM2

(
xj , f2j

)
= di〈M2(x)〉i,� ≡ di〈M〉i,�. (1.8)

This represents a direct application of (1.6) over the observable

Mj = M2(xj , f2j). (1.9)

Therefore, 〈M〉i,� denotes the (weighted) average value of M2(xj , f2j) within i’s direct neigh-

borhood.

Finally, another form of averaging we encounter during our analysis is the degree-conditional

averages 〈X|d〉 and 〈X|d〉�. First we define the set

Q(d) =
{
i ∈ {1, . . . , N}

∣∣∣di ∈ (d, d+ δd)
}
, (1.10)
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comprising all nodes whose weighted degree is in the range (d, d+ δd). Such binning within the

interval (d, d + δd) is required since d is a continuous variable, and hence writing di = d yields

a group of measure zero. The conditional averages are then defined as

X(d) = 〈X|d〉 =
1

|Q(d)|
∑
i∈Q(d)

Xi (1.11)

Xnn(d) = 〈X|d〉� =
1

Q(d)

∑
i∈Q(d)

〈X〉i,� =
1

|Q(d)|
∑
i∈Q(d)

1

di

N∑
j=1

AijGijXj , (1.12)

where |Q(d)| is the number of nodes in Q(d). Here X(d) is the average observable Xi for nodes

i ∈ Q(d), thus, for example, x(d) represents the average activity of nodes with weighted degree

d. Similarly, when plotting Wii vs. di in Fig. 3 of the main text, then, formally speaking, we

measured WDiag(d), i.e. the average diagonal term of W over all nodes i ∈ Q(d).

The second average, Xnn(d) in (1.12), is constructed from the neighborhood average taken over

all nodes in Q(d). It is, therefore, designed to characterize neighbors of nodes in Q(d), not the

Q(d) nodes themselves. For example, xnn(d) is the average activity of a randomly selected node

j, given that this node is a neighbor of i ∈ Q(d). Hence (1.11) averages over i, conditional on

i’s degree, while (1.12) averages over i’s neighbors conditional on i’s degree. The former, we

emphasize, captures a direct dependence on the node’s degree, while the latter is indirect, since

the conditionality is on the neighbor’s degree.

To express these conditional averages we use

X(d) = 〈X|d〉 = 〈X〉fX(d) (1.13)

Xnn(d) = 〈X|d〉� = 〈X〉�fX,�(d) (1.14)

where the functions fX(d) and fX,�(d) help link between the ensemble averages 〈X〉, 〈X〉� and

and the d-conditioned averages 〈X|d〉 and 〈X|d〉�. We, therefore arrive at four distinct forms

of averaging: (i) 〈X〉 - the typical value of observable X of a randomly selected node; (ii) 〈X〉�
- the typical value of observable X of a randomly selected neighbor; (iii) 〈X|d〉 - the typical

value of X of a randomly selected node within Q(d); (iv) 〈X|d〉� - the typical value of X of a

randomly selected node, who has a neighbor within Q(d).

Averages (i) and (ii) above represent ensemble averages and (iii) captures the direct dependence

of observable Xi on di. To evaluate (iv) via (1.14) we list below several approaches by which to

approximate fX,�(d):

Mean-field. The classic mean-field approximation assumes that all components have a statis-

tically similar surrounding. This translates to fX,�(d) ≈ 1 in (1.14), namely that Xnn(d) is

approximately independent of d. Under this approximation, individual nodes may be diverse,

and hence X(d) may be strongly dependent on d, yielding a potentially broadly distributed

X across all nodes. However, the neighborhoods are assumed to be statistically uniform, and

hence all nodes are, on average, exposed to a similar set of neighbors. In simple terms, consider

i ∈ Q(d) and j ∈ Q(d′), where d 6= d′. Node i’s observable Xi is, on average X(d), potentially

distinct from j’s X(d′). Yet, i’s ki neighbors and j’s kj neighbors are both extracted from the

same statistical pool, and therefore, regardless of the individual differences between Xi and Xj ,

their neighborhoods are, on average, the same, i.e. Xnn(d) ≈ Xnn(d′).
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This approximation is exact in the limit where degree-correlations vanish, e.g., the configuration

model1 framework, where, indeed, the information about i’s degree has no bearing on the

statistical properties of its neighbor j. It thus allows us to replace conditional averages Xnn(d)

by the relevant ensemble average 〈X〉� = Xnn. We emphasize that this approximation only

neglects the indirect dependencies (�), but continues to enable the individual node diversity via

fX(d), which may depend quite strongly on d.

Assumption 5. In our derivation we employ a significantly weaker assumption than the mean-

field above. While mean-field implied fX,�(d) ≈ 1, we, instead, assume that

fX,�(d) ∼ F (d)dα, (1.15)

where F (d) is sub-polynomial, e.g., F (d) ∼ log(d), complemented by a polynomial dependence

with a leading exponent α. The exact structure of (1.15) depends on the specific observable X

and on the detailed weighted network topology, which determines the level of degree-correlations

in the system, i.e. how much it deviates from mean-field. Specifically, in case alpha = 0, we have

fX,�(d) ∼ F (d), sub-polynomial. This represent weak degree-correlations, in which fX,�(d) 6= 1

(as in the mean-field approximation), but still, in the limit of large d, it does not scale with d.

Our derivation in the following sections can treat both strong (α 6= 0) and weak (α = 0) degree-

correlations by introducing α where relevant. The specific value of α, however, for any given

observable X can only be extracted from numerical/empirical data, as we have no analytical

basis for a priori predicting α. Therefore, where relevant, we measure fX,�(d) explicitly, from

each of our networks/dynamics to assess the weak/strong degree-correlations.

1.3 Parameters

Assumption 6. The parameters fi may be, potentially, distributed across all nodes. In our

derivation we assume that the assignment of these parameters is done at random. Therefore, we

expect negligible correlations between fi and A,G. As a result, i’s parameters fi are statistically

independent of i’s degree di. Consequently, if we consider the conditional average 〈fi|d〉, carried

out over nodes with an assigned degree d, it is, statistically, the same as 〈fi〉, i.e. the ensemble

average. As an example, which will become useful below, we can, specifically apply this to the

coefficients of the Hahn expansion in (1.2), writing

〈Cqn(fqi)|d〉 = 〈Cqn(f)〉, (1.16)

taken to mean that if we average any of (1.2)’s coefficients associated specifically with nodes in

Q(d) we obtain the same outcome as averaging over the entire node ensemble. In simple terms

parameter -wise nodes sampled from Q(d) are statistically similar to those from Q(d′).

1.4 Additional approximations

While the above description outlines our fundamental model assumptions, in some instances we

also use approximations to these assumptions that help us (i) advance analytically where we

cannot analyze the exact system; (ii) offer a more concise derivation, avoiding overly complicated

and cumbersome calculations:

Mean-field. In few specific steps during our derivation we approximate 〈Mq(x)〉 ≈ Mq(〈x〉)
(see Sec. 2.2.1). This is exact in case Mq(x) is linear, and justified if x is narrowly distributed.
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Another option, which occurs quite frequently in many relevant models, is that Mq(x) is sub-

linear, for example, the saturating function M2(x → ∞) → 1 observed in many interactions.

In this latter case, even if x is broadly distributed, Mq(x) is still bounded, and hence 〈Mq(x)〉
can be evaluated via mean-field. We discuss the validity of this approximation in the relevant

locations, and emphasize that, in most cases, it helps us avoid overly sophisticated notations and

derivations, but, as our results indicate, it has little impact on the accuracy of our predictions.

Star-approximation. In Sec. 3 we employ a star-approximation, simplifying A into a single

hub and spoke network. This is, of course, a crude simplification, needed only to extract the

principal eigenvalue λ (Eq. (8) of the main text), but unrelated to our derivation of the Jacobian

J itself. Hence the ensemble E(A,G,Ω) is derived under Assumptions 1 - 6 above, and only

λ requires the star simplification. Due to the approximate nature of Sec. 3’s derivation, we

accompany is by extensive numerical support, covering ∼ 104 independently sampled Jacobian

matrices.

2 The Jacobian ensemble E(A,G,Ω)

To analyze stability we seek the structure of the Jacobian matrix J , as extracted from the

system’s specific nonlinear interaction mechanisms. We first rewrite Eq. (1.1) as

dxi
dt

= Fi
(
x(t)

)
, (2.1)

where

Fi
(
x(t)

)
= M0

(
xi(t), f0i

)
+ g

N∑
j=1

AijM1

(
xi(t), f1i

)
GijM2

(
xj(t), f2j

)
, (2.2)

and denote its fixed-point(s) by x∗ = (x1, . . . xN )>, omitting the t-dependence to capture their

stationary state. These fixed-points are obtained by solving the equilibrium equation

Fi(x
∗) = 0. (2.3)

To assess the dynamic stability of each of Eq. (2.3)’s solutions we track their response to small

perturbations, via the Jacobian

Jij =
∂Fi(x)

∂xj

∣∣∣∣∣
x=x∗

, (2.4)

whose structure we obtain below. Writing

J = (A− I)⊗W (2.5)

we treat separately the diagonal terms Jii = −Wii and the off-diagonal terms Jij = AijWij (I

represents the identity matrix).
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2.1 The fixed-points x∗

We consider systems of the form (2.1) that exhibit at least one fully positive fixed-point x∗.

First, using Eq. (2.2) we write

M0(xi, f0i) + g
N∑
j=1

AijM1(xi, f1i)GijM2(xj , f2j) = 0, (2.6)

seeking the potentially multiple equilibrium solutions of the system. Next, we use (1.8) to

express the sum on the r.h.s. of the equation, obtaining

M0(xi, f0i) +M1(xi, f1i)gdi〈M〉i,� = 0, (2.7)

a direct equation for i’s fixed-point value xi. For certain dynamics Eq. (2.7) has a trivial solution

in which M0(xi) = M1(xi) = 0. Most often this solution captures an inactive state in which all

xi = 0. Such solutions are treated separately in Sec. 2.5. Here we focus on the Jacobian around

the non-trivial states of the system, where M0(xi, f0i) 6= 0.

For these non-trivial cases we rewrite (2.7) as

Ri(xi) =
1

〈M〉i,�gdi
≡ qi, (2.8)

where

Ri(xi) = Ri(xi, f0i, f1i) = −M1(xi, f1i)

M0(xi, f0i)
(2.9)

and qi defined in (2.8) is node i’s inverse degree, whose value scales as qi ∼ d−1
i . The function

Ri(xi) is directly attainable from the system’s dynamics, through M0(xi, f0i) and M1(xi, f1i).

This function depends on i through the parameters f0i, f1i, and hence Ri(xi) is potentially

distinct from Rj(xj).

We can now extract xi by inverting the function Ri(xi) in (2.8), providing us with

xi = R−1
i (qi), (2.10)

in which i’s fixed-point activity is described in terms of its inverse degree. In certain cases Ri(xi)

in non-monotonic, and hence R−1
i (qi) is ill-defined. This indicates that Eq. (2.6) has several

solutions, capturing multiple fixed-points of the system. For example, in Fig. 7a we illustrate a

function R(x) in which R(x) = q has three distinct solutions, represented by the red, yellow and

green dots. Therefore, R−1(x) assumes three separate values at x = q, formally, an undefined

function (Fig. 7b). To observe each of these solutions via (2.10) we focus on the different branches

of R(x) separately: first we plot R(x). Then if it is non-monotonous, we identify its extremum

points. This allows us to construct the different invertible branches of R(x), for instance the one

including only the maximum point (Branch 1, Fig. 7c,d), the one including only the minimum

point (Branch 2, Fig. 7e,f) or the branch traversing through the intermediate points between

these two extrema (Branch 3, Fig. 7g,h). Each of these constructions is invertible, and allows

us to analyze all fixed-points independently using Eq. (2.10).
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Figure 7: Inverting a non-monotonic R(x). (a) In case R(x) in (2.8) is non-monotonic its inverse function
is ill-defined. (b) This leads in Eq. (2.10) to multiple solutions (orange, yellow, green), describing a potentially
multi-stable system. To treat this we construct three functions, corresponding to the different branches of R(x):
(c)-(d) Branch 1, in which the only solution to (2.10) is the orange fixed-point; (e)-(f) Branch 2, providing the
green fixed-point; (g)-(h) Branch 3, for the intermediate yellow fixed-point.

2.2 Diagonal terms Wii and W (d)

Using (2.2) and (2.4) we can now write the diagonal Jacobian terms as

Wii =
∂Fi(x)

∂xi

∣∣∣∣
x=x∗

=

M ′0(xi, f0i) +M ′1(xi, f1i)g

N∑
j=1

AijGijM2(xj , f2j)


∣∣∣∣∣∣∣
x=x∗

, (2.11)

where M ′0(x) = ∂M0/∂x and M ′1(x) = ∂M1/∂x. Once again, we use (1.8) to express the sum

on the r.h.s., obtaining

Wii = M ′0(xi, f0i)
∣∣∣
x=x∗

+ gdiM
′
1(xi, f1i)

∣∣∣
x=x∗
〈M〉i,�, (2.12)

in which we condense the summation over M2(xj , f2j) into the neighborhood average 〈M〉i,�.

Finally, expressing the fixed-point x∗ via (2.10) and substituting the inverse degree qi in place

of (g〈M〉i,�di)−1, as per Eq. (2.8), we write

Wii = M ′0
(
R−1
i (qi), f0i

)
+

1

qi
M ′1
(
R−1
i (qi), f1i

)
. (2.13)

Next we use the definition of Ri(xi) in (2.9) to write M0(xi, f0i) = −M1(xi, f1i)/Ri(xi), which

provides

M ′0(xi, f0i) = −M
′
1(xi, f1i)

Ri(xi)
+
M1(xi, f1i)R

′
i(xi)

R2
i (xi)

. (2.14)

Substituting (2.14) into (2.13) and replacing xi by R−1
i (qi) we obtain
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Wii = −
M ′1
(
R−1
i (qi), f1i

)
qi

+
M1

(
R−1
i (qi), f1i

)
R′i
(
R−1
i (qi)

)
q2
i

+
M ′1
(
R−1
i (qi), f1i

)
qi

, (2.15)

where we used the fact that Ri(R
−1
i (qi)) = qi to obtain the qi and q2

i terms in the denominators.

Collecting all terms, we arrive at

Wii =
1

q2
i

Yi
(
R−1
i (qi), f0i, f1i

)
, (2.16)

where Yi(x) = M1(x, f1i)R
′
i(x).

To obtain the asymptotic scaling of Wii with di we use the Hahn expansion to express Yi(x) in

the form of a power series, as shown in (1.2). Seeking the asymptotic limit di → ∞, we derive

our Hahn expansion around qi ∼ d−1
i → 0. Hence, we write

Yi
(
R−1
i (qi), f0i, f1i

)
=
∞∑
n=0

Bn(f0i, f1i)q
Φn
i , (2.17)

and below, examine the leading terms only.

Following Outcome 1 in Sec. 1.1 we assert that in (2.17) the coefficients Bn = Bn(f0i, f1i), i.e.

depending on the specific system parameters f . These coefficients are therefore node-specific,

since generally fqi 6= fqj . The powers Φn, however, are independent of f , and are therefore

uniform for all nodes. Indeed, Yi(x) is directly constructed from Mq(xi, fqi) through basic

function operations: multiplication (M1R
′), division (M1/M0), inversion (R−1) and derivation

(R′). As explained in Outcome 1, each of these operations preserves the separation between

coefficients and powers. Hence Φn are determined by Γqn in (1.2), but remain independent of

the coefficients Cqn. Consequently, since Γqn are node independent, so are Φn.

Taking the limit qi → 0 we keep only the leading power Φ0 in (2.17), i.e. Yi(R
−1
i (qi), f0i, f1i) ≈

B0(f0i, f1i)q
Φ0
i . This in Eq. (2.16) predicts

Wii = B0(f0i, f1i)q
−µ
i , (2.18)

where

µ = 2− Φ0. (2.19)

Equation (2.18) provides the dependence of the diagonal Jacobian weight Wii on i’s inverse

degree qi; it is exact up to higher powers qΦ1
i , qΦ2

i , . . . , which vanish under qi → 0. To complete

our derivation we seek W (d) = 〈Wii|d〉, namely the conditional average over Wii given that

i ∈ Q(d). Using (1.11) we express this average as

W (d) =
1

|Q(d)|
∑
i∈Q(d)

Wii =
1

|Q(d)|
∑
i∈Q(d)

B0(f0i, f1i)q
−µ
i , (2.20)

where in the last step, we expressed Wii via Eq. (2.18). Next we recall Assumption 6, stating

that the parameters, here f0i and f1i, are randomly assigned, independently of di. This allows

us, following Eq. (1.16), to extract the coefficient B0(f0i, f1i) from the summation in (2.20), and
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replace it by the ensemble average 〈B0(f)〉. We also reintroduce the complete expression for qi
in (2.8), thus rewriting W (d) as

W (d) = 〈B0(f)〉 1

|Q(d)|
∑
i∈Q(d)

(
g〈M〉i,�di

)µ
. (2.21)

To advance further we note that: (i) g is a constant, and (ii) by definition, all i ∈ Q(d) have

di = d (or more accurately di ∈ (d, d + δd)). This allows us to extract these two factors out of

the summation, and further simplify (2.21) into the form

W (d) = 〈B0(f)〉gµdµ 1

|Q(d)|
∑
i∈Q(d)

〈M〉µi,� =
(
〈B0(f)〉gµ〈Mµ|d〉�

)
dµ, (2.22)

where, in the final step, we used the neighborhood conditional average defined in (1.12), to

express the sum over 〈M〉i,�. We can now use Eq. (1.14) to write this conditional average as

〈Mµ|d〉� = 〈Mµ〉�fM,�(d), (2.23)

where 〈Mµ〉� is the network ensemble average, and fM,�(d) = 〈Mµ|d〉�/〈Mµ〉� accounts for

〈Mµ|d〉�’s degree conditionality. Collecting all terms we arrive at

W (d) =
(
〈B0(f)〉gµ〈Mµ〉�

)
fM,�(d)dµ, (2.24)

in which the prefactor (in parenthesis) comprises all terms that do not contribute to the degree

dependence. Next, to complete our derivation, we seek the value of 〈Mµ〉�, which we recall is

equal to 〈Mµ
2 (x)〉�, the average of Mµ

2 (xj , f2j) over all neighbor nodes j.

2.2.1 Evaluating 〈Mµ
2 (x)〉�

Our derivation of W (d) indicates the importance of the neighborhood average

〈Mµ〉� =
1

N

N∑
i=1

〈Mµ
2 (x)〉i,� =

1

N

N∑
i=1

1

di

N∑
j=1

AijGijM
µ
2 (xj), (2.25)

capturing the mean value of Mµ
2 (x) over all neighborhoods. To link (2.25) to the weighted

network topology A,G we use the mean-field approximation of Sec. 1.4. We note that throughout

our derivation this is the only component where we employ this approximation. Indeed, 〈Mµ〉�,

as opposed to, e.g., xi or W (d), that were calculated above, is an aggregated function, capturing

an ensemble average. It is therefore natural to evaluate this function using a mean-field approach

that builds on averaging the behavior of Eq. (2.1).

We first define the weighted nearest neighbor activity as

xnn = 〈x〉� =
1

N

N∑
i=1

1

di

N∑
j=1

AijGijxj , (2.26)

and its corresponding nearest neighbor weighted degree as

11



dnn = 〈d〉� =
1

N

N∑
i=1

1

di

N∑
j=1

AijGijdj . (2.27)

Hence, the average nearest neighbor node is characterized by activity xnn and degree dnn. While

xnn depends on the system’s dynamics (2.1), dnn is fully determined by the weighted topology

A⊗G through the network’s weighted degree density P (d). In the absence of degree correlations

and under a symmetric A,G we have2

dnn =
〈d2〉
〈d〉

, (2.28)

where 〈dn〉 is the nth moment of P (d). For a homogeneous network in which P (d) is bounded

this predicts dnn ≈ 〈d〉, however, if the network is highly heterogeneous, i.e. P (d) is fat-tailed,

we have dnn � 〈d〉. In case the network is not symmetrical, i.e. a directed Aij or asymmetric

weights Gij 6= Gji, we distinguish between the in/out degrees of all nodes as

di,in =
N∑
j=1

AijGij ; di,out =
N∑
j=1

AjiGji , (2.29)

obtaining2

dnn =
〈dindout〉
〈d〉

, (2.30)

incorporating a mixed moment - the average over the product di,indi,out.

More generally, in case the network also features measurable degree-correlations we use the

conditional density function P (d|d′) to express the probability density to observe di ∈ (d, d+δd),

given that i’s neighbor has degree d′. This allows us to write4

dnn =

∫ ∞
dmin

∫ ∞
dmin

dP (d|d′)P (d′) dddd′, (2.31)

accounting for the potential degree dependence between neighboring nodes. In all cases, from

(2.28) to the more general (2.31), under extreme degree-heterogeneity, dnn may diverge with

system size as1

dnn ∼ Nβ, (2.32)

with β determined by the network/weight heterogeneity.

To link 〈Mµ〉� to dnn and xnn we use the mean-field formalism presented in Ref.2, allowing to use

to write a direct equation for a nearest neighbor node. While the precise derivation and validity

limits of this formalism are detailed therein, here, for conciseness, we use a brief, shorthand,

derivation, outlining all the crucial approximations along the path. We begin by writing our

fixed-point condition in the form of (2.3), namely

Fi(x
∗) = 0. (2.33)
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We then apply our nearest neighbor averaging to write

〈Fi(x∗)〉� = 0, (2.34)

which taking Fi(x
∗) from Eq. (2.7), provides

〈M0(xi)〉� + g〈M1(xi)di〈M〉i,�〉� = 0 (2.35)

We can employ the mean-field approximation to break down the second average on the l.h.s.

and write it as a product of three separate averages, i.e. we neglect correlations between the

terms. This brings us to

〈M0(xi)〉� + g〈M1(xi)〉�〈di〉�〈〈M〉i,�〉� = 0, (2.36)

which we can simplify term by term: first we use, again, the mean-field approximation of Sec.

1.4 to write 〈M0(xi)〉� ≈ M0(〈x〉�) = M0(xnn) and, analogously 〈M1(xi)〉� ≈ M1(xnn). Next,

we note that 〈di〉� is, by definition equal to dnn. Finally if we write 〈〈M〉i,�〉� explicitly we

obtain

〈〈M〉i,�〉� =
1

N

N∑
m=1

1

dm

N∑
j=1

AmjGmj〈M2(xj)〉j,�, (2.37)

an average over all neighbors’ neighbors, which, under our mean-field assumption is identical

to averaging over all neighbors. Hence, for the last term we write 〈〈M〉i,�〉� = 〈M2(xj)〉� ≈
M2(xnn), again employing Sec. 1.4’s mean-field assumption. Collecting all terms this brings us

to

M0(xnn) + gdnnM1(xnn)M2(xnn) = 0, (2.38)

a self-consistent equation for the average neighbor (degree dnn) activity xnn; we once again refer

the reader to Ref.2 for a more formal derivation of (2.38). Using R(xnn) = −M1(xnn)/M0(xnn)

as in (2.8) we arrive at

Z(xnn) =
1

gdnn
≡ qnn, (2.39)

where Z(x) = R(x)M2(x) is a dynamic function, fully determined by M0(x),M1(x),M2(x) in

(1.1), and qnn is the inverse nearest neighbor degree.

By inversion we obtain

xnn = Z−1(qnn), (2.40)

and hence

M2(xnn) = M2

(
Z−1(qnn)

)
. (2.41)

Similarly to Ri(xi) in (2.8) the dynamic function Z(x) may also be non-invertible in case the

13



system has multiple fixed-points. We treat this by considering the different branches of Z(x),

following a similar analysis to the one shown in Fig. 7. Below, in Sec. 4.2 we show in detail how

we treat such non-ivertibility, which arises naturally during our analysis of Regulatory dynamics.

To obtain the asymptotic scaling of M2(xnn) on dnn we use the Hahn expansion to express (2.41)

in the form of a power series around qnn → 0, i.e. large dnn. Hence we write

M2

(
Z−1(qnn)

)
=
∞∑
n=0

Gnq
Ψn
nn , (2.42)

where Ψn, once again, is a set of real powers in ascending order with n. In the limit of large dnn

(small qnn) the expansion in (2.42) is dominated by the leading power Ψ0, predicting that

M2(xnn) ∼ dξnn, (2.43)

where

ξ = −Ψ0. (2.44)

As in the case of Yi(R
−1(qi) in (2.17), also here, thanks to Outcome 1 of Sec. 1.1 the powers

Ψn are directly linked to the powers Γqn of the dynamic functions Mq(x) in (1.2). Indeed,

to arrive at the composite function M2(Z−1(x)), we used standard operations of division (R =

−M1/M0), multiplication (Z = RM2), inversion (Z−1(x)) and finally composition (M2(Z−1(x)))

- all maintaining the separation of powers and coefficients.

To complete our derivation we refer back to 〈Mµ〉� = 〈Mµ
2 (x)〉�. Through our mean-field

approximation we write 〈Mµ〉� ≈ Mµ
2 (xnn), which using (2.43) provides 〈Mµ〉� ∼ dξµnn. With

this at hand we now return to W (d) in (2.24) and replace the term 〈Mµ〉� with dξµnn, obtaining

W (d) ∼
(
〈B0(f)〉gµ

)
dξµnnfM,�(d)dµ. (2.45)

One more step remains to fully characterize W (d), extracting the unknown function fM,�(d).

Therefore, to complete our analysis we seek to evaluate fM,�(d), which, according to Eq. (2.23),

represents the ratio

fM,�(d) =
〈Mµ|d〉�
〈Mµ〉�

(2.46)

between the degree conditional average 〈Mµ|d〉� and the ensemble average 〈Mµ〉�. In accor-

dance with Assumption 5 (Eq. (1.15) of Sec. 1.2) we examine whether we observe a polynomial

dependence of the form fM,�(d) ∼ F (d)dα or, alternatively, only the sub-polynomial F (d) with

α = 0. Therefore, in Fig. 8 we extract fM,�(d) numerically, by simulating each of our dynamical

systems, and calculating both 〈Mµ|d〉� and 〈Mµ〉� - the first by averaging the value of Mµ
2 (xi)

over all neighborhoods surrounding a degree d node, and the second by averaging over all neigh-

borhoods, independently of degree. Taking the ratio 〈Mµ|d〉�/〈Mµ〉� we obtain, numerically,

the precise form of fM,�(d), for our seven models, each with its five underlying networks (35

systems altogether). Quite consistently, we find that fM,�(d) is sub-polynomial, i.e. α = 0, and,

in fact, can be well-approximated by fM,�(d) ≈ 1. This indicates that with respect to 〈Mµ〉�
our weak-dependency assumption (sub-polynomial fM,�(d)), and, in fact, even the stronger
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correlations 𝑓(𝑑)

Figure 8: Evaluating the degree correction function fM,�(d). We used Eq. (2.46) to numerically evaluate
fM,�(d) = 〈Mµ|d〉�/〈Mµ〉�, capturing the role of degree-correlations on the average neighbor activity. Results
were obtained for each of our dynamic models implemented on both model and relevant empirical networks.
In all cases we find that fM,�(d) is largely independent of d, roughly following fM,�(d) ∼ 1. Consequently,
this correction to the mean-filed assumption 〈X|d〉� ≈ 〈X〉�) has a negligible impact on our predicted scaling
patterns.

mean-field approximation (fX,�(d) ≈ 1) can capture, quite accurately, the system’s dynamics.

This outcome, we emphasize, is not at all surprising. Indeed, the meaning of 〈X|d〉�, as defined

in (1.12), is the average of Xj carried our over the neighbors of i (Aij = 1), under the condition

that i’s weighted degree is around d (i ∈ Q(d)). The crucial point is that this condition is on

i, while the averaging is on i’s neighborhood, not on i itself. Therefore, the information that

i ∈ Q(d) has only an indirect influence on the value of Xj , when averaged over i’s ki nearest

neighbors. This indirect effect underlies the observed weak (sub-polynomial) dependence of

〈X|d〉� on d.

We can now characterize the different factors that shape W (d) in (2.45). The first terms in the

parenthesis depend on the global parameters f , g, and hence we can express it implicitly via

the coefficient C(f , g). Following is the scaling with dnn, which is a global network parameter,

determined by A⊗G, multiplying all diagonal terms, irrespective of d. This brings us to the last

two terms that explicitly depend on d: fM,�(d) which we found to have a negligible effect, and

dµ, which, in the limit of large d dominates the scaling of W (d). Taken together this provides

W (d) ∼ C(f , g)dξµnnd
µ, (2.47)

where µ and ξ are taken from (2.19) and (2.44), respectively. Using our Jacobian structure

J = (A− I)⊗W , we construct the diagonal of J as

Jii = −W (di), (2.48)

precisely recovering Eq. (5) of the main text; see our more detailed discussion of this and other

related points in Sec. 2.4.

Equation (2.48) describes our ensemble approximation: the real Jacobian diagonal terms are

provided by (2.11), which is exact, and may be potentially distinct even for nodes with identical

degrees. These exact terms are measured numerically and represented by symbols in Fig. 3
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of the main text. Our analytically predicted Jacobians, on the other hand, approximate these

exact terms by estimating each diagonal entry via (2.48). This evaluates Jii by substituting i’s

weighted degree di into (2.47), yielding an identical entry for all nodes of similar degree. Such

approximation is designed to capture Jii’s ensemble average, namely

−W (d) =
1

|Q(d)|
∑
i∈Q(d)

Jii, (2.49)

the average diagonal Jacobian entry for nodes of degree di ∈ (d, d+δd). This analytical construc-

tion is represented by the orange solid lines in Fig. 3 of the main text, and shown to accurately

capture the exact J (blue symbols).

2.3 The off-diagonal terms Wij and W (d1, d2)

The off-diagonal Jacobian terms are given by

Wij =
∂Fi(x)

∂xj

∣∣∣∣∣
x=x∗

=
∂

∂xj

M0(xi, f0i) +M1(xi, f1i)g

N∑
j=1

AijGijM2(xj , f2j)


∣∣∣∣∣∣∣
x=x∗

, (2.50)

which after collecting only the terms that explicitly depend on xj reduces to

Wij = M1(xi, f1i)gAijGijM
′
2(xj , f2j)

∣∣∣
x=x∗

. (2.51)

Expressing the fixed-point activities via (2.10) we write (2.51) in the form

W̃ij = M1

(
R−1
i (qi), f1i

)
gAijM

′
2

(
R−1
j (qj), f2j

)
, (2.52)

where W̃ij = Wij/Gij is the weight-less off-diagonal Jacobian entry. This naturally giver rise to

two dynamic functions

M1

(
R−1
i (qi), f1i

)
=

∞∑
n=0

Kn(f1i)q
Πn
i (2.53)

M ′2
(
R−1
j (qj), f2j

)
=

∞∑
n=0

Ln(f2j)q
Θn
j , (2.54)

both constructed directly from Mq(x). Once again, thanks to Outcome 1 (Sec. 1.1) the powers

Πn,Θn are parameter independent, and hence uniform for all nodes pairs i, j. Taking the limit

of small qi, qj (large di, dj) we keep only the leading powers of (2.53) and (2.54), which in (2.52)

provides

W̃ij = gAijK0(f1i)L0(f2j)q
Π0
i qΘ0

j + · · · , (2.55)

exact upto higher order terms qΠ1
i , qΘ1

j , . . . . Using qi = (〈M〉i,�gdi)−1 as per Eq. (2.8), we arrive

at
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W̃ij = gAijK0(f1i)L0(f2j)

(
1

〈M〉i,�gdi

)Π0
(

1

〈M〉j,�gdj

)Θ0

, (2.56)

in which the dependence on di, dj is made explicit.

Similar to our calculation of W (d) from Wii, also here we seek to average W̃ij over the set

Q(d1, d2) = {i, j = 1, . . . , N |Aij = 1, i ∈ Q(d1), j ∈ Q(d2)}, namely the set of all interacting

node pairs (Aij = 1) whose degrees are di ∈ (d1 + δd1), dj ∈ (d2 + δd2). Hence we write

W (d1, d2) =
1

|Q(d1, d2)|
∑

(i,j)∈Q(d1,d2)

W̃ij , (2.57)

providing the average magnitude of the (weight-less) Jacobian entry linked to i, j pairs within

Q(d1, d2). Carrying out this average we reconstruct the steps that have already led us to W (d)

in (2.45). Hence, to avoid a lengthy repetition, we simply follow the analysis along the already

established path from (2.20) to (2.45): (i) The coefficients K0(f1i), L0(f2j) are replaced by their

ensemble averages (Assumption 6); (ii) The parameter g can be extracted out from the average

(it is constant); (iii) di and dj are replaced by d1 and d2, respectively, since all nodes in the

summation are in Q(d1, d2); (iv) The neighborhood averages 〈M〉i,� and 〈M〉j,� translate to

the degree conditioned averages 〈M |d1〉� and 〈M |d2〉�. These d-averages can be expressed via

(2.23) as

〈M |d1〉� = 〈M〉�fM,�(d1) 〈M |d2〉� = 〈M〉�fM,�(d2) , (2.58)

in which 〈M〉� is the ensemble average (independent of d) and fM,�(d) has been already shown

to have a negligible contribution to the degree-scaling (Fig. 8). Substitutions (i) - (iv) leave us

with

W (d1, d2) =
(
g1−Π0−Θ0〈K0(f)〉〈L0(f)〉

)
〈M〉−Π0−Θ0

� d−Π0
1 d−Θ0

2 , (2.59)

where we have, indeed, neglected the terms associated with fM,�(d).

As we are only interested in the asymptotic scaling with d1, d2 we neglect all terms that do not

contribute the scaling, namely all terms in the parenthesis. We also use our analysis in Sec.

2.2.1, where we have shown that 〈M〉� ∼ dξnn to express the relevant term in (2.59). This leads

us to our final result

W (d1, d2) ∼ dξ(ν+ρ)
nn dν1d

ρ
2 (2.60)

where

ν = −Π0, ρ = −Θ0, (2.61)

and ξ is taken from (2.44).
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2.4 Piecing together the Jij puzzle

We now refer back to Eq. (2.5) to bring together the diagonal Jii in (2.48) and the off-diagonal

Wij derived above. First, we recall that for the off-diagonal terms our derivation provided us

with W (d1, d2), which is aggregated from the weight-less W̃ij of (2.52). To obtain the actual off-

diagonal terms of J we must reintroduce the weights as Wij = GijW (di, dj), namely multiply

(2.60) by Gij and replace d1, d2 by di, dj (this substitution d1 → di, d2 → dj is similar to

the substitution d → di conducted in (2.48), see discussion that followed therein). Next, we

piece all our results together to construct the complete Jacobian as appears in Eq. (2.5), i.e.

J = (A− I)⊗W , obtaining

Jij = AijWij − IijWii = −IijC(f , g)dξµnnd
µ
i +AijGijd

ξ(ν+ρ)
nn dνi d

ρ
j . (2.62)

The first term on the r.h.s. represents the (negative) diagonal entries, and second term captures

the off-diagonal entries, which are non-zero only if Aij = 1. As we are only interested in the sign

of the principle eigenvalue, but not in its specific magnitude, we have the degree of freedom to

multiply J by an arbitrary constant. We therefore normalize J by d
−ξ(ν+ρ)
nn , providing

Jii ∼ −C(f , g)dηnnd
µ
i (2.63)

Jij ∼ dνiAijGijd
ρ
j (2.64)

for the diagonal and off-diagonal terms respectively, with η = ξ(µ− ν − ρ) - recovering Eqs. (4)

and (5) of the main text.

Equations (2.63) and (2.64) describe the asymptotic structure of the diagonal and off-diagonal

Jacobian terms, as extracted from the dynamics of Eq. (2.1). The resulting J is characterized

by several distinct structural and dynamic inputs: A, the network topology, which determines

the non-vanishing off-diagonal elements. Together with the link weights G it also determines

the degrees di, dj and the average neighbor degree dnn. The exponents

Ω = (η, µ, ν, ρ) (2.65)

are independent of the network topology, extracted from the dynamic functions Mq(x). These

exponents are universal in the sense that they do not depend of the specific model parameters

g, f , but rather on the powers Γqn in (1.2), grouping together all systems which follow the

same model, i.e. Epidemic, Regulatory etc. The coefficient C, in contrast, is non-universal,

and its value is determined by the specific rate-constants and time-scales driving Eq. (2.1),

for example, the distribution of f or the value of g; here we do not attempt to predict the

magnitude of this coefficient. In the limit of sufficiently large di and dj , and, where applicable

- in the limit of large dnn, the specific finite value of C has negligible impact on the principal

eigenvalue of J as we explicitly show in Sec. 3. Hence, in this limit, stability is asymptotically

determined by the exponents Ω, irrespective of C. The meaning is that the model can be

asymptotically stable or unstable, regardless of its specific parameters.

2.4.1 Impact of P (d) and dnn

In this derivation we considered the scaling of J on the weighted degrees di, dj , and on the

nearest neighbor degree dnn. Valid under the general assumptions listed in Sec. 1, the discussion
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The ensemble E(A,G,Ω) summary. Staring from Eq. (2.1) we use M0(x),M1(x) and M2(x)
to construct the functions

R(x) = −M1(x)

M0(x)
, Y (x) = M1(x)R′(x), Z(x) = R(x)M2(x). (2.66)

For each of these functions, we set the parameters fqi to their ensemble averages. The powers
we extract below are, in any case, independnet of these parameters. From (2.66) we extract
the four relevant power-series expansions

M2

(
Z−1(x)

)
=
∞∑
n=0

Gnx
Ψn , Y

(
R−1(x)

)
=
∞∑
n=0

Bnx
Φn ,

M1

(
R−1(x)

)
=
∞∑
n=0

Knx
Πn , M ′2

(
R−1(x)

)
=
∞∑
n=0

Lnx
Θn

(2.67)

whose leading powers determine the dynamic exponents Ω = (η, µ, ν, ρ) as

µ = 2− Φ0, ν = −Π0, ρ = −Θ0, η = −Ψ0(µ− ν − ρ). (2.68)

To construct J ∈ E(A,G,Ω) (around a non-trivial fixed-point) we first assign the net-
work/weights A,G, then extract the weighted degrees di of all nodes and the nearest neighbor
degree dnn from Eq. (2.27). The resulting J satisfies

Jii ∼ −Cdηnnd
µ
i (2.69)

Jij ∼ dνiAijGijd
ρ
j , (2.70)

where the constant C > 0 is arbitrary.

becomes especially relevant when P (d) is fat-tailed, e.g., scale-free, where degrees, indeed, span

orders of magnitude, and the scaling relationships reach their asymptotic limit. Specifically, as

the hub-degrees and the nearest neighbor degree can potentially diverge with N , we can obtain

our predicted asymptotic classes.

The role of dnn. While di is a node specific attribute, that captures a specific dependency

between the ith diagonal term and i’s weighted degree, the pre-factor dηnn in (2.63) represents

a network aggregated parameter, indeed - a constant, whose impact is often negligible in the

asymptotic limit of large d. We include it in our analysis, however, because under extreme

degree-heterogeneity, we may observe that dnn diverges as dnn ∼ Nβ (2.32), and therefore can

potentially impact the system’s stability in the limit N → ∞. For example, in a random

scale-free network where P (d) ∼ d−γ , we can use dnn = 〈d2〉/〈d〉 in (2.28) to obtain

dnn ∼


N γ < 2

N3−γ 2 ≤ γ < 3

log(N) γ ≥ 3

, (2.71)

which scales with N as long as γ < 3. There are, however, broad conditions, that arise quite

naturally in many real systems, in which the dnn term in (2.63) can be neglected, helping us

simplify the stability analysis:

Finite dnn. In case γ ≥ 3, dnn no longer scales with N , it behaves as a constant and has
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no impact in the asymptotic limit. Under these conditions it suffices to write Eq. (2.63) as

Jii ∼ −Cdµi , with dnn effectively encapsulated within C.

Bounded activities. In some models the activities xi are bounded. For example, in spreading

processes, from epidemics to cascading failures, the activities satisfy 0 ≤ xi ≤ 1. Under these

conditions the leading power in the power-series expansion of (2.10) is zero, and hence x(d →
∞) ∼ 1. The result is that the nearest neighbor activity xnn, associated with degree dnn is itself

bounded, and even if dnn →∞ as in Eq. (2.71), we still have xnn ∼ 1. Consequently M2(xnn) in

(2.41) also approaches a constant value, and therefore the leading power in the expansion (2.42)

is Ψ0 = 0. This provides, based on Eq. (2.44), ξ = 0, which in turn leads to η = 0 in (2.63),

again resulting in Jii ∼ −Cdµi , independent of dnn.

Saturating M2(x). Another common feature in many relevant models is that M2(xj →∞)→ 1.

This represents the saturating impact of node j on its nearest neighbor i, as frequently observed

in regulatory processes or in population dynamics. Once again, we have M2(xnn) ∼ 1 in the

limit of large xnn, providing ξ = 0, and consequently η = 0 in (2.63).

These rather frequent scenarios, observed, e.g., in our Epidemic, Regulatory, Population and

Power dynamics provide a simplifies J , in which η = 0, omitting dnn from the stability analysis.

In Biochemical and Inhibitory, on the other hand, we have η 6= 0, and hence the dnn term cannot

be neglected.

2.5 J around a trivial fixed-point

Our derivation up to this point relied on the function Ri(xi) = −M1(xi, f1i)/M0(xi, f0i), which

becomes undefined in case M0(xi, f0i) = 0. This represents a trivial fixed-point, in which the

activities satisfy

xi = M−1
0 (0, f0i). (2.72)

Returning to Eq. (2.6), we write

M0(xi, f0i) + g
N∑
j=1

AijGijM1(xi, f1i)M2(xj , f2j) = 0, (2.73)

which, if M0(xi, f0i) = 0, can only be solved by setting either M1(xi, f1i) = 0 for all i or

M2(xj , f2j) = 0 for all j. In the first case we write

xi = M−1
1 (0, f1i), (2.74)

and in the second case we have

xj = M−1
2 (0, f2j). (2.75)

In principle such conditions may arise under a general xi, including xi 6= 0. However, having

all xi satisfy at least two of the conditions (2.72), (2.74) and (2.75) is extremely unlikely under

a natural selection of M0(x),M1(x) and M2(x), unless one specifically designs these functions

to sustain such solutions. Indeed, one must sets all links Aij , weights Gij and rate constants

f , g, together with the functional form of M0(x),M1(x) and M2(x) to have a non-zero x∗ that

20



simultaneously solves all N equations of (2.73). Such fine-tuning, indeed a specific and highly

non-random design, is excluded from our derivation, which is centered around complex, typi-

cally random, and most often heterogeneous systems. In simple terms, the probability for such

solution to exist within our dynamic ensemble is practically zero.

The natural exception to the above fine-tuned solution is the trivial solution xi = 0 for all

i, which, indeed, arises in many real-world systems, including ones examined in the present

analysis. For example, in Epidemic dynamics, the healthy state xi = 0 has M0(xi, f0i) =

−fixi = 0, and M2(xj) = xj = 0, hence satisfying (2.72) and (2.75). In Population 1, the null-

state has M0(xi, f0i) = bixi(1 − x1/ci) = 0, M1(xi, f1i) = xi = 0 and M2(xj , f2j) = F (xj) = 0,

satisfying all three conditions simultaneously. Finally, in Inhibitory and Regulatory, the null-

state has M0(xi = 0, f0i) = M1(xi = 0, f1i) = 0 and M0(xi = 0, f0i) = M2(xj = 0, f2j) = 0,

respectively, once again satisfying two of the conditions (2.72) - (2.75). This specific state -

the null state x∗ = (0, . . . , 0)> - cannot be analyzed via the above derivation, and requires a

dedicated treatment.

To obtain J around the null state we use (2.13) and (2.51) to write

Wii = M ′0(0) + gM ′1(0)diM2(0) (2.76)

Wij = gM1(0)AijGijM
′
2(0), (2.77)

omitting, for simplicity, the parameter terms fqi. Several distinct cases arise (Table 1):

Stability of the null-state 𝒙∗ = 𝟎,… , 𝟎 ⊤

Case I Case II Case III Case IV

𝑀1
′ 0 ≠ 0,𝑀2 0 ≠ 0 𝑀2 0 = 0 𝑀1 0 = 𝑀2 0 = 0 𝑀𝑞

′ 0 = 0, 𝑞 = 0,1,2

𝐽 ∼
𝐶𝑑1 0 0
0 ⋱ 0
0 0 𝐶𝑑𝑁

Ω = (0,0,0,0) 𝐽 ∼
𝑀0

′(0) 0 0
0 ⋱ 0
0 0 𝑀0

′(0)
𝐽 ∼

0 0 0
0 ⋱ 0
0 0 0

Stable in case 𝑀1
′ 0 < 0, 

unstable otherwise.
Asymptotically 
unstable.

Stable in case 𝑀0
′ 0 < 0, 

unstable otherwise,  
independently of 𝐴, 𝐺.

Linear approximation 
irrelevant, higher order 
derivatives needed.

Table 1: Stability of the null-state x∗ = (0, . . . , 0)>. The null-state cannot be treated via our general
formalism, and hence we analyze it separately. Our analysis distinguishes between four cases, depending on the
values of Mq(0) and M ′q(0).

Case I. In case M ′1(0) and M2(0) are both non zero, we have the diagonal terms scaling as

Wii ∼ di, corresponding to µ = 1. Here, since M2(0) 6= 0, the null-solution of (2.73) inevitably

requires that M1(0) = 0, i.e. condition (2.74). Consequently, the off-diagonal terms in (2.77) all

vanish, indicating that the interactions, in this case, have no linear contribution, and are only

expressed via higher order nonlinear terms. In E(A,G,Ω) this is captured by taking the limit

ν, ρ → −∞, deep within the asymptotically stable regime in case Jii is negative (M ′1(0) < 0),

or the unstable regime if it is positive (M ′1(0) > 0). As an example, we consider the dynamics

dxi/ dt = −fixi − g
∑N

j=1AijGijxi/(1 + xj), in which the interaction is of deactivating nature.

Using (2.76) we write Jii = −1 − gdi, which, indeed, under large di, scales as Jii ∼ −dµi with

µ = 1. The off-diagonal terms, in this dynamics vanish as per Eq. (2.77).

Case II. If, however M2(0) = 0, i.e. condition (2.75), we have both Wii and Wij independent of
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di, dj , predicting J ∈ E(A,G,Ω) with Ω = (0, 0, 0, 0). This captures an asymptotically unstable

fixed point. We observe this, for example, in the healthy state of Epidemic dynamics. There we

have M ′0(0) = fi, M2(0) = 0 and M1(0)M ′2(0) = 1. Together this leads to Wii,Wij ∼ const, i.e.

lacking any scaling with di and dj . Indeed, we show in the Sec. 4.1 that the healthy state of the

Epidemic model is asymptotically unstable, recovering a well-established result on the spread of

epidemics on scale-free networks6.

Case III. A third scenario is when both conditions (2.74) and (2.75) are satisfied, i.e. M1(0) =

M2(0) = 0. The off-diagonal terms in (2.77) vanish in this case, indicating that the interactions

are super-linear, having no linear component. The diagonal terms become Wii = M ′0(0), inde-

pendent of the network structure. Therefore, in such dynamics stability is fully determined by

the sign of Wii, unstable in case M ′0(0) ≥ 0 and stable otherwise. We encounter such condi-

tions in Population 1, where M1(x) = x and M2(x) = x/(1 + x), both zero when x = 0. The

self-dynamics in this case has M0(x) = bix(1 − x/ci), whose derivative around x = 0 provides

Wii = bi > 0. This dynamics is, therefore, always unstable around the trivial fixed-point.

Note that Cases II and III are of different nature. While Case II is a specific member of

E(A,G,Ω), with all exponents being zero, Case III’s instability is unrelated to E(A,G,Ω). To

understand this consider Epidemic’s trivial state, which is in Case II, vs. that of Population

1, which is in Case III. The former can potentially be stable, if, for instance the recovery

rate fi is large enough. Its instability only emerges asymptotically in the limit of large and

heterogeneous networks, i.e. our asymptotically unstable class. Therefore it is an integral system

within out ensemble E(A,G,Ω). Indeed, this form of asymptotic instability emerges from the

interplay between topology (P (d), N) and dynamics (Ω), representing a direct outcome of our

theoretical framework. Case III dynamics, in contrast, have an intrinsically unstable null state,

even under low dimension (small N) or non-heterogeneous degrees (P (d) homogeneous). Their

null state instability, is, therefore, not driven by the topology/dynamics interplay, ingrained in

our J-ensemble, but rather it is independent of topology. Indeed, as we discuss in Sec. 4.3, in

Population 1 the null state is always unstable, even in a one-dimensional system.

Case IV. The final case is where M ′0(0) = M ′1(0) = M ′2(0) = 0, which occurs when these

functions are super-linear around x = 0. Under these conditions the linear approximation

becomes irrelevant and higher order terms must be included to capture the fixed-point dynamics.

As an example, we consider our Regulatory dynamics, having M0(x, fi) = −fixa,M1(x) = 1 and

M2(x) = xh/(1 + xh). For a, h > 1 the first derivatives vanish around x = 0, and J is void.

Consequently, under these conditions the null state Jacobian vanishes, and hence cannot be

used to assess the system’s stability. Such cases, where J is irrelevant require specific treatment,

independent of our formalism, which is specifically focused on J . Fortunately, this treatment

under Case IV, is quite straightforward, as we demonstrate in our analysis of the Regulatory

dynamics in Sec. 4.2.

To summarize, our analytical framework of (2.66) - (2.70) is designed to treat the non-trivial

fixed-points of (2.1). If, however, the system exhibits also a null x∗ = (0, . . . , 0)> state, we must

treat this state specifically, following the case by case analysis presented above. Fortunately,

these null state Jacobians are straightforward to analyze, and can be done alongside our general

analytical derivation.
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3 Principle eigenvalue of J ∈ E(A,G,Ω)

While the principal eigenvalue λ of J ∈ E(A,G,Ω) is difficult to obtain analytically, we find that

simplifying A into a star-network can provide a rather reliable prediction, especially since we

are only focused on whether λ is positive/negative, not on its specific value. We first distinguish

between two families of dynamics: the first has s = 1, describing cooperative interactions,

in which the off-diagonal terms Jij > 0. This is observed, for example, in Regulatory or in

Epidemic, where j positively contributes to its neighbor i’s activity. The second option, s = 0,

describes adversarial interactions, where j’ activity has a negative impact on xi. This can

be indirect, such as in Inhibitory, where xj decreases i’s growth rate, or direct, such as in

Biochemical, where j directly depletes the i population via chemical binding.

The star-construction. The structure of J in (2.69) - (2.70) depends strongly on the network

degrees through di, dj and dnn. Recalling the mean-field approximation of Sec. 1.2, we can

capture the stability of the system by examining the dynamics of a typical neighborhood. We

therefore consider a single node, with weighted degree dnn, i.e. a typical neighbor. Since weights

Gij are randomly distributed, uncorrelated with degree (Sec. 1.2), we can extract our neighbor’s

unweighted degree k from its weighted dnn via dnn ≈ 〈G〉k, which using Eq. (7) of the main text

provides

k ∝ dnn ∼ Nβ (3.1)

a potential divergence with system size in case P (k) is fat-tailed.

This construction captures the environment of a typical hub in, e.g., a scale-free network. Indeed,

such hubs in a scale-free environment can be viewed as a collection of weakly coupled stars, that

are only sparsely linked to each other7. Under these conditions we have the (k + 1) × (k + 1)

network

A =


0 1 1 . . . 1

1 0 0 . . . 0
...

. . .
...

1 0 0 . . . 0

, (3.2)

capturing a single, highly connected node, surrounded by k small nodes.

3.1 Jacobians with positive weights s = 1

We now use (2.69) and (2.70), to construct the Jacobian of the star-network (3.2), which under

cooperative interactions takes the form

J = −Cd̃ηnn


kµ 0 . . . 0

0 1 . . . 0
...

. . .
...

0 0 . . . 1

+


0 kν . . . kν

kρ 0 . . . 0
...

. . .
...

kρ 0 . . . 0

 , (3.3)

where C > 0 and the off-diagonal terms are all positive. In (3.3) we used d̃nn to express the

nearest neighbor degree in our star construction, which is potentially distinct from dnn of the

originally approximated scale-free network. Lacking an a priori estimate for this parameter we
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express is as

d̃nn ∼ Nα, (3.4)

leaving us a degree of freedom to later tune α such that the prediction from our star construction

best captures the observed results from the actual complete networks (note: α in (3.4) is unrelated

to that of (1.15) in Sec. 1.2). Hence, β, characterizing the star-hub (k), is extracted from A via

(1.7) and α is a tunable parameter, which we select for the star-model to best fit the complete

network results.

We emphasize that the star approximation in (3.2) by no means captures the complete behavior

of an actual network, as indeed it represents but a crude representation of an isolated single

node environment. However, our goal here is to examine stability vs. instability - a feature

that only depends on the sign of the principal eigenvalue, not on its specific value, and is,

therefore, insensitive to the detailed structure of A. As we show in Fig. 4 of the main text, the

star approximation, while highly stylized, is, indeed, sufficient to capture this J characteristic.

To obtain the principal eigenvalue we solve the linear equation

Jv = λv. (3.5)

Using the symmetry of (3.3), we seek a solution of the form v = (a, b, b, . . . , b)>, allowing us to

reduce (3.5) into

−Cd̃ηnnk
µa+ kkνb = λa (3.6)

kρa− Cd̃ηnnb = λb. (3.7)

Note that in v the specific values of a, b have no significance, only the ratio a/b, as we are only

interested in the direction of the eigenvector, not its magnitude. We therefore arbitrarily set

a = 1, allowing us to solve (3.6) - (3.7) and obtain

λ =
1

2

(
−Cd̃ηnn(kµ + 1) +

√
C2d̃2η

nn(kµ + 1)2 − 4C2d̃2η
nnkµ + 4k1+ν+ρ

)
, (3.8)

where, of the two solutions, we selected only the one in which the square-root is added (rather

than subtracted), as we seek the largest eigenvalue. Focusing on the limit

lim
N→∞

(
λ
)
, (3.9)

we use (3.1) and (3.4) to rewrite (3.8) as

λ ∼ 1

2

(
−CNαη

(
Nβµ + 1

)
+

√
C2N2αη(Nβµ + 1)2 + 4

[
−C2N2αη+βµ +Nβ(1+ν+ρ)

])
, (3.10)

in which we replace d̃nn and k by Nα and Nβ, respectively. In (3.10) we ignore the pre-factors

of the N -scaling, focusing only on the powers (α, β), hence substituting the equality sign = with
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the asymptotic scaling operator ∼.

The case where µ > 0. First we analyze λ under µ > 0. Here, we write Nβµ � 1, simplifying

(3.10) in the limit N →∞ into

λ ∼ 1

2

(
−CNαη+βµ +

√
C2N2(αη+βµ) + 4

[
−C2N2αη+βµ +Nβ(1+ν+ρ)

])
. (3.11)

Extracting the common terms out of the product we rewrite (3.11) as

λ ∼ 1

2
CNαη+βµ

−1 +

√
1 + 4

(
−N−βµ +

1

C2
Nσ

) , (3.12)

where

σ = β

(
1 + ν + ρ− 2µ− 2

α

β
η

)
. (3.13)

Note that in (3.12) the term N−βµ ≤ 1, as µ > 0. Therefore, in case σ ≥ 0, the Nσ term

dominates the r.h.s. of the equation, providing, under N →∞,

λ ∼ C√
C2

N
1
2
σ+αη+βµ. (3.14)

Using the fact that C > 0 it becomes guaranteed that λ in (3.14) is positive, i.e. the system is

unstable.

Next we consider the case σ < 0. Under these conditions Nσ � 1, allowing us to expand the

square-root in (3.12) to first order, providing

λ ∼ 1

2
CNαη+βµ

(
−1 + 1 + 2

(
−N−βµ +

1

C2
Nσ

))
= −CNαη +

1

C
Nσ+αη+βµ. (3.15)

We can rewrite this in the form of Eq. (8) of the main text, obtaining

λ ∼ NQ

(
1− C

NS

)
, (3.16)

where

Q = σ + αη + βµ (3.17)

S = σ + βµ. (3.18)

As NQ is guaranteed to be positive, the sign of λ depends on S: in case S > 0 the negative

term in (3.16) satisfies CN−S � 1, and hence we have λ ∼ NQ > 0, an unstable dynamics. If

however S < 0, we have −CN−S → −∞, predicting λ < 0, regardless of C, an asymptotically

stable system. Consequently the system is stable as long as S < 0, which, using (3.18), and

taking σ from (3.13), predicts the stability condition
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β

(
1 + ν + ρ− µ− 2

α

β
η

)
< 0. (3.19)

This condition reduces stability into a small set of relevant parameters: β, characterizing the

network topology A, and Ω = (η, µ, ν, ρ), associated with the dynamics through powers in the

expansion of Mq(x) in (1.2). The non-universal parameter C = C(f , g) becomes irrelevant in

the limit of sufficiently large N . Finally, α represents a degree of freedom to help tune the star

approximation to best fit our ensemble of actual networks, as we do below. Note that condition

(3.19) can also be expressed as σ + βµ < 0. This implies that if σ > βµ the system is unstable.

This instability condition already contains the previously obtained condition of σ > 0, that led

to Eq. (3.14). Therefore, Eq. (3.19) is sufficient to characterize the system’s stability, covering

both the σ positive and the σ negative cases.

Finally, the case S = 0 in (3.16) represents sensitive stability, in which λ’s value is not asymp-

totically defined, and rather it depends on the coefficient C. In this class, stability in no longer

a characteristic of the dynamic model, but rather of its specific rate constants f and g, as en-

capsulated within C. A trivial example is when β = 0, i.e. a non fat-tailed P (d), for example -

Erdős-Rényi. Indeed, as we discuss in the main text, in such networks, stability can be tuned

by the model parameters, lacking a defined asymptotic behavior.

The case where µ ≤ 0. Here, we have Nβµ ≤ 1, and hence Eq. (3.10) can be approximated by

λ ∼ 1

2

(
−CNαη +

√
C2N2αη + 4

[
− C2N2αη+βµ +Nβ(1+ν+ρ)

])
, (3.20)

leading to

λ ∼ 1

2
CNαη

−1 +

√
1 + 4

(
−Nβµ +

1

C2
Nω

) , (3.21)

where

ω = β

(
1 + ν + ρ− 2

α

β
η

)
. (3.22)

Equation (3.21) features a summation of Nβµ ≤ 1 with Nω, whose value depends on ω. There-

fore, as before, if ω > 0, λ becomes dominated by the Nω term, following

λ ∼ C√
C2

N
1
2
ω+αη, (3.23)

which is always positive, i.e. unstable. If, however, ω < 0, we use a linear approximation to

write

λ ∼ 1

2
CNαη

(
−1 + 1 + 2

(
−Nβµ +

1

C2
Nω

))
= −CNαη+βµ +

1

C
Nω+αη, (3.24)

as before - a competition between a positive vs. a negative term. Collecting the powers we, once

again, rewrite (3.24) in the form
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λ ∼ NQ

(
1− C

NS

)
, (3.25)

where this time

Q = ω + αη (3.26)

S = ω − βµ. (3.27)

Stability is ensured if, for N →∞, the negative term dominates, namely if S < 0. Using (3.22)

to express ω this provides

β

(
1 + ν + ρ− µ− 2

α

β
η

)
< 0, (3.28)

recovering precisely the condition in (3.19).

Tuning α. The parameter α represents a degree of freedom, rooted in the fact that the star

approximation is a simplification, which can be optimized if we select this parameter such that

the star best captures the complete network environment. We find that setting

α =
β

2
(3.29)

provides the optimal approximation, accurately predicting stability ∼ 96% of the time for our

2, 881 unweighted networks, ∼ 94% for our 2, 290 networks with distributed weights, and ∼ 85%

in our 2, 216 networks with negative links weights (Fig. 9). This completes the stability analysis,

providing the stability classifier

S = β (1 + ν + ρ− µ− η) , (3.30)

as appears in Eq. (9) of the main text under s = 1.

3.2 Jacobians with negative weights s = 0

Adversarial interactions, in which J ’s off-diagonal terms are negative confront us with more

complex behaviors. Here, for example, i’s direct neighbor j has a negative impact on xi, but

its second neighbor m has an indirect positive effect, as it reduces xj , and by that positively

contributes to xi. Our star approximation of (3.2), including only nearest neighbors, overlooks

these indirect effects - and hence yields an identical outcome whether the interactions are coop-

erative, s = 1, or adversarial, s = 0. Therefore, to evaluate S under negative Jij we consider a

fully connected network of

k ∼ Nβ (3.31)

nodes, à la May’s original formulation8. This, once again, we emphasize, is but a crude ap-

proximation, whose relevance we support via our extensive numerical testing (Fig. 9). With all

nodes now having degree k, the resulting Jacobian takes the form
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Figure 9: Tuning the parameter α. In Eqs. (3.19) and (3.28) we have the degree of freedom to set α/β
for the star approximation to best predict the stability of actual networks. We used our ensemble of 7, 387 J
matrices (Fig. 4a of main text) to predict stability using different values of α/β. Quantifying the Error by the
fraction of mis-classified J matrices (grey dots), we find that setting α/β = 1/2 (blue frame) provides the optimal
fit: securing a ∼ 96% correct classification (Error= 4.2%) for unweighted networks, ∼ 94% (Error= 5.8%) for
weighted networks and ∼ 85% (Error= 14.8%) for weighted networks with negative Jij . Here the empirical
networks (Social 1,2; PPI 1,2; Power 1,2; Microbial 1/2) are highlighted in bold red/blue symbols
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J = −Ckη


kµ 0 . . . 0

0 kµ . . . 0
...

. . .
...

0 0 . . . kµ

−


0 kν+ρ . . . kν+ρ

kν+ρ 0 . . . kν+ρ

...
. . .

...

kν+ρ kν+ρ . . . 0

 , (3.32)

in which both the diagonal and the off-diagonal terms are preceded by a minus sign.

For a matrix of the form (3.32) the principal eigenvector is v = (1,−1, 0, . . . , 0)>, whose associ-

ated eigenvalue is

λ = −Ckη+µ + kν+ρ. (3.33)

Using (3.31) we rewrite (3.33) in the form

λ = NQ

(
1− C

NS

)
, (3.34)

where now

Q = β(ν + ρ) (3.35)

S = β(ν + ρ− µ− η). (3.36)

Hence under adversarial interactions the stability classifier is different from (3.30), providing the

stability condition

S = β (ν + ρ− µ− η) < 0, (3.37)

namely Eq. (9) of the main text, only this time, with s = 0.

The role of topology vs. dynamics. The stability conditions (3.30) or (3.37) are driven by

five distinct exponents. The first four exponents Ω = (η, µ, ν, ρ) are determined by the dynamic

model - Social, Regulatory, Population etc. - intrinsic to the system’s inherent interaction mech-

anisms. These exponents are independent of the topology A or of microscopic model parameters,

encapsulated within C, and are therefore hardwired into the system’s dynamic behavior. For

example, our formalism predicts that the SIS model (Epidemic) has Ω = (0, 1,−1, 0) (Sec. 4.1).

This prediction is characteristic of the SIS model, namely it is an intrinsic feature of the SIS

interaction mechanisms of infection and recovery. It is, therefore, insensitive to the specific rates

of the model - predicting that Ω remains unchanged if, e.g., a disease has a high or low infection

rate, or if it is transmitted via physical contact or aerosols. These will impact the constant C in

(2.69), but will have no impact on the universal scaling. Similarly, Ω is unaffected by A. There-

fore, regardless of whether the disease spreads along the standard social network (Flu) or via

sexual transmission (AIDS), as long as the mechanism is SIS (or any other mechanism for that

matter) Ω remains the same. The remaining exponent in our classifier, β, on the other hand, is

independent of the dynamics, and determined solely by A,G, specifically by the weighted degree

distribution P (d), which characterizes the divergence of dnn in the limit of large N . Hence,

together, S captures the emergence of stability/instability as driven by the interplay of topology

(β), microscopic parameters (C) and dynamics (Ω).
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4 Analyzing the dynamic models

To demonstrate our formalism we examined several commonly used dynamic models, as listed

in Fig. 2 of the main text. Below we extract the exponents Ω and the stability classifier S for

each of these models. The first five models are treated in this section, while the last two, Power

and Population 2, which extend our application beyond the analytical framework of Sec. 1, are

analyzes separately in Sec. 5.

4.1 Epidemic dynamics

As our first demonstration we model epidemic spreading via the Susceptible-Infected-Susceptible

(SIS) model9, in which xi(t) captures the probability of infection of node i. Denoting the

susceptible state by S and the infected state by I, the model includes the following transitions

I fi−→ S (4.1)

I + S
Gij−−→ 2I, (4.2)

capturing the processes of recovery at a rate fi, and infection at the pairwise interaction rate

Gij . This gives rise to the dynamic equation10

dxi
dt

= −fixi(t) + g
N∑
j=1

AijGij
(
1− xi(t)

)
xj(t), (4.3)

in which M0(xi, f0i) = −fixi,, characterized by the single parameter f0i = {fi}, M1(xi) = 1− xi
and M2(xj) = xj , both having no free parameters. The link weights Gij capture the infection

rate between all interacting individuals, and g is the average infection rate.

Null state. First, we note that the SIS model exhibits a trivial fixed-point x∗ = 0, the healthy

state, in which M0(0) = M2(0) = 0. Together this classifies the SIS model into Case II of Table

1, hence predicting the null-state Jacobian to follow J ∈ E(A,G,Ω) with

Ω = (0, 0, 0, 0). (4.4)

Using Eq. (3.30) this provides S = β, which for a fat-tailed P (d), in which β > 0, predicts

asymptotic instability.

With this prediction our formalism retrieves an already well-established result, that the epi-

demic threshold of the SIS model vanishes under a scale-free topology6. Therefore, regardless

of the specific parameters, fi, g, the pandemic state is always the only stable fixed-point of this

model under degree-heterogeneous A. This is precisely the meaning of our observation here

that x∗ = (0, . . . , 0)> is asymptotically unstable. However, while the original result was re-

ported specifically for the Epidemic dynamics, using a dedicated analysis, in our formalism, this

observation is but a special case of a broad class of potentially stable/unstable dynamics, all

predictable via the E(A,G,Ω) ensemble.

Pandemic state. To obtain the relevant J ensemble for the non-zero fixed-point/s, we seek the
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exponents Ω = (η, µ, ν, ρ). We begin by translating Mq(x) into the relevant functions shown in

(2.66), providing

R(x) = −M1(x)

M0(x)
=

1− x
fx

(4.5)

Y (x) = M1(x)R′(x) =
x− 1

fx2
(4.6)

Z(x) = R(x)M2(x) =
1

f
− 1

f
x, (4.7)

where we used f = 〈f〉 to denote the average recovery rate. Inverting R(x) and Z(x), we write

R−1(x) =
1

fx+ 1
, (4.8)

Z−1(x) = 1− fx, (4.9)

allowing us to construct the Hahn expansions of (2.67) as

M2

(
Z−1(x)

)
= Z−1(x) = 1− fx (4.10)

Y
(
R−1(x)

)
=

R−1(x)− 1

f ×
(
R−1(x)

)2 = −x− fx2 (4.11)

M1

(
R−1(x)

)
= 1−R−1(x) =

fx

fx+ 1
= fx− f2x2 + f3x3 − · · · (4.12)

M ′2
(
R−1(x)

)
= 1. (4.13)

Here both R(x) and Z(x) are invertible, and therefore, the system exhibits only a single fixed-

point apart from x∗ = (0, . . . , 0)>. Each of the functions in (4.10) - (4.13) is expressed as a

Hahn power-series, in some cases a finite polynomial, e.g., (4.10) or (4.11), and in others an

infinite series, where we only write the leading terms around x → 0. Here, coincidentally, the

last function (4.13) is a constant, i.e. a trivial power-series in which the only participating power

is x0. We can list the relevant powers in these Hahn expansions as Ψ0 = 0,Φ0 = 1,Π0 = 1 and

Θ0 = 0, which, using (2.68) provides

µ = 2− Φ0 = 1; ν = −Π0 = −1; ρ = −Θ0 = 0; η = −Ψ0(µ− ν − ρ) = 0. (4.14)

Consequently the stability classifier in (3.30) is S = β(1 − 1 + 0 − 1 − 0) = −β, which under

β > 0 (i.e. fat-tailed P (d)) predicts the asymptotic stability of the pandemic state, indeed,

reconfirming Ref.6.

4.2 Regulatory dynamics

We used the Michaelis-Menten model to capture gene regulation in sub-cellular networks11.

Here, Eq. (2.1) tracks the level of gene expression xi(t), as regulated via its interacting genes,

providing

31



dxi
dt

= −fixai (t) + g
N∑
j=1

AijGij
xhj (t)

1 + xhj (t)
. (4.15)

The self-dynamic term M0(xi, f0i) = −fixai captures biochemical processes12, such as degrada-

tion (a = 1) or dimerization (a = 2). The interaction terms M1(xi) = 1,M2(xj) = xhj /(1 + xhj )

describe genetic activation, a switch-like dynamics, which ranges from M2(0) = 0 to M2(xj →
∞) = 1, capturing the activation of gene i by gene j. The Hill coefficient h governs the rate of

saturation of M2(x), often associated with the level of cooperation in gene regulation11. The

exponents a and h, are, in this case, expressed in the powers Γqn of (1.2), and are hence rendered

intrinsic, thus taken to be uniform for all nodes/links (see Secs. 5.4 and 5.5, where we break

this assumption). The parameters fi, Gij , on the other hand, capture the specific rates of all

processes, which are potentially diverse across all nodes/links. Similarly, the average interaction

rate g is also subject to external perturbation by the cell’s environmental conditions.

Null state. Regulatory dynamics exhibit a trivial solution x∗ = (0, . . . , 0)>, capturing cell-

death. Following (2.76) and (2.77) we write

Wii = afix
a−1
∣∣∣
x=0

(4.16)

Wij = Aijwij
hxh−1

(1 + xh)2

∣∣∣∣∣
x=0

. (4.17)

Both terms vanish in case a, h > 1. This represents Case IV of Sec. 2.5 (Table 1), in which

the linear regime is void. Under these conditions, the stability of the null state must be treated

by resorting to higher orders, which are not within the scope of our formalism. Fortunately,

thanks to the fact that the higher order expansion is around the trivial point x∗ = (0, . . . , 0)>,

the analysis becomes straightforward. Indeed, for xi → 0, Eq. (4.15) approaches

dxi
dt

= −fixai + g
N∑
j=1

AijGijx
h
j −→


−fixai a < h

g
N∑
j=1

AijGijx
h
j a ≥ h

, (4.18)

being dominated by the negative term if a < h, and by the positive term otherwise. For

the specific case of a = h, both terms have similar dependence on xi. However, since the

positive interaction term scales with di (g
∑N

j=1AijGij = gdi), it will asymptotically dominate

the dynamics (di � fi/g for sufficiently large hubs), predicting instability also under a = h. As

a consequence the null state is stable if a < h and unstable otherwise.

The remaining scenario is the specific case where a = h = 1, precisely the dynamics we analyze

in the main text under Regulatory. Here (4.16) and (4.17) provide Wii = fi and Wij = AijGij ,

both independent of di, dj . This corresponds to J ∈ E(A,G,Ω), with

Ω = (0, 0, 0, 0), (4.19)

an asymptotically unstable fixed-point, as per Case II of Sec. 2.5. Therefore, while x∗ =

(0, . . . , 0)> may generally be stable, if the system is large and heterogeneous it will inevitably
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avoid this undesired state.

Active fixed-points. We now return to our formalism to analyze the stability of the non-

vanishing states. First, we construct the three functions summarized in (2.66):

R(x) = −M1(x)

M0(x)
=

1

fxa
(4.20)

Y (x) = M1(x)R′(x) = − a

fxa+1
(4.21)

Z(x) = R(x)M2(x) =
xh

f(xa + xa+h)
, (4.22)

where, once again, we use f = 〈f〉 to represent ensemble average over fi. Inverting R(x), we

write

R−1(x) = f−
1
ax−

1
a , (4.23)

allowing us to construct the Hahn expansions (2.67)

Y
(
R−1(x)

)
= −a

f

(
1

fx

)−a+1
a

= af
1
ax

a+1
a (4.24)

M1

(
R−1(x)

)
= 1 = x0 (4.25)

M ′2
(
R−1(x)

)
=

hf−
h−1
a x−

h−1
a(

1 + f−
h
ax−

h
a

)2 = hf
h+1
a x

h+1
a − 2hf

2h+1
a x

2h+1
a + · · · . (4.26)

In each of these expansions we write the leading terms in the x → 0 limit: in (4.24) and (4.25)

the expansion features a single term, i.e. a pure monomial, and in (4.26) we show the first

two terms of the relevant Hahn expansion. To obtain Ω we extract only the leading powers

Φ0 = (a + 1)/a,Π0 = 0,Θ0 = (h + 1)/a, ignoring the coefficients, e.g., af1/a or hf (h+1)/a. We

can now use (2.68) to extract the dynamic exponents as

µ = 2− Φ0 =
a− 1

a
; ν = −Π0 = 0; ρ = −Θ0 = −h+ 1

a
. (4.27)

To obtain the final exponent η we must calculate M2(Z−1(x)), requiring us to invert the function

Z(x) in (4.22). This becomes prohibitively complicated under a general a and h, however, as

we are only focused on the leading powers of M2(Z−1(x)), we can advance using an asymptotic

analysis. Similar to the trivial fixed-point analysis, we once again, distinguish between a ≥ h

and a < h.

Regulatory dynamics under a ≥ h. Under these conditions Z(x) is monotonous and therefore

invertible. For x → ∞ we have Z(x) ∼ x−a, which approaches zero (Fig. 10a, red). Therefore,

the inverse Z−1(x) tends to infinity as x → 0 (blue). The form of this divergence can be

obtained by mirroring the large x behavior of Z(x), providing Z−1(x) ∼ x−1/a. This enables us

to construct the final Hahn expansion to leading order as
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Figure 10: Analyzing Z(x) in Regulatory dynamics. (a) Z(x) in (4.22) vs. x (red) for a ≥ h, set here to
a = 1, h = 1/2. Here Z(x) is monotonous and therefore we can obtain its inverse Z−1(x) for all x (blue). Using
the fact that Z(x → ∞) ∼ x−a, we can extrapolate that its inverse has Z−1(x → 0) ∼ x−1/a. (b) The nearest
neighbor fixed-point activity xnn vs. dnn, as obtained for Regulatory dynamics (4.15) with a > h. Following Eq.

(2.39), the limit Z−1(x→ 0) captured the active state (blue) in the limit of large dnn, predicting dnn ∼ x1/ann . The
null-state is also shown (grey). (c) For a < h, Z(x) is not monotonous (red) and therefore Z−1(x) is undefined
(blue). To treat this we divide Z(x) into two branches: Branch 1 to the left of the maximum point; Branch 2 to
its right. (d) In Branch 1 we have Z1(x→ 0) ∼ xh−a (red), providing Z−1

1 (x→ 0) ∼ x1/(h−a) (light blue). (e) In
Branch 2 we have Z2(x → ∞) ∼ x−a (red), and hence Z−1

2 (x → 0) ∼ x−1/a (dark blue). (f) xnn vs. dnn under
a < h. We observe three states: null-state (grey), active state (dark blue), intermediate state (light blue). Branch
1 has Z−1

1 (x) → 0 in the limit of small x, describing a state in which xnn decreases with dnn. This corresponds
to the intermediate state, for which we obtain S > 0, i.e. instability. Branch 2 has Z−1

2 (x) → ∞, capturing a
positive scaling between dnn and xnn. Therefore Branch 2 is related to the active state, which is asymptotically
stable (S < 0).

M2

(
Z−1(x)

)
∼ x−

h
a

1 + x−
h
a

∼ 1− x
h
a + . . . , (4.28)

in which the leading power is Ψ0 = 0. As a result, we obtain, using (2.68) our final exponent

η = −Ψ0(µ− ν − ρ) = 0. (4.29)

Collecting the other exponents calculated above in (4.27), we derive the stability classifier

S = β

(
1 + 0− h+ 1

a
− a− 1

a
− 0

)
= −h

a
β < 0, (4.30)

indicating that for a ≥ h the non-trivial fixed-point is asymptotically stable.

Regulatory dynamics under a < h. For a < h, the function Z(x) in (4.22) is non-monotonous,

its inverse is undefined, and hence the system can potentially reside in multiple fixed-points. As
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an example, in Fig. 10c we present Z(x) for a specific choice of f = 1, a = 3/2, h = 2 (red),

finding that it is, indeed, non-invertible. We therefore divide Z(x) into its two branches, as

shown in Fig. 7: Branch 1 - from x = 0 upto the maximum point, and Branch 2 - from the

maximum point to x→∞. This allows us to construct the two functions, Z1(x) (Fig. 10d) and

Z2(x) (Fig. 10e), each of which is invertible, and whose inverse function is associated with a

distinct fixed-point of the system.

First we analyze Z1(x) (Fig. 10d, red). As we are interested in the leading power of M2(Z−1
1 (x)),

we focus on the the behavior around x→ 0. Using (4.22) we write

Z1(x→ 0) = xh−a + . . . , (4.31)

where we include only the leading term, and, for simplicity, set f = 1. We therefore have

Z−1
1 (x→ 0) = x

1
h−a + . . . , (4.32)

shown in Fig. 10d (light blue), and consequently

M2

(
Z−1

1 (x→ 0)
)

= x
h
h−a + . . . . (4.33)

This provides, for Branch 1, Ψ0 = h/(h− a), which, taking µ, ν, ρ from (4.27), predicts

η = −Ψ0(µ− ν − ρ) =
h(a+ h)

a(a− h)
. (4.34)

Collecting all exponents we obtain

S = β

(
1 + 0− h+ 1

a
− a− 1

a
− h(a+ h)

a(a− h)

)
= 2

h(a+ 1)

a(h− a)
. (4.35)

Under the condition a < h, S is guaranteed to be positive. Therefore, Branch 1 is asymptotically

unstable.

The fixed-point captured by Branch 1 has Z−1
1 (x → 0) → 0. This captures a state in which

the nearest neighbor activity xnn tends to zero as dnn is increased. Indeed in Eq. (2.39) we

have xnn = Z−1(qnn), in which qnn ∼ d−1
nn tends to zero in the limit dnn → ∞, indicating that

Z−1
1 (x → 0) captures the asymptotic behavior of xnn. This behavior, links Branch 1 to the

intermediate state in the one-dimensional bifurcation diagram of Fig. 10f (light blue), which

is, indeed, characterized by xnn → 0. This state is unstable in the low-dimensional system,

and as our formalism now shows, it is also unstable in the asymptotic limit, via our ensemble

E(A,G,Ω).

Next, we analyze Branch 2, Z2(x), capturing the part of Z(x) to the right of the maximum

point (Fig. 10e, red). Its asymptotic behavior is observed in the limit x → ∞, where we have

Z2(x) ∼ x−a. Mirroring this behavior to the inverse Z−1
2 (x), we have Z−1

2 (x→ 0) ∼ x−1/a (dark

blue), leading to

M2

(
Z−1(x)

)
∼ x−

h
a

1 + x−
h
a

∼ 1− x
h
a + . . . , (4.36)
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namely Ψ0 = 0. Hence, for Branch 2 we have

η = −Ψ0(µ− ν − ρ) = 0. (4.37)

Together with (4.27) this provides

S = β

(
1 + 0− h+ 1

a
− a− 1

a
− 0

)
= −h

a
β < 0, (4.38)

predicting, for this branch, that it is asymptotically stable.

This branch, in which Z−1(x → 0) → ∞ captures a state in which xnn increases with dnn,

corresponding to the active state of Fig. 10f (dark blue). In a low-dimensional system, the

stability of this state depends on the system’s specific parameters, i.e. fi, g. Yet, our formalism

shows that this state becomes asymptotically stable for large heterogeneous networks.

4.3 Population 1 dynamics

We consider mutualistic eco-systems, such as plant-pollinator networks or microbial communi-

ties, in which the interacting species exhibit symbiotic relationships. The species populations

follow the dynamic equation

dxi
dt

= bixi(t)

(
1− xi(t)

ci

)
+ g

N∑
j=1

AijGijxi(t)F
(
xj(t)

)
. (4.39)

The self-dynamics M0(xi, f0i) = bixi(1 − xi/ci) captures logistic growth, driven by parameter

bi, the growth rate, and ci, the environment carrying capacity. The mutualistic interactions are

captured by M1(xi) = xi and M2(xj) = F (xj), where F (xj) represents the functional response,

describing the positive impact that species j has on species i. This functional response can take

one of several forms, Holling types I - III13:

FI(x) = x, FII(x) =
x

1 + x
, FIII(x) =

xh

1 + xh
, (4.40)

type I featuring a linear response, and types II,III describing a saturating impact of j on i. In

our simulations we used Type II interactions, therefore M2(xj) = xj/(1 + xj).

Null state. Equation (4.39) has a trivial fixed-point x∗ = (0, . . . , 0)>, in which M0(x) =

M1(x) = M2(x) = 0. This corresponds to Case III in Table 1, in which the null-state is

unstable. This instability, we emphasize, is different from our asymptotic instability of S > 0,

as it is independent of network size (N) or of degree heterogeneity (P (d)). Here, even if we

consider the one dimensional version of (4.39)

dx

dt
= b

(
1− x

c

)
+ gxF (x), (4.41)

we find that x = 0 is unstable, independently of parameters b, c, g. This is despite that fact that

the one-dimensional (4.41) is certainly not in the relevant asymptotic regime of N → ∞ and

P (d) fat-tailed. Therefore, the null-state instability in this dynamics is unrelated to E(A,G,Ω).

Fortunately, it be directly analyzed without the need for our more advanced toolbox.
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Active state. Next we analyze the non-vanishing fixed-point/s of (4.39) using our formalism.

For R(x), Y (x) and Z(x) we have

R(x) = −M1(x)

M0(x)
=

1

x− 1
(4.42)

Y (x) = M1(x)R′(x) = − x

(x− 1)2
(4.43)

Z(x) = R(x)M2(x) =
x

x2 − 1
, (4.44)

where for simplicity we set bi = ci = 1, as indeed these parameters have no effect on the scaling

Ω. Inverting R(x) and Z(x), we write

R−1(x) =
x+ 1

x
, (4.45)

Z−1(x) =
1

2x

(
1±

√
1 + 4x2

)
. (4.46)

Note that, similar to Regulatory, here too, Z(x) is non-invertible, and hence we have two

branches (±) for Z−1(x). In this case, however, the minus branch corresponds to a purely

negative fixed-point, which is physically irrelevant. Therefore, apart from the null fixed-point

analyzed above, we are only left with the plus branch of (4.46). Taking this branch we construct

the Hahn expansions of (2.67) as

M2

(
Z−1(x)

)
=

Z−1(x)

1 + Z−1(x)
=

1 +
√

1 + 4x2

2x+ 1 +
√

1 + 4x2
= 1− x+ · · · (4.47)

Y
(
R−1(x)

)
= − R−1(x)(

R−1(x)− 1
)2 = x+ x2 (4.48)

M1

(
R−1(x)

)
=

x+ 1

x
= x−1 + 1 (4.49)

M ′2
(
R−1(x)

)
=

1(
R−1(x) + 1

)2 =
x2

4x2 + 4x+ 1
= x2 − 4x3 + · · · , (4.50)

whose leading powers are Ψ0 = 0,Φ0 = 1,Π0 = −1 and Θ0 = 2. Consequently, the dynamic

exponents in (2.68) follow

µ = 2− Φ0 = 1; ν = −Π0 = 1 ρ = −Θ0 = −2 η = −Ψ0(µ− ν − ρ) = 0. (4.51)

As analyzed in Sec. 2.4.1 we have, in Population 1, η = 0. This is due both to the Bounded

activities (0 < xi < ci) and to the Saturating nature of the interaction function. Collecting all

exponents we extract the stability classifier from (3.30) as S = β(1 + 1− 2− 1− 0) = −β < 0.

4.4 Biochemical dynamics

As a Biochemical model we consider protein-protein interactions (PPI), which are driven by

three processes: ∅ → Pi, describing the synthesis of the ith protein Pi at a rate fi; Pi → ∅,
describing protein degradation at rate bi;Pi+Pj 
 PiPj describing the binding and unbinding of
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Epidemic
𝐝𝒙𝒊
𝐝𝒕

= −𝒇𝒊𝒙𝒊 + 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋 𝟏 − 𝒙𝒊 𝒙𝒋 𝛀 = (𝟎, 𝟏, −𝟏, 𝟎) 𝑺 = −𝜷

Regulatory
𝐝𝒙𝒊
𝐝𝒕

= −𝒇𝒊𝒙𝒊
𝒂 + 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋
𝒙𝒋
𝒉

𝟏 + 𝒙𝒋
𝒉

𝛀 = 𝟎,
𝒂 − 𝟏

𝒂
, 𝟎, −

𝒉 + 𝟏

𝒂 𝑺 = −
𝒉

𝒂
𝜷

Population 1
𝐝𝒙𝒊
𝐝𝒕

= 𝒃𝒊𝒙𝒊 𝟏 −
𝒙𝒊
𝒄𝒊

+ 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋
𝒙𝒊𝒙𝒋

𝟏 + 𝒙𝒋
𝛀 = (𝟎, 𝟏, 𝟏,−𝟐) 𝑺 = −𝜷

Biochemical
𝐝𝒙𝒊
𝐝𝒕

= 𝒇𝒊 − 𝒃𝒊𝒙𝒊 − 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋𝒙𝒊𝒙𝒋 𝛀 = −𝟏, 𝟏,−𝟏, 𝟎 𝑺 = −𝜷

Inhibitory
𝐝𝒙𝒊
𝐝𝒕

= 𝒙𝒊 𝟏 −
𝒙𝒊
𝒇𝒊

𝒙𝒊
𝒃𝒊
− 𝟏 + 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋
𝒙𝒊

𝟏 + 𝒙𝒋
𝛀 = −

𝟏

𝟐
, 𝟏,

𝟏

𝟐
, −𝟏 𝑺 = −𝜷

Power
𝐝𝟐𝒙𝒊
𝐝𝒕𝟐

= 𝒇𝒊 − 𝒃𝒊
𝐝𝒙𝒊
𝐝𝒕

+ 𝒈෍

𝒋=𝟏

𝑵

𝑨𝒊𝒋𝑮𝒊𝒋 𝐬𝐢𝐧 𝒙𝒋 − 𝒙𝒊 𝛀 = 𝟎, 𝟏, 𝟎, 𝟎 𝑺 = 𝟎

Population 2
𝐝𝒙𝒊
𝐝𝒕

= 𝒃𝒊𝒙𝒊 𝟏 −
𝒙𝒊
𝒄𝒊

+ 𝒈𝒙𝒊
σ𝒋=𝟏
𝑵 𝑨𝒊𝒋𝑮𝒊𝒋 𝒙𝒋

𝟏 + σ𝒋=𝟏
𝑵 𝑨𝒊𝒋𝑮𝒊𝒋 𝒙𝒋

𝛀 = 𝟎, 𝟎,−𝟐, 𝟎 𝑺 = −𝜷

Table 2: Dynamic models - summary. Our seven dynamic models and their associated exponents Ω, as
calculated around their active fixed point x1. For each model we also show the stability classifier S. Parameters
(fi, bi, etc.) appear in blue and the nonlinear functions themselves in orange. Only the orange terms feed into Ω.
The analysis of Power and Population 2, both beyond the scope of Eq. (1.1), appears in Sec. 5.

a pair of interacting proteins at rates Bij and Uij respectively. The hetero-dimer PiPj undergoes

degradation PiPj → ∅ at rate Qij . Using mass-action-kinetics we derive the dynamical equations

for this system, providing12,14

dxi
dt

= fi − bixi(t) +
N∑
j=1

Uijxij(t)−
N∑
j=1

AijBijxi(t)xj(t) (4.52)

dxij
dt

= BijAijxi(t)xj(t)− (Uij +Qij)xij(t), (4.53)

where xi(t) is the concentration of Pi and xij(t) is the concentration of the hetero-dimer PiPj .

Under time-scale separation we assume that the hetero-dimer concentration is at steady-state,

setting dxij/ dt = 0 in (4.53). This provides us with

dxi
dt

= fi − bixi(t)− g
N∑
j=1

AijGijxi(t)xj(t), (4.54)

where the effective binding rate is gGij = QijBij/(Uij + Qij). This has the form of Eq. (1.1),

with M0(xi, f0i) = fi − bixi, whose parameters are {fi, bi}, M1(xi) = xi and M2(xj) = xj .

Denoting the average rates by f = 〈f〉, b = 〈b〉, we write the dynamic functions (2.66) as
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R(x) = −M1(x)

M0(x)
=

x

f − bx
(4.55)

Y (x) = M1(x)R′(x) = − fx(
f − bx

)2 (4.56)

Z(x) = R(x)M2(x) =
x2

f − bx
. (4.57)

The inverse functions are, therefore

R−1(x) =
fx

1 + bx
(4.58)

Z−1(x) =
b

2
x

(
−1 +

√
1 +

4f

b2x

)
, (4.59)

where in Z−1(x) we choose the positive solution, corresponding to the positive fixed-point of

(4.54), as we did in our analysis of Population 1 above. We can now compose the functions in

(2.67), obtaining

M2

(
Z−1(x)

)
= Z−1(x) =

√
fx

1
2 +

b2

8
√
f
x

3
2 + · · · (4.60)

Y
(
R−1(x)

)
= − fR−1(x)(

f − bR−1(x)
)2 = fx+ fbx2 (4.61)

M1

(
R−1(x)

)
= − fx

1 + bx
= −fx+ fbx2 + · · · (4.62)

M ′2
(
R−1(x)

)
= 1, (4.63)

allowing us to extract the leading powers as Ψ0 = 1/2,Φ0 = 1,Π0 = 1 and Θ0 = 0. These

powers provide the Biochemical dynamic exponents via (2.68) as

µ = 2− Φ0 = 1; ν = −Π0 = −1; ρ = −Θ0 = 0; η = −Ψ0(µ− ν − ρ) = −1 . (4.64)

As predicted, these exponents are independent of the parameters f, b, intrinsic to the Biochem-

ical dynamics. Here, since the interactions are adversarial, as indicated by the −g pre-factor

preceding the interaction term in (4.54), we have s = 0. Therefore, we use (3.37) to obtain the

stability classifier, providing us with S = β(−1 + 0− 1 + 1) = −β, i.e. asymptotically stable.

4.5 Inhibitory dynamics

To model inhibition, e.g., between genes11 or between hosts and pathogens15, we use

dxi
dt

= xi(t)

(
1− xi(t)

fi

)(
xi(t)

bi
− 1

)
+ g

N∑
j=1

AijGijxi(t)
1

1 + xj(t)
. (4.65)

The self dynamics captures logistic growth, similar to Population 1, but here, also incorporating
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the Allee effect16, which balances competition with the potentially added benefit of the tribe.

The competition is expressed in M0(xi) through the negative growth occurring when xi > fi, i.e.

when xi exceeds the limited carrying capacity of the environment. This competition, however,

is overcome by the enhanced growth at bi < xi < fi, capturing the cooperative benefit of i from

being surrounded by a greater i population, e.g., hunting in pacts. Hence, Eq. (4.65) is relevant

under bi ≤ fi, predicting suppressed growth when 0 < xi < bi or xi > fi, and positive growth

in the mid-range bi < xi < fi. The interaction dynamics describes inhibition: i grows linearly

with its own instantaneous population xi, but at a rate which approaches zero as xj → ∞.

Consequently, the greater is xj the lower is i’s reproduction rate.

Null state. In (4.65) the null state x∗ = (0, . . . , 0)> has M ′0(0) = −1 and M2(0) = 1, both non-

zero. This adheres to Case I in Sec. 2.5, predicting Wii ∼ −1 + di and Wij = 0. Consequently,

as Table 1 indicates, the null state is asymptotically unstable. This is indeed supported by

Fig. 5 of the main text, where we show that the active state persists under arbitrary parameter

perturbation.

Active state. To analyze the active state of (4.65) we first rewrite its self-dynamics in the Hahn

form of Eq. (1.2) as

M0(xi, fi) = −xi +Bix
2
i −Qix3

i , (4.66)

where Bi = (fi + bi)/fibi and Qi = 1/fibi. Denoting 〈B〉 = B and 〈Q〉 = Q, we construct the

dynamic functions of (2.66), obtaining

R(x) = −M1(x)

M0(x)
=

1

1−Bx+Qx2
(4.67)

Y (x) = M1(x)R′(x) =
Bx− 2Qx2(

1−Bx+Qx2
)2 (4.68)

Z(x) = R(x)M2(x) =
1

1 + (1−B)x+ (Q−B)x2 +Qx3
. (4.69)

The inverse function R−1(x) takes the form

R−1(x) =
B +

√
B2 − 4Q+

4Q

x
2Q

, (4.70)

where once again, we omit the negative branch, as it represents a negative, and hence irrelevant,

fixed-point. In the limit x→ 0 we have

R−1(x) ≈ Q−
1
2x−

1
2 . (4.71)

Inverting Z(x) in (4.69) is non-tractable analytically, however, as we only need to evaluate

Z−1(x) in the limit of x → 0, we can simplify the calculation, by seeking only the relevant

leading terms. In Fig. 11 we show Z(x) (red) and its inverse Z−1(x) (blue). Since Z(x) is

non-monotonic, its inverse is undefined, indeed showing several branches (Fig. 11b): Branch 1,

the top branch, which diverges in the limit x → 0, Branch 2, intermediate, and Branch 3, for

which Z−1(x) < 0. Of these, the only relevant branch is Branch 1, as it is the only one covering
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the x → 0 regime. The meaning is that, while Z(x) is non-invertible for all x ∈ R, the limit

Z−1(x → 0) is well-defined, as the function is locally invertible around x = 0. Examining

the corresponding branch in Z(x) we observe that Z−1(x → 0) is the mirror image of the

original function Z(x) in the limit Z(x → ∞) (Branch 1 in Fig. 11a). Using (4.69) we write

Z(x→∞) ∼ Q−1x−3, and therefore we have

Z−1(x→ 0) ∼ Q−
1
3x−

1
3 . (4.72)
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Figure 11: Analyzing Z(x) under Inhibitory dynamics. (a) Z(x) in (4.69) vs. x. The function is divided
into three branches, separated by the minimum point (blue dot) between Branches 3 and 2, and by the asymptotic
divergence between Branch 2 and Branch 1. (b) Z−1(x) and its division into the corresponding three branches.
To the right of the grey dashed line we observe overlapping solutions, and hence Z−1(x) is undefined. However,
the limit Z−1(x → 0) is well-defined, as in this regime, to the left of the dashed line, only Branch 1 is relevant.
The limit x → 0 in Z−1(x) is the mirror image of the limit x → ∞ in Z(x). Therefore, using the fact that
Z(x→∞) ∼ x−3 we extrapolate Z−1(x→ 0) ∼ x−1/3, as appears in Eq. (4.72).

With (4.71) and (4.72) at hand we can now construct the relevant dynamic functions of (2.67),

obtaining

M2

(
Z−1(x)

)
=

1

1 + Z−1(x)
∼ 1

1 +Q−
1
3x−

1
3

∼ x
1
3 + · · · (4.73)

Y
(
R−1(x)

)
=

BR−1(x)− 2Q
(
R−1(x)

)2(
1−BR−1(x) +Q

(
R−1(x)

)2)2

∼ BQ−
1
2x−

1
2 − 2x−1(

1−BQ−
1
2x−

1
2 + x−1

)2 ∼ x+ · · · (4.74)

M1

(
R−1(x)

)
= R−1(x) ∼ x−

1
2 + · · · (4.75)

M ′2
(
R−1(x)

)
= − 1(

1 +R−1(x)
)2 ∼ − 1(

1 +Q−
1
2x−

1
2

)2 ∼ x+ · · · . (4.76)

From here we extract the leading powers as Ψ0 = 1/3,Φ0 = 1,Π0 = −1/2 and Θ0 = 1, which

using (2.68), predicts
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µ = 2− Φ0 = 1 ν = −Π0 =
1

2
ρ = −Θ0 = −1 η = −Ψ0(µ− ν − ρ) = −1

2
. (4.77)

The inhibitory nature of the dynamics is expressed in J through negative off-diagonal weights.

This can be observed through (2.51), where the derivative M ′2(x) < 0, and hence W̃ij is negative.

Therefore in Inhibitory we have s = 0, the stability classifier follows (3.37) and, consequently,

S = β(1/2−1−1+1/2) = −β, classifying the active state of Inhibitory as asymptotically stable.

Suppressed state. In addition to the null and active states of Inhibitory, this system also

exhibits a suppressed fixed-point, in which the activities xi become bimodal: ∼ 50% of the

nodes have xi → 0, and the remaining ∼ 50% have xi large, positively scaling with di. This state

emerges as a consequence of the mutual inhibition between neighboring nodes, each pushing its

neighbors towards lower activity. To understand this consider a highly active node i with xi � 1.

This activity in (4.65) suppresses the growth rate of its neighbor j, leading to xj � 1. Such

suppressed xj benefits j’s neighbors m, who will, consequently, also reach xm � 1. As a result

the system enters a bifurcated state, in which node i is active, its neighbors are suppressed,

its next neighbors are active again and so on. This state breaks our assumed symmetry, in

which all neighborhoods are considered similar, and hence cannot be analyzed via our formalism.

Accordingly, its associated Jacobian is not covered by the E(A,G,Ω) ensemble, therefore beyond

the scope of our current analysis.

5 Extended dynamics

Our anaytical framework is centered around Assumptions 1 - 6 of Sec. 1. To examine its

applicability beyond these limits, we now examine test cases, each designed to go beyond the

scope of Sec. 1.

5.1 Power dynamics - testing Assumption 2

Load balance in power systems requires synchronization between all generators and consumers,

often tracked through the phases xi(t) of all nodes, following17

d2xi
dt2

= fi − bi
dxi
dt

+ g

N∑
j=1

AijGij sin
(
xj(t)− xi(t)

)
. (5.1)

Here fi is a node’s power generation/consumption, depending on whether it is a generator/consumer,

bi is the damping coefficient, and the interaction is designed to synchronize phases xi and xj .

The interaction strength is mediated by the conductivity of the i, j transmission line, as con-

trolled by g and Gij . Equation (5.1) offers two generalizations to the dynamics of Eq. (2.1) - first,

by introducing the second derivative d2 / dx2, and second, through its non-separable interaction

mechanism, which cannot be expressed in the form M1(xi)M2(xj), i.e. Assumption 2. Still, as

we show below, its perturbative behavior around the synchronized fixed-point continues to be

characterized by a Jacobian within the family of E(A,G,Ω).

The synchronized state has xi(t) = xj(t) for all i, j, which, by shifting to the rotating frame,

can be all set to zero, namely x∗ = (0, . . . , 0)>. Under a small fixed-point perturbation δx we

have
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d2δxi
dt2

= −bi
dδxi
dt

+ g
N∑
j=1

AijGij sin
(
δxj(t)− δxi(t)

)
, (5.2)

whose linear approximation becomes

d2δxi
dt2

= −bi
dδxi
dt

+ g
N∑
j=1

AijGij
(
δxj(t)− δxi(t)

)
+O(δx2). (5.3)

Neglecting the nonlinear terms, Eq. (5.3) can be written as

d2δxi
dt2

= −bi
dδxi
dt

+ Jiiδxi(t) +
N∑
j=1
j 6=i

Jijδxj(t), (5.4)

where

Jii = −gdi (5.5)

Jij = AijGij (5.6)

is the system’s Jacobian. The resulting Jacobian is precisely in the form of J ∈ E(A,G,Ω),

where C(f , g) = g and the exponents are µ = 1 and η = ν = ρ = 0. It also, incidentally, equals

to the graph Laplacian1 - recovering an already well-known connection. Under these conditions

of Ω = (0, 1, 0, 0), we have S in (3.30) equaling S = β(1 + 0 + 0− 1− 0) = 0, placing Power in

the sensitive dynamics class. Here, even if λ > 0, sufficient damping (bi) may still stabilize the

system. This captures precisely the sensitivity under S = 0, in which parameters govern the

value of λ.

Note that in this system, due to the second derivative, J plays a different role as compared to

its role in (2.1). Specifically, here J governs not just stability but also the system’s potential

oscillations around x∗. Still, our main goal is to show that even for this system, not covered by

(1.1) we continue to observe J ∈ E(A,G,Ω), further strengthening the importance and relevance

of this previously unknown ensemble.

5.2 Non-additive dynamics - testing Assumption 3

In Assumption 3 we take the impact of i’s interacting partners on i to be additive, as expressed

via Eq. (1.1)’s summation over the nonlinear M2(xj), namely
∑N

j=1M2(xj). To push the limits

of this assumption we consider Population 2 dynamics, in which

dxi
dt

= bixi(t)

(
1− xi(t)

ci

)
+ xi(t)

∑N
j=1AijGijxj(t)

1 +
∑N

j=1AijGijxj(t)
, (5.7)

replacing the
∑

jM2(xj) structure of (1.1) by M2(
∑

j xj), a non-additive form of interaction.

Once again, despite violating our analytical assumptions, we can still analyze this system using

a dedicated derivation. First, we use (1.8) together with (1.14) to write
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N∑
j=1

AijGijxj = di〈x〉i,� ≈ dixnn, (5.8)

substituting the sum by the nearest neighbor average, and already implementing the fact that

fM,�(d) ∼ 1, and hence 〈x〉i,� ≈ xnn. This allows us to express the non-vanishing fixed-point

activity of a node i as

1− xi +
dixnn

1 + dixnn
= 0, (5.9)

where, for simplicity we have taken bi = ci = 1, wishing to avoid cumbersome derivations.

Extracting xi from (5.9) we obtain

xi =
1 + 2dixnn

1 + dixnn
∼ d0

i , (5.10)

namely that in the limit of large di, the fixed-point activities approach a constant and do not

scale with degree.

Next, we seek the diagonal Jacobian terms Jii, writing

Jii =
∂

∂xi

xi(1− xi) + xi

∑N
j=1AijGijxj

1 +
∑N

j=1AijGijxj

 , (5.11)

which, using (5.8), provides us with

Jii = 1− 2xi + xi
dixnn

1 + dixnn
. (5.12)

In (5.12) there are no terms that contribute to the scaling with di, as indeed xi ∼ d0
i and the

fraction term on the r.h.s. approaches unity in the limit di →∞. Therefore, we obtain

Jii ∼ d0
i , (5.13)

predicting µ = 0 in E(A,G,Ω).

For the off-diagonal terms we write

Jij =
∂

∂xj

(
xi(1− xi) + xi

∑N
m=1AimGimxm

1 +
∑N

m=1AimGimxm

)
, (5.14)

which we break down into the form

Jij =
∂

∂xj


xi(1− xi) + xi

AijGijxj +

N∑
m=1
m6=j

AimGimxm

1 +
N∑
m=1

AimGimxm


. (5.15)
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Extracting the xj partial derivative we obtain

Jij = xiAijGij


1 +

N∑
m=1

AimGimxm −AijGijxj −
N∑
m=1
m 6=j

AimGimxm

1 +
N∑
m=1

AimGimxm

2


, (5.16)

which after collecting all terms provides

Jij = xiAijGij
11 +

N∑
m=1

AimGimxm

2 . (5.17)

In (5.17) the only term that contributes to the scaling with di or dj is the summation in the

denominator. Using (5.8) we can express this summation as
∑N

m=1AimGimxm = dixnn, leading

to

Jij = xiAijGij
1

(1 + dixnn)2 , (5.18)

which in the limit di →∞ provides us with

Jij ∼ d−2
i , (5.19)

namely, an E(A,G,Ω) Jacobian with ν = −2 and ρ = 0. Therefore, despite not being within

the form of (1.1) our Population 2 dynamics is also part of the broad E(A,G,Ω) family with

Ω = (0, 0,−2, 0). (5.20)

This represents an asymptotically stable system with S = β(1− 2 + 0− 0− 0) = −β.

5.3 Extinction dynamics - testing Assumption 4

We consider population dynamics with mixed positive/negative interactions. This represents

mutualistic links a là Population 1, alongside competitive and predatory interactions. Here, due

to the adversarial links, some species populations may reach the absorbing point of xi = 0, and

hence a subset of the species may become extinct. The challenge is that this specific subset

depends on the initial conditions, and hence the system has no unique fixed-point, having a

different set of eliminated species under different initial conditions x(t = 0).

To test this, we constructed a scale-free A with N = 6, 000 nodes and L = 18, 000 links, of

which a fraction 0 ≤ φ ≤ 1 are negative (Aij = −1), and the remaining 1 − φ are positive

(Aij = 1). We then implemented Population 1 dynamics as appear in Eq. (4.39), setting, for

simplicity, all parameters and link weights to unity, i.e. bi = ci = g = Gij = 1. Starting

from an arbitrary initial condition, we allowed the system to naturally reach its fixed-point.

During the process, whenever a specific activity reached xi(t) ≤ ε we set it permanently to zero
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Figure 12: Emerging stability under mixed interactions. (a) The number of surviving nodes Nf vs. the
fraction of adversarial links φ. The more negative interactions the smaller the surviving node set. (b) Jii vs. di
as obtained from the Nf surviving nodes. (c) Jij vs. dνiAijGijd

ρ
j over the surviving node set. As long as enough

nodes survive we continue to observe our predicted scaling patterns. Our prediction only breaks down under large
φ, where Nf � N , i.e. the majority of nodes are removed.

(extinction), effectively removing it from the network; we used ε = 10−12. At its final state

the network is reduced to Nf ≤ N surviving nodes, upon which we examined our predicted

scaling relationships. For example, under φ = 0.1, starting from a randomly selected initial

condition, we arrive at a final state of Nf = 5, 986 surviving nodes, a total of 14 extinctions

(Fig. 12a). Increasing φ to 25% or 50% the network incurs higher losses, down to Nf = 5, 778

and Nf = 2, 876. The crucial point is that the remaining Nf nodes continue to follow the

predicted scaling with µ = ν = 1 and ρ = −2 as obtained in Eq. (4.51).

We emphasize that the specific set of surviving nodes is different across the different realizations,

and hence the system has no well-defined fixed-point. Still, despite these microscopic differences

between the realizations, which depend on the detailed structure of A and on the specific initial

condition, the macroscopic scaling patterns remain valid, over the resulting set of surviving

nodes in each realization. Of course, as we increase φ, extinctions begin to dominate the final

state of the system, until at a certain point, the surviving node set becomes too diluted and our

predicted Jacobian structure breaks down. Our results in Fig. 12b,c indicate that this breakdown

occurs around φ = 0.75 or 0.9, a limit in which the majority of the nodes are lost to extinction.

5.4 Mixed-dynamics - testing Assumption 1

The structure of (1.1) allows for diverse parameters fi, but at the same time assumes uniform

dynamics, as captured via the defined set of powers Γqn in (1.2). The rationale is that the

network components posses specific physical properties that constrain the mechanisms by which

they can interact, an assumption mathematically captured by the uniformity of Γqn. More

realistically, however, some systems may comprise 2 or 3 types of nodes/links, in which case

(1.1) may incorporate a mixture of few coexisting dynamics. To expressed this we consider the

generalization

dxi
dt

=
S∑
s=1

B
{s}
i

M{s}0 (xi) + g
N∑
j=1

L∑
l=1

M
{s}
1 (xi)A

{l}
ij GijM

{l}
2 (xj)

 , (5.21)

capturing a coexistence of s = 1, . . . , S self-dynamics and l = 1, . . . , L link-dynamics. Here

B
{s}
i = 1 if node i has self-dynamics s and zero otherwise; similarly A

{l}
ij = 1 in case i and j

interact via the lth link-dynamics and zero otherwise. Additionally, A
{l}
ij × A

{l′}
ij = 0 in case

46



l 6= l′, ensuring that i and j can interact through only a single defined mechanism. We focus on

cases where the number of coexisting mechanisms is S,L ∼ 1, 2, . . . , i.e. a limited discrete set of

potential competing dynamics.

While we cannot analytically extract J from the generalized (5.21), we can heuristically assume

that the coexisting dynamics are manifested in J through an equivalently coexisting exponent

set. For example, consider the diagonal weights Wii and their dependence on di. Instead of

having all terms follow a single scaling relationship µ, we now expect the nodes to partition into

S independent scaling functions

Wii = Wii(s) ∼ B{s}i d
µ(s)
i , (5.22)

a set of S scaling functions, in which each node follows its s-dependent exponent µ(s).

For the off-diagonal weights Wij , we expect such partition to be dictated by i’s self-dynamics s,

j’s self-dynamics s′ and the i, j link dynamics l. Therefore Wij will be divided into a potential

of S2 × L coexisting scaling functions, capturing the potential number of s, s′, l combinations.

We can express this as

Wij = Wij(s, s
′, l) ∼ dν(s,l)

i B
{s}
i A

{l}
ij GijB

{s′}
j d

ρ(s′,l)
j , (5.23)

in which ν(s, l) is the exponent ν derived under self/link-dynamics s and l, and ρ(s′, l) is the

exponent ρ matching the combination s′ and l, i.e. using j’s self-dynamics.

Together, this provides a straightforward generalization in which each of the Jacobian weights

follows one of the potential S2 × L scaling relationships with the exponent sets
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Figure 13: The dynamic Jacobian ensemble under mixed dynamics. We consider four examples of
increasing complexity. (a) Case 1. Two competing self-dynamics and a single interaction dynamics distributed
randomly across all nodes (left, black). The resulting coexisting values of µ and ρ are listed on the right (orange).

(b) The diagonal weights Wii vs. degree di. Nodes belonging to M
{1}
0 (xi) have µ(1) = 1/2 (blue), whereas those

following M
{2}
0 (xi) have µ(2) = 0 (red). (c) The off-diagonal terms Wij vs. the theoretically predicted Wij(s, s

′, l)
in Eq. (5.23). We observe the two coexisting scaling relationships (red, blue), precisely as predicted - the red data
points having ν(1, 1) = 0, ρ(1, 1) = −1, the blue data points having ν(2, 1) = 0, ρ(2, 1) = −2. (d)-(f) Case 2. A
similar partition into independent scaling relationships is also observed under mixed link-dynamics. (g)-(i) Case
3. Incorporating both mixed self and link-dynamics, we observe the diagonal Wii split into two scaling rules, and
the off-diagonal Wij into four independently observed scaling relationships, all in accordance with predictions
(5.22) and (5.23). (j)-(l) Case 4. We randomly assign three different forms of self (a = 1, 2, 3) and interaction
(h = 1, 2, 3) dynamics. This system is predicted to exhibit 3 distinct scaling relationships for Wii (panel j, µ,
orange) and seven for Wij (panel j, ρ, orange). Each panel includes results from five networks (ER, SF, SF1, PPI1
and PPI2), whose nodes/links were divided into logarithmic bins B(b), b = 1, . . . , B (Supplementary Sec. 7.3). The
number of bins ranges from B = 10 to 20 for the nodes (panels b,e,h,k), and B = 20 to 30 for the links (panels
c,f,i,l). Therefore, the sample size within each bin is |B(b)| ∈ (300, 600) for nodes and |B(b)| ∈ (1, 200, 1, 800) for
links. The error bars represent 95% confidence intervals within each bin.
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Ω{s,s
′,l} =

(
η(s, s′, l), µ(s), ν(s, l), ρ(s′, l)

)
. (5.24)

Each individual exponent is calculated via our formalism, by selecting the appropriateM0(x),M1(x)

and M2(x). We emphasize that this is a heuristic expansion of our formalism, and hence, to

validate it we examine it below, numerically, for a set of four dynamic combinations of varying

complexity (Fig. 13a,d,g,j). We also note that one may consider other potential forms of mixed-

dynamics generalization, some more complex to analyze than our proposed (5.21). However, we

reserve the full analysis of mixed-dynamics for future works on the topic.

Case 1. Mixed self-dynamics (Fig. 13a-c). We consider a system with S = 2 self-dynamics

and a single (L = 1) link-dynamics. The diagonal weights Wii have µ(1) = 1/2 (blue) and

µ(2) = 0 (red). For Wij we observe ν(1, 1) = ν(2, 1) = 0 and ρ(1, 1) = −1, ρ(2, 1) = −2. In

principle, while this system has four potential scaling combinations, it reduces to just two, thanks

to the shared value of ν. Hence, Wij(s, s
′, l) splits between a scaling Wij(s, 1, 1) ∼ d0

iGijd
−1
j

in case j has self-dynamics s′ = 1 (blue) and Wij(s, 2, 1) ∼ d0
iGijd

−2
j under j in self-dynamics

s′ = 2 (red); the value of s, denoting i’s self-dynamics plays no role in Wij(s, s
′, l).

Case 2. Mixed interaction-dynamics (Fig. 13d-f). Here we have L = 2 forms of link-

dynamics, predicting a single scaling for Wii of µ(1) = 1/2, and two potential scaling rules for

Wij : ν(1, 1) = 0, ρ(1, 1) = −1 (red) and ν(1, 2) = 0, ρ(1, 2) = −3/2 (blue).

Case 3. Mixed self/interaction-dynamics (Fig. 13g-i). We now incorporate a mixture of

both self and link-dynamics, i.e. S = L = 2. This leads to µ(1) = 0 (blue) and µ(2) = 1/2

(red); ν(s, l) = 0 for all s, l; and ρ(1, 1) = −2 (red), ρ(1, 2) = −3 (blue), ρ(2, 1) = −1 (green),

ρ(2, 2) = −3/2 (orange).

Case 4. Mixed self/interaction-dynamics (Fig. 13j-l). To increase the challenge we consider

M
{a}
0 (xi) = −fixai and M

{h}
2 (xj) = xhj /(1 + xhj ) for a, h = 1, 2, 3. This represents a mixture

of three independently distributed self and interaction dynamics, 9 combinations altogether.

We predict three coexisting exponents µ(s) and seven (distinct) coexisting ρ(s′, l), all fully

corroborated in Fig. 13k,l.

5.5 Distributed powers - testing Assumption 1

Another potential generalization of Assumption 1 is to have the powers Γqn in the expansion

(1.2) of Mq(x) drawn from a continuous distribution. When this is the case, our analysis captures

the scaling patterns extracted from the average powers. This naturally prompts us to test its

robustness against potential power-variability. To examine this we consider Regulatory dynamics

of the form of Eq. (4.15), only this time we extract the powers a, characterizing the nodes, and

h, characterizing the links, from a continuous distribution. Specifically, we use h ∼ U(10−3, 3),

a uniform distribution ranging from h = 10−3 to h = 3; we set the bottom limit just slightly

above zero to ensure no link has h = 0, a limit in which M2(x) becomes independent of x. This

sets the average link-dynamics at 〈h〉 = 1.5 with a standard deviation of σh ≈ 0.87.

For the self-dynamic power a we examine three scenarios • Low variability, where a ∼ U(1.8, 2.2)

• Medium variability, where a ∼ U(1.5, 2.5) • High variability, where a ∼ U(1, 3). In all three

cases we have 〈a〉 = 2, but with a gradually increasing standard deviation σa = 0.11, 0.30 and

0.60 across the different settings.

Using the analysis of Sec. 4.2 we extract the Jacobian scaling from the average powers, writing
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Figure 14: Our Jacobian scaling patterns under distributed powers. (a)-(c) The diagonal weights Wii

vs. di as obtained from Regulatory dynamics on networks of size N = 100, . . . , 6, 000 (symbols) under distributed
a, h. The data is well-approximated by our analytically predicted scaling µ = 0.5 (grey), which is extracted
from 〈a〉, 〈h〉. We implemented three scenarios - low (blue), medium (orange) and high (red) variability. Here
the data are logarithmically binned (Sec. 7.3), and the error bars (grey) capture the noise within each bin. As
expected under high variability we observe higher noise levels. (d)-(f) Similar results for the off-diagonal weights
Wij . (g)-(h) The quality of the linear fit Q for Wii and Wij , as obtained from networks of size N = 102, . . . , 104,
under the three variability levels (low - blue; medium - orange; high - red). As the system size N is increased the
quality of the predicted scaling is improved, indicating that our analysis is asymptotically robust against power
variability. Each panel includes results from networks of size N = 100, 500, 1, 000, 2, 000, 4, 000 and 6, 000 nodes
with 〈k〉 = 6. In panels a-f we divided all nodes/links into logarithmic bins B(b), b = 1, . . . , B (Supplementary
Sec. 7.3). The number of node bins ranges from B = 10 for the smallest network to B = 24 for the largest. For
the links the range is B = 12 to 26. Therefore, the sample size within each bin is |B(b)| ∈ (50, 250) for nodes and
|B(b)| ∈ (250, 1, 400) for links. The error bars represent 95% confidence intervals within each bin.

µ =
〈a〉 − 1

〈a〉
= 0.5; ν = 0; ρ = −〈h〉+ 1

〈a〉
= −1.25. (5.25)

In Fig. 14 we display the numerically obtained Jacobian weights, Wii and Wij , finding that,

indeed, they can be well approximated by our predicted scaling with the averaged exponents in

(5.25). Under low variability (blue) the plots are rather clean, as expected, and as we increase

the variability (orange, red) we observe increasing levels of noise, expressed via the growing error

bars (grey), that are designed to quantify the scaling uncertainty.
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In our analysis, we examined networks with N = 100 to N = 6, 000 nodes (symbols, Fig. 14

legend). As we increase the network size we observe a convergence to the mean. This means that

the confounding effect of the a, h variability is exacerbated by finite size, and as we approach the

asymptotic limit N →∞, our analysis becomes robust against such variability in the powers.

To systematically quantify this asymptotic convergence we used the mean-square-error R2 to

assess the deviation between the observed numerical results and our theoretically predicted

scaling. To understand this, consider our scaling predictions, taking the form Y ∼ Xα. They

can be expressed in log-space as linear functions, namely y = αx + β where y = log Y and

x = logX. Here the slope α captures the exponential scaling, which we predict, and hence treat

as fixed. The constant β, on the other hand, can be set arbitrarily. Upon measuring y we obtain

N data-points (xi, yi), i = 1, . . . , N , which we fit to a linear function with our fixed slope α,

then select β to attain the best fit, i.e. minimizing R2. The quality of the resulting fit is then

captured by Q = 1−R2, such that Q→ 0 represents a failed fitting and Q→ 1 is a perfect fit.

In Fig. 14g,h we show Q vs. N , finding that, indeed, the greater is N the better is the quality of

our analytical prediction in (5.25). Hence, for a sufficiently large network, our results are robust

against such deviations from Assumption 1, conforming to the average powers a là Eq. (5.25).

Taken together, Secs. 5.1 - 5.5 exemplify that real-world Jacobians, under rather broad condi-

tions, follow the scaling patterns predicted for E(A,G,Ω). We wish to emphasize that we do

not claim that this ensemble covers all network dynamics, as indeed, these sections provide

just a few anecdotal examples beyond the coverage of our original Eq. (1.1) under Assumptions

1-6. Still, these examples do indicate the potential merit in further studying this Jacobian

ensemble and its relevance to a potentially vast range of real-world dynamic applications.

6 Local vs. global stability

Our asymptotically stable class (S < 0) represents a robust stability, that remains unaffected

by microscopic discrepancies, such as parameter or topological perturbations. But what if we

explicitly form an unstable motif and introduce it brute force into the network. Can such a local

intervention destabilize the system? Here, we demonstrate that an asymptotically stable system

remains insensitive to such local instabilities, whose impact on the network becomes negligible

as N →∞.

To examine this we implemented Population 1 dynamics, as in (4.39), on a scale-free network

of size N . We denote this system by PN . We also constructed a two node exclusion motif P2,

whose dynamics is given by

dy1

dt
= y1(1− y1)− gy1y2

dy2

dt
= y2(1− y2)− gy1y2. (6.1)

The motif P2 exhibits three fixed-points: two stable exclusion states, in which only one of the

species survives, i.e. y1 > 0 or y2 > 0, and a single unstable coexisting state, in which both

y1 = y2 > 0. We now directionally couple P2 → PN , by adding the terms · · ·+Cy1 and · · ·+Cy2

to the equations of two randomly selected nodes in PN . Under such coupling the activities y1, y2
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Figure 15: Local vs. global instability. (a) The system PN (here N = 20), an asymptotically stable network
of N nodes is coupled with P2 of Eq. (6.1), an exclusion motif, set at the unstable coexisting state y1 = y2 > 0.
The global state of the two systems together is denoted by x0. (b) Following perturbation P2 transitions to the
exclusion state, thus affecting its neighboring nodes in PN . The system settles at the new state x1. Therefore, in
principle, x0 is unstable. This indicates that a microscopic intervention, here coupling P2 → PN , can destabilize
an otherwise asymptotically unstable system. (c) The Jacobian J , as obtained from the coupled P2 → PN
system. The nodes in P2 are represented by the entries at the top-left corner (red, green), and their immediate
neighborhood directly below (purple). (d) The principal eigenvector entries vi are highly localized around P2

(i = 1, 2) and its immediate neighborhood (i = 3, 4, 5). Therefore, the instability of x0 is strictly localized and
has no discernible effect on the majority of the nodes. (e) The global response ∆x vs. the size of PN (circles).
Indeed, ∆x→ 0, scaling with N−1 (grey solid line). This asserts PN ’s asymptotic stability.

of P2 affect the state of PN , but not vice versa, as no coupling exists in the opposite direction.

Hence, P2’s fixed-points remain unaffected by this coupling.

We next set P2 at its unstable coexisting state and allow the coupled system P2 → PN to reach

its global fixed-point x0. This state x0, the fixed-point of the N+2 nodes of PN and P2 combined

is, by definition, unstable. Indeed, even the slightest perturbation to y1 or y2 will drive P2 into

its exclusion state. Then, through the coupling C this change in state of P2 will spillover to

affect the activities of the nodes in PN , driving them towards a new state x1. Consequently,

while the original PN had an asymptotically stable x0 state, the coupling with P2, a microscopic

perturbation, caused it to no longer be stable. To demonstrate this, we extracted J from the

complete N + 2 node system, and, as expected, found that the principal eigenvalue λ is, indeed,

positive (Fig. 15c).

The crucial point is that x0’s instability remains strictly local. To observe this we examine the

principal eigenvector v, associated with λ. In Fig. 15d we observe that v is highly localized,

with most its mass condensed on P2, and a small fraction on the nearby nodes of PN , directly

neighboring P2. Therefore, while x0 is, indeed, unstable, the final state x1 reached by the system

is, for the most part, identical to x0, barring a localized discrepancy on P2 and its immediate

vicinity. For a sufficiently large system, such local instability, becomes asymptotically negligible.

To observe this we measure the global response

∆x =
1

N

N∑
j=1

∣∣x1j − x0j

∣∣, (6.2)

capturing the average long-term shift in the state of all nodes, as a result of the perturbation

to x0. Obtaining ∆x from networks PN of different size, ranging from N = 10 to N = 104 we

observe that ∆x ∼ N−1, approaching ∆x → 0 in the limit N → ∞. Under these conditions

x0, our initial unstable state, is asymptotically identical to x1, the system’s perturbed state.

Therefore, if x0 → x1, we can say that x0 it is stable, as it is robust against perturbation.

This captures precisely the local nature of the instability, as it remains confined to a bounded

neighborhood around P2, and hence, when averaged over the entire system vanishes as 1/N .
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More broadly, it demonstrates the notion of asymptotic stability, that under N →∞ the system

becomes insensitive to perturbation, here withstanding the forced coupling with the unstable

motif P2.

7 Methods and data analysis

7.1 Numerical integration

To numerically test our predictions we constructed Eq. (1.1) for each of the systems in Sec. 4,

using the appropriate network A,G (Scale-free, Erdős-Rényi, empirical, etc.). We then used a

fourth-order Runge-Kutta stepper (Matlab’s ode45) to numerically solve the resulting equations.

Starting from an arbitrary initial condition xi(t = 0), i = 1, . . . , N , we allowed the system to

reach steady-state by waiting for ẋi → 0. To numerically realize this limit we implemented the

termination condition

N
max
i=1

∣∣∣∣xi(tn)− xi(tn−1)

xi(tn)∆tn

∣∣∣∣ < ε, (7.1)

where tn is the time stamp of the nth Runge-Kutta step and ∆tn = tn − tn−1. As the system

approaches a steady-state, the activities xi(tn) become almost independent of time, and the

numerical derivative ẋi = (xi(tn) − xi(tn−1))/∆tn becomes small compared to xi(tn). The

condition (7.1) guarantees that the maximum of ẋi/xi over all activities xi(tn) is smaller than

the pre-defined termination variable ε. In our simulations, across the different dynamics we

tested, we set ε ≤ 10−12, a rather strict condition, to ensure that our system is sufficiently close

to the true steady-state.

7.1.1 Numerical analysis of Power dynamics

To analyze Power dynamics we used the Newton-Raphson method to extract the roots of

0 = fi + g
N∑
j=1

AijGij sin
(
xj(t)− xi(t)

)
, (7.2)

providing the fixed-point of (5.1), under ẍi = ẋi = 0. For a system with ngen generators and

nload loads, we set fi = −1 for load nodes and fi = nload/ngen for generators. This ensures a

global balance of power generation vs. demand. The global weight was set to g = 1, and the

link weights were also set uniformly to Gij = 1, i.e. a binary network. In our empirical power-

networks (Sec. 7.4) the number of loads nload vs. generators ngen is specified in the data. For

the model networks we used a balanced network with 50% generators and 50% loads, assigned

at random. As our initial condition we extracted xi from a uniform distribution, seeking a

starting point from which the system converges to a fully positive solution. This was satisfied

for xi ∼ U(0.8, 1.5) for the model networks and for xi ∼ U(3.5, 4.5) for the empirical ones. Using

the obtained roots x = (x1, . . . , xN )> we constructed the relevant Jacobian matrix as explained

below in Sec. 7.2.
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7.2 Numerically estimating J

Once the steady state x = (x1, . . . , xN )> is reached we construct the numerical Jacobian by

substituting the numerically obtained states xi into (2.11) and (2.51). This represents the

system’s actual stability matrix, as obtained for each dynamics on its relevant networks. For

example, consider our Epidemic model in Eq. (4.3), where M0(x) = −fixi,M1(xi) = 1− xi and

M2(x) = xj , and hence M ′0(x) = −fi,M ′1 = −1 and M ′2 = 1. Once we obtain x we introduce all

numerically calculated xi into Wii and Wij , which for Epidemic take the form

Wii = −f − g
N∑
j=1

AijGijxj (7.3)

and

Wij = gAijGij(1− xi). (7.4)

This construction, directly from the numerically obtained fixed-point x∗ is exact, incorporating

all the potential confounding factors of the specific system, from the fine-structure and potential

degree-correlations in A, to the random distribution of fqi and Gij , or the varying interaction

strength g. In Fig. 3 of the main text we compare the scaling of these numerically estimated Wii

and Wij vs. the theoretically predicted ensemble E(A,G,Ω), as provided by (2.69) and (2.70).

7.3 Logarithmic binning

Our main theoretical prediction focuses on scaling relationships, such as W (d) ∼ dµ, which we

observe by their linear slope in a log-log plot (e.g., Fig. 3 of main text). To construct such plots

we employed logarithmic binning18. First we divide all nodes into B bins

B(b) =

{
i ∈ {1, . . . , N}

∣∣∣∣cb−1 <
di
dmin

≤ cb
}
, (7.5)

where b = 1, ..., B, c is a constant and dmin = minNi=1 di is the minimal weighted degree in A⊗G.

In (7.5) the bth bin includes all nodes i whose weighted degree di is between dminc
b−1 and dminc

b.

The parameter c is selected such that the unity of all bins ∪Bb=1B(b) includes all nodes, hence we

set cB = dmax/dmin. Therefore, the first bin b = 1 is bounded from below by dmin, and the final

bin bounded from above by dmax. Dividing the nodes according to (7.5) generates exponentially

growing bins in di, which are linear in log di, allowing to naturally observe the scaling in the

logarithmic plots.

After dividing all nodes into bins, we plot the average degree of the nodes in each bin

db = 〈di〉i∈B(b) =
1

|B(b)|
∑
i∈B(b)

di (7.6)

versus the average W (d) term of nodes in that bin

W (db) = 〈Wii〉i∈B(b) =
1

|B(b)|
∑
i∈B(b)

Wii. (7.7)
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In a similar fashion we plot Wij ∼ dνiGijd
ρ
j , this time applying the binning to WTheory

ij = dνiGijd
ρ
j ,

instead of to di. Therefore, the bins are defined as

B(b) =

(i, j)
∣∣Aij = 1, cb−1 <

WTheory
ij

Wmin
≤ cb

 , (7.8)

such that in each bin we include all node pairs whose product dνiGijd
ρ
j is within a given range.

Similarly to (7.5) we set Wmin = min(WTheory
ij ), and select c such that the entire range of

WTheory
ij is covered. As above, we then plot the average real Wij in each bin vs. the theoretically

predicted WTheory
ij . Specifically, these averages take the form

WReal(b) = 〈Wij〉(i,j)∈B(b) =
1

|B(b)|
∑

(i,j)∈B(b)

Wij (7.9)

WTheory(b) = 〈dνiGijd
ρ
j 〉(i,j)∈B(b) =

1

|B(b)|
∑

(i,j)∈B(b)

WTheory
ij , (7.10)

where Wij in (7.9) is constructed via Sec. 7.2.

7.4 Model and empirical networks

To test our predictions we used model and empirical networks, as summarized below:

ER. An Erdős-Rényi random network with N = 6, 000 nodes and an average degree of 〈k〉 = 6.

Weights were added using Gij ∼ N (1.0, 0.1), a normal distribution function with mean µ = 1.0

and variance σ2 = 0.1. Note that this weight distribution allows for a small number of negative

weights, hence, in practice, it test out predictions under a coexistence of a majority positive

along side a small minority of negative links.

SF. A binary scale-free network with N = 6, 000 nodes, average degree 〈k〉 = 6, and degree

distribution following P (k) ∼ k−γ with γ = 2.5. Under this distribution we have dnn ∼ Nβ with

β = 0.6, allowing us to examine our asymptotic limits (which require β > 0).

SF1. Using the underlying topology of SF we added weights Gij , extracted from a normal

distribution with mean µ = 1.0 and variance σ2 = 0.1, i.e. Gij ∼ N (1.0, 0.1). Also here we did

not limit the weights from becoming negative.

SF2. Using the underlying topology of SF we added weights Gij , from a scale-free probability

density function P (G) ∼ G−α with α = 3. Hence, SF2 represents an extremely heterogeneous

network, featuring both scale-free topology and scale-free weights.

UCIonline. An instant messaging network from the University of California Irvine19, capturing

61, 040 transactions between 1, 893 users during a T = 218 day period. Connecting all individuals

who exchanged messages throughout the period, we obtain a network of 1, 893 nodes with 27, 670

links, exhibiting a fat-tailed degree distribution. Here weights Gij are taken from a scale-free

probability density function P (G) ∼ G−α with α = 3, once again examining conditions of

extreme heterogeneity.

Email Epoch. This dataset monitors ∼ 3×105 emails exchanged between 3, 185 individuals over

the course of ∼ 6 months20, giving rise to a scale-free social network with 31, 885 binary links.

Here too weights Gij were extracted from a scale-free probability density function P (G) ∼ G−α
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Epidemic 𝐟𝒊 = {𝒇𝒊} 𝒇𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒇𝒊 ≥ 𝟎. 𝟏

Regulatory 𝐟𝒊 = {𝒇𝒊} 𝒇𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒇𝒊 ≥ 𝟎. 𝟏

Population 1 𝐟𝒊 = {𝒃𝒊, 𝒄𝒊} 𝒃𝒊 = 𝟏, 𝒄𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒄𝒊 ≥ 𝟎. 𝟏

Biochemical 𝐟𝒊 = {𝒇𝒊, 𝒃𝒊} 𝒇𝒊, 𝒃𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒇𝒊, 𝒃𝒊 ≥ 𝟎. 𝟏

Inhibitory 𝐟𝒊 = {𝒇𝒊, 𝒃𝒊} 𝒃𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒃𝒊 ≥ 𝟎. 𝟏, 𝒇𝒊 = 𝟐𝒃𝒊

Power 𝐟𝒊 = {𝒇𝒊, 𝒃𝒊} 𝒇𝒊 =

−𝟏 𝐅𝐨𝐫 𝐜𝐨𝐧𝐬𝐮𝐦𝐞𝐫𝐬

𝒏𝐥𝐨𝐚𝐝
𝒏𝐠𝐞𝐧

𝐅𝐨𝐫 𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐨𝐫𝐬
, 𝒃𝒊= 𝟏

Population 2 𝐟𝒊 = {𝒃𝒊, 𝒄𝒊} 𝒃𝒊 = 𝟏, 𝒄𝒊 ∼ 𝓝 𝝁,𝝈𝟐 , 𝝁 = 𝟏. 𝟎, 𝝈𝟐 = 𝟎. 𝟏, 𝒄𝒊 ≥ 𝟎. 𝟏

Table 3: Model parameters. For each of our dynamic models we summarize the dynamic parameters used in
our simulations. For example, in Epidemic the recovery rate was extracted from a truncated normal distribution
with mean µ = 1.0 and variance σ2 = 0.1. To avoid the irrelevant scenraio of a negative recovery rate we
truncated this distribution at fi ≥ 0.1. Biochemical, Inhibitory and Power have two parameters fi = (fi, bi). In
Inhibitory the Alee effect required fi > bi for all species. To ensure this we extracted bi from a truncated normal
distribution, then set fi = 2bi. In Power the loads were set to −1 for consumer nodes, then the generation was
gauged to ensure a balanced network.

with α = 3.

PPI1. The yeast scale-free protein-protein interaction network, consisting of 1, 647 nodes (pro-

teins) and 5, 036 undirected links, representing chemical interactions between proteins21. Weights

were assigned via Gij ∼ N (1.0, 0.1).

PPI2. The human protein-protein interaction network, a scale-free network, consisting of N =

2, 035 nodes (proteins) and L = 13, 806 protein-protein interaction links22. Here too, weights

were assigned via Gij ∼ N (1.0, 0.1).

Microbial 1. To construct microbial networks we collected data on 844 microbial species and 283

associated metabolites23. This allowed us to construct an 844× 283 directed bipartite network

B whose links capture the production and consumption of metabolites among the microbial

species: Bim = 1 if species i produces metabolite m; Bmi = 1 if species i consumes metabolite

m (i = 1, . . . , 844;m = 1, . . . , 283). We then used

Kij =

283∑
m=1

BmiBmj

283∑
m=1

Bmi

(7.11)
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to construct a weighted directed complemnetarity network. In this network the links connect

species that compete over the same metabolites. The link weights capture the strength of the

competition, quantifying the fraction of i’s consumed matebolites (denominator) over which it

must compete with j (numerator). The resulting K has a small fraction of isolated species,

hence we consider only its giant connected components, which includes N = 737 microbial

species linked through L = 113, 350 competitive interactions.

Microbial 2. Using B above we now construct a mutualistic network via

Kij =

283∑
m=1

BjmBmi

283∑
m=1

Bmi

, (7.12)

now describing the fraction of i’s total consumption (denominator) that is produced by j (nu-

merator). Here, the connected component remains with N = 496 nodes and L = 43, 964 links.

The two networks are of different nature: Microbial 1 is adversarial, relevant e.g., for Inhibitory,

while Microbial 2 is cooperative, naturally fitting our Population 1/2 dynamics. Still, for the

purpose of examining our theoretical predictions, and mainly for confronting them with empir-

ically observed networks, we applied our Population 1/2 dynamics on both Microbial 1 and 2,

despite the fact that the former, is, perhaps, less relevant.

Power 1. Mapping a segment from the power network of Great Britain, consisting of N = 2, 224

nodes and L = 2, 804 links. The nodes are split into 394 generators and 1, 830 consumer loads.

The network data can be downloaded from http://www.nationalgrid.com

Power 2. A segment of the Polish power network, typically referred to as ”case2383”24–26.

The network has N = 2, 383 nodes, 327 of which are generators and the remaining 2, 056 are

consumer loads. These loads and generators are linked through L = 2, 886 transmission lines.

This data can be downloaded from roman.korabat@polsl.pl.
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