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Abstract

Dense suspensions of self-propelled rod-like particles exhibit a fascinating variety of

non-equilibrium phenomena. By means of computer simulations of a minimal model for rigid

self-propelled colloidal rods with variable shape we explore the generic diagram of emerging

states over a large range of rod densities and aspect ratios. The dynamics is studied using a

simple numerical scheme for the overdamped noiseless frictional dynamics of a many-body

system in which steric forces are dominant over hydrodynamic ones. The different emergent

states are identified by various characteristic correlation functions and suitable order

parameter fields. At low density and aspect ratio, a disordered phase with no coherent motion

precedes a highly cooperative swarming state with giant number fluctuations at large aspect

ratio. Conversely, at high densities weakly anisometric particles show a distinct jamming

transition whereas slender particles form dynamic laning patterns. In between there is a large

window corresponding to strongly vortical, turbulent flow. The different dynamical states

should be verifiable in systems of swimming bacteria and artificial rod-like micro-swimmers.

(Some figures may appear in colour only in the online journal)

1. Introduction

Collections of swimming microorganisms and self-propelled

particles are able to form remarkable macroscopic pat-

terns [1–4] including swarms [5, 6] and complex vor-

tices [7–11]. The tendency for neighbouring particles to align

is strongly determined by their mutual interactions which

provide the key to understanding the emergent behaviours at

high particle density. In this regime, the interplay between

microscopic self-motility and anisotropic volume-exclusion

interactions leads to complex spatio-temporal behaviour [12,

13] that can be directly visualized in two spatial dimensions,

i.e. for particles moving in planar confinement.
Quasi-two-dimensional systems of self-propelled parti-

cles can be realized in a number of ways. Autonomously

navigating bacteria and other microbes can be confined to

free-standing thin films [9], between solid surfaces [14]

or a liquid-gas interface [8, 15]. On larger length scales,

active systems can be realized by polar granulates on a

vibrating surface [16–18] or pedestrians moving in complex

environments [19]. Last not least, colloidal dispersions

constitute ideal model systems not only for investigating

passive matter [20, 21] but also for active matter composed

of self-motile colloidal particles. Over the past decade, a

number of distinctly different realizations of active colloidal

particles have been proposed. These include Janus particles

driven by catalytic processes [22, 23] or thermophoretic [24]

gradients, particles propelled by artificial flagella [25] and

surface waves [26, 27] driven in an external magnetic field.

Rather than being spherical, most of these particles have

an anisotropic rod-like shape and the intrinsic alignment

of colliding particles is found to play a crucial role in

determining the spatio-temporal behaviour of active parti-

cles [28–30]. Confining systems to quasi-planar geometries

allows for a direct visualization of the particles by means of

real-space microscopy and provides fascinating opportunities

to study the single-particle and collective behaviour of

micro-swimmers.
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In this paper we use computer simulation to study a

simple model for suspensions of rigid, self-propelled rods

(SPRs) that interact via a Yukawa-segment potential [31,

32]. The potential allows for a realistic description of the

strong mutual short-range repulsion that prevents particles

from overlapping. Self-motility is imposed by introducing

a constant propulsion force along the main orientation axis

of each rod. Consequently, when two neighbouring active

rods collide they align, and the aligning force plays an

essential role in the formation of flocks of coherently

moving particles [30, 33]. In our study we focus on

the collective behaviour of dense suspensions of strongly

interacting particles and characterize the emergent states

by analysing different correlation functions as dynamical

diagnostics. In order to retain a generic framework we

consider the overdamped frictional dynamics of a many-body

system where the equations of motion arise from a simple

force balance between the Stokesian frictional force, the

collision force and the active force on each rod. Likewise,

the rod orientations propagate via a torque balance involving

the frictional and interaction torque acting on each particle.

Other forces due to many-body hydrodynamic interactions

or thermal fluctuations exerted by the embedding solvent,

for example, are neglected. This allows us to simplify the

microscopic equations of motion in such a way that the

rod aspect ratio and density constitute the main variational

parameters of the model. The microscopic self-propulsion

force can be appropriately scaled out and subsumed into an

(effective) Yukawa amplitude which only has a weak impact

on the emergent behaviour.

Despite its simplicity, the model is capable of predicting

a wealth of different steady states that hitherto could not

be realized within a single framework. Amongst the various

states we identify an incoherent, disordered dynamical phase

at small particle aspect ratio and a cooperative swarming

state with giant number density fluctuations at larger rod

anisometry as found in a number of particle-resolved

models [28, 32–35]. At high densities and small aspect

ratios, we find a jammed phase with distinct local crystalline

order. This state is rather common for passive systems [36]

but less obvious for active systems. At large aspect ratio

and high density, stratified patterns emerge consisting of

lanes driven in opposite directions. These structures are

reminiscent of the laning patterns observed for mixtures

of passive particles (i.e. with no internal driving force)

driven in a macroscopic external field [37–40]. A similar

phenomenon was unveiled recently in mixtures of active and

passive rod-like particles [41]. For intermediate densities and

aspect ratios, we find distinct chaotic states characterized

by meso-scale turbulent flow patterns with a significant

vorticity in the velocity field [42]. This type of active

turbulence has been observed in microbial suspensions [8,

9, 42, 43]. Contrary to traditional turbulent flow observed at

high-Reynolds-number passive fluids the vortices that make

up the turbulent flow patterns have a uniform mesoscopic size

irrespective of the density or particle shape.

In principle, the full variety of different emergent states

advanced here should be verifiable for bacterial systems

and artificial rod-like colloidal or granular micro-swimmers.

In a recent study, the statistical properties of the turbulent

states as predicted from the SPR model have been

systematically compared with flow-field data of confined

bacterial systems [44]. It would be interesting to pursue

a more systematic comparison with bacterial systems and

assemblies of man-made micro-swimmers in order to verify

the full topology of the predicted phase diagram.

The remainder of this paper is organized as follows:

in section 2 we specify our model for self-propelled rods,

the corresponding equations of motion and the simulation

methodology. Numerical results on the non-equilibrium phase

diagram are presented and analysed in section 3. We conclude

in section 4 with a brief discussion of possible extensions

of the model and we highlight opportunities to observe the

predicted behaviour in experiment.

2. Frictional dynamics of a self-propelled-rod (SPR)
model

One of the simplest ways to envisage a suspension of

active mesogens is by considering a collection of rigid, self-

propelled rods each moving with a constant self-propulsion

force F directed along the main rod axis (see figure 1). Mutual

rod repulsion is implemented by discretizing each rod into n

spherical segments and imposing a repulsive Yukawa force

with characteristic decay length λ between the segments of

any two rods, such that λ defines the effective diameter of the

rod of length ℓ [31]. If two sufficiently long rods perform a

pair-collision, the interaction results in an effective nematic

(apolar) alignment while the centres-of-mass attain a certain

minimal distance due to the repulsive Yukawa forces. The

potential energy of a rod pair α and β with orientation unit

vectors {ûα, ûβ} and centre-of-mass distance 1rαβ , is given

by

Uαβ =
U0

n2

n
∑

i=1

n
∑

j=1

exp[−(r
αβ
ij /λ)]

r
αβ
ij

(1)

where U0 is the potential amplitude, λ the screening length,

and

r
αβ
ij = |1rαβ + (liûα − ljûβ)|, (2)

the distance between the ith segment of rod α and the jth

segment of rod β, with li ∈ [−(ℓ − λ)/2, (ℓ − λ)/2] denoting

the position of segment i along the symmetry axis of the rod

α. The screening length λ defines the effective diameter of the

segments such that we may introduce an aspect ratio a = ℓ/λ

to quantify the effective anisometry of the SPR. The case

a = 1 corresponds to a single Yukawa point particle (n = 1).

For a > 1, the number of segments per rod is fixed as n = 3

for 1 < a ≤ 3 and n = ⌊9a/8⌉ for a > 3 with ⌊·⌉ denoting the

nearest integer.

We focus on the dynamical regime relevant to

microorganisms and artificial self-motile colloidal mesogens

and we assume the motion of the SPRs to be overdamped

due to solvent friction (in the zero Reynolds number limit).

Since we are interested in the collision-dominated dynamics
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Figure 1. Coarse-grained representation of a pair of rod-like
micro-swimmers with n = 5 repulsive Yukawa segments and aspect
ratio a = ℓ/λ. Self-propulsion is provided by a constant force F
acting along the main rod axis indicated by the orientational unit
vector û. The total rod pair potential is obtained by a sum over all
Yukawa segment pairs with distance rij and is a function of the
centre-of-mass distance vector 1r and orientations (equation (1)).

in dense suspensions, we disregard any thermal and intrinsic

fluctuations in the swimming direction of the SPRs [4]. These

fluctuation will be briefly discussed in section 3.4. Owing

to their typical size of several microns, thermal fluctuations

exerted by the solvent are deemed small for most bacterial

and colloidal micro-swimmers which typically operate in

the regime of large Péclet number where self-propulsion

dominates Brownian motion [4, 42]. In the absence of noise

the resulting equations of motion for the centre-of-mass rα(t)

and orientation ûα(t) of each SPR are entirely deterministic

and can be written compactly as

fT · ∂trα = −∇rα U + Fûα, (3)

fR · ∂tûα = −∇ûα
U. (4)

Here, F is a constant self-motility force acting along

the longitudinal axis of each rod (figure 1), U =

(1/2)
∑

β,α:β 6=αUαβ the total potential energy, ∇û denotes the

gradient on the unit circle, and

fT = f0
[

f‖ûαûα + f⊥(I − ûαûα)
]

, (5)

fR = f0 fRI, (6)

are the translational and rotational friction tensors (I is the

two-dimensional (2D) unit tensor) with a Stokesian friction

coefficient f0. The dimensionless geometric factors {f‖, f⊥, fR}

depend solely on the aspect ratio a, and we adopt the standard

expressions for rod-like macromolecules, as given in [45]

2π

f‖
= ln a − 0.207 + 0.980a−1 − 0.133a−2, (7)

4π

f⊥
= ln a + 0.839 + 0.185a−1 + 0.233a−2, (8)

πa2

3fR
= ln a − 0.662 + 0.917a−1 − 0.050a−2. (9)

It is expedient to multiply equation (3) with the inverse matrix

f−1
T :

∂trα = v0ûα − f−1
T ·∇rα U, (10)

where

v0 =
F

f0f‖
, (11)

defines the self-propulsion velocity of a non-interacting SPR.

In our simulations, we have adopted characteristic units

such that λ = 1, F = 1, and f0 = 1, which means that distance

is measured in units of λ, velocity in units of F/f0, time

in units of τ0 = λf0/F, and energy in units of Fλ. Upon

rescaling to dimensionless coordinates, three relevant system

parameters remain: the dimensionless Yukawa amplitude

Ũ0 = U0/(Fλ), which determines the hardness of the rod

interactions relative to their characteristic propulsion energy,

the aspect ratio a, and the effective volume fraction of the

system

φ =
N

A

[

λ(ℓ − λ) +
πλ2

4

]

, (12)

where the term between brackets denotes the 2D volume

Arod of a spherocylindrical rod. For steeply repulsive Yukawa

interactions, the general dynamical behaviour resembles that

of hard rods and only weakly depends on the Yukawa

amplitude, and we fix Ũ0 = 250. The remaining quantities,

the rod shape a and volume fraction φ constitute the main

steering parameters for our investigations. We simulate the

evolution of the SPR coordinates as a function of time τ =

t/τ0 in a square box of length L with periodic boundary

conditions at volume fractions in the range 0.05 < φ < 0.9.

The simulations are carried out using a time discretization

1τ = 0.002ρ−1/2, where ρ = Nλ2/A with typically N = 104

rods per simulation. Initial configurations, generated from a

rectangular lattice of aligned rods with û pointing randomly

up or down are allowed to relax during an interval τ = 1000

before statistics are gathered over an interval τ = 20L with

L = (N/ρ)1/2 the dimension of the simulation box (in units of

λ). Velocity vector fields v(r, t) are constructed by measuring

the average centre-of-mass velocity within sub-cells centred

around the position r. To this end we project the particle

positions onto a 2D cubic grid {(i, j) | 1 ≤ i, j ≤ G} and

measure the average velocity v(t; i, j) in each bin (i, j) at

a given time t. In order to test for finite size effects, we

consider two different system sizes: small systems with N =

1 × 104 particles and large systems with N = 4 × 104

particles at the same filling fraction φ. The coarse-graining

parameter G is chosen adaptively such as to ensure that

each bin represents the average velocity of about 10 SPRs.

Generally, we observe that the dynamical structure and order

parameters of the emergent states are robust with respect to

changes in the particle number N, provided N is at least of

O(104).
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Figure 2. Schematic non-equilibrium phase diagram of the 2D SPR model at variable aspect ratio a and effective filling fraction φ. Values
exceeding unity are, in principle, possible due to the softness of the Yukawa interactions. The area relevant to self-motile bacteria is
highlighted in red. A number of distinctly different dynamical states are discernible as indicated by the coarse-grained maps of the velocity
field v(r, t) (upper panels) at time t and the corresponding scalar vorticity field ω̃(r, t) = [∇ × v(r, t)] · êz (lower panels) expressed in units

of τ−1
0 .

3. Results

3.1. Non-equilibrium phase diagram for the SPR model

Upon varying the effective volume filling fraction φ and

the rod aspect ratio a a number of qualitatively different

dynamical phases emerge. A schematic non-equilibrium

phase diagram, shown in figure 2, illustrates the importance of

the SPR anisometry in determining the stationary dynamical

state of the system. The low-density regime is generally

characterized by disordered motion with little or no dynamical

coherence. Beyond a certain threshold density cooperative

motion becomes manifest and translates into dynamical states

whose structure depends on the intrinsic ‘aligning force’ of

the SPRs. Short rods generally jam at high packing fractions

whilst very long rods (a > 13) exhibit swarming behaviour

with large spatio-temporal density fluctuations. The swarming

and laning phases adjoin a large region of bio-nematic and

turbulent flow characterized by vortices and extended nematic

jet-like structures [42, 46].

Generally, the transitions from the dilute phase to regimes

with strong cooperative motion can be localized by the

2D Onsager overlap density [47], defined as the density

corresponding to a single rod occupying an average area equal

to its excluded area Aex = (2/π)(ℓ−λ)2 +(π/4)λ2. The latter

expression can be derived from the rod dimensions in figure 1

by assuming a pair of spherocylindrical rods with isotropic

orientations. By combining terms one arrives at the following

expression for the overlap density:

φ∗ =
Arod

Aex
=

1 + 4(a − 1)/π

1 + 8(a − 1)2/π2
. (13)

In figure 2 we have plotted φ∗ to mark the crossover from

incoherent to cooperative turbulent and swarming motion. The

overlap density thus demarcates the region where many-body

rod collisions (exceeding the pair level) become important and

various non-trivial emergent states arise. In the sections below

we shall present a more detailed overview of the dynamical

states and the crossovers indicated in figure 2.

3.2. Short rods: active jamming

For small aspect ratios (a < 3) a distinct transition towards

a jammed state is observed upon increasing density. This

behaviour is hinted at by the average SPR velocity for which

we may probe both parallel and transverse contributions via

v‖ =
1

N

〈

N
∑

α=1

ûαûα(t) · vα(t)

〉

,

v⊥ =
1

N

〈

N
∑

α=1

(

I − ûαûα(t)
)

· vα(t)

〉

,

(14)

where the brackets 〈· · ·〉 denote a time average. The results

are depicted in figure 3. In general, the average parallel

velocity decreases monotonically with density as the particles

get progressively hindered in their motion due to mutual rod

collisions. For small a the parallel mobility drops rapidly for

larger φ, indicating a severe slowing down of the collective

dynamics. This behaviour is more clearly reflected in the

mean-square displacement (figure 4) where a sharp drop in the

mobility (over nearly two orders of magnitude) at φ = 0.84

marks the onset of jamming. Throughout the density range

the motion is observed to be sub-ballistic at long times with

〈r2〉 ∼ τ 1.75±0.1. Despite the high packing fraction the SPRs

do not become fully caged on the timescale investigated due

to the presence of remnant collective motion as evident from

the velocity field in figure 4. This behaviour is different from

the active jamming recently studied in a model system of

soft active spheres where a much sharper transition from

fluid-type to arrested dynamics was observed [48]. The

jamming point depends strongly on particle anisometry as

indicated in figure 2 with a marked shift towards higher

volume fractions upon increasing a. From a structural point

of view the jamming transition is accompanied by a crossover

towards orientationally and positionally ordered structures,

as evident from the marked degree of local crystalline order

at large filling fractions. The velocity maps reveal small

pockets of locally enhanced particle mobility which bear

4
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Figure 3. Evolution of the average SPR velocity as a function of filling fraction φ for a number of particle aspect ratios. The figure shows
the average velocity component v‖ along the main rod orientation (a) and the average perpendicular component v⊥ (b), both expressed in
units of the velocity v0 of a free SPR.

Figure 4. Mean-square displacement of the centre-of-mass for SPRs with aspect ratio a = 3. The snapshots depict velocity fields (upper
panels) and the SPR coordinates (lower panels) for two different bulk filling fractions corresponding to a fluid state with turbulent signatures
at φ = 0.70 and a jammed state at φ = 0.97. Colour coding is used to indicate the orientation uy = û · êy of each rod.

some resemblance to dynamical heterogeneities commonly

observed in glassy systems of passive thermalized colloids

or granulates [49]. An intriguing avenue for future research

could be to make a systematic comparison of the jamming and

freezing transition for slightly anisometric SPRs with active

and passive particle dynamics. A detailed account of freezing

of self-motile spherical Yukawa particles has recently been

reported in [50].

3.3. Intermediate aspect ratio: vortical states and turbulence

The maximum in the transverse SPR velocities depicted

in figure 3(b) suggest that the SPRs exhibit some degree

of collective swirling motion at moderate densities even at

small aspect ratios. This type of motion becomes much more

manifest at larger a where distinct vortical patterns arise akin

to turbulent flow. The kinetic energy associated with local

vortical motion can be measured from the enstrophy per unit

area [51–53], which is defined as:

� = 1
2 〈|ω̃(r, t)|2〉, (15)

where the overbar denotes a spatial average. For slender rods

(a ≥ 3) the mean enstrophy exhibits a pronounced maximum

as a function of the volume fraction φ (figure 5(a)). This

maximum signals the density at which vortical motion is

maximal. In a bacterial suspension this extremum would

correspond to the optimal concentration for fluid mixing. The

range of aspect ratios over which turbulence flow is stable

corresponds well with the typical aspect ratios of bacterial cell

bodies, e.g. a ∼ 3 for Escherichia coli and a ∼ 6 for Bacillus

subtilis (cf figure 2).
The typical size of the vortices that make up the turbulent

flow patterns can be extracted from the equal-time velocity

autocorrelation function (VACF) gv(r) = 〈v(0, t) · v(r, t)〉.

This quantity can be obtained from the microscopic SPR

coordinates {rα, vα} via:

gv(r) =
〈
∑

α

∑

β 6=α δ(r − |rα − rβ |)(vα · vβ − 〈v〉2)〉

〈
∑

α

∑

β 6=α δ(r − |rα − rβ |)(〈v2〉 − 〈v〉2)〉
. (16)

The decay of the VACFs in figure 5(b) reveals a typical vortex

size of about ∼5ℓ, an estimate that seems rather insensitive to

the bulk density and aspect ratio. Monotonically decreasing

velocity correlations correspond to bio-nematic-type states

where large-scale nematic jets and vortices coexist [42]

whereas negative correlations (cf the curves for a = 7 and φ >

0.8) represent more pronounced vortical motion reminiscent

5



J. Phys.: Condens. Matter 24 (2012) 464130 H H Wensink and H Löwen

Figure 5. (a) Enstrophy � (in units τ−2
0 ) versus filling fraction for a number of aspect ratios a in the turbulent regime. The maxima

correspond to the densities where mixing due to vortical motion is the most efficient. (b) Spatial velocity autocorrelation function for a
number of bulk volume fractions in the turbulent flow regime for two different aspect ratios a.

Figure 6. Maps of the vorticity field ω̃(r, t) = [∇ × v(r, t)] · êz expressed in units of τ−1
0 showing large-scale turbulent flow for SPRs at

intermediate aspect ratios: (a) φ = 0.72, a = 5 and (b) φ = 0.90, a = 7. The snapshots are based on N = 4 × 104 SPRs. The lateral box
dimensions are 103ℓ (a) and 78ℓ (b).

of fully developed meso-scale turbulent flow [44]. Typical

vorticity snapshots are shown in figure 6.

In order to make a connection with classical 2D turbu-

lence in high-Reynolds-number fluids we have calculated the

energy spectrum which can be obtained as a Fourier transform

of the VACF:

E(k) =
k

2π

∫

dr exp[−ik · r]〈v(0, t) · v(r, t)〉. (17)

An alternative definition reads 〈v2〉 = 2
∫ ∞

0 dk E(k) where

E(k) reflects the accumulation of kinetic energy over different

length scales. The results in figure 7 suggest asymptotic

power-law scaling regimes for intermediate k-values with a

power-law exponent close to the characteristic k−5/3-decay

predicted by the Kolmogorov–Kraichnan scaling theory [54,

55] for (passive) 2D turbulence in the inertial regime. In

the present case, however, inertia is absent on the particle

scale because the SPR motion is completely overdamped, but

it is possible that the self-propulsion establishes ‘effective’

collective inertial effects on larger scales which could explain

the observed k−5/3 decay. Contrary to regular turbulent flow

where energy is injected on the macroscopic scale, active

turbulence is characterized by forcing on the microscopic

scale. In general, the transport of kinetic energy towards

smaller k becomes significantly damped on larger length

scales [15] as highlighted by the low-k plateau in the power

Figure 7. Power spectra of the kinetic energy for turbulent flow of
SPRs with a = 7 (kℓ = 2π/ℓ). Universal scaling behaviour (with
scaling exponent −5/3) is observed in the intermediate range of
wavenumbers k.

spectra in figure 7. Indications for an upward enstrophy

cascade with spectral scaling E(k) ∝ k−3 at length scales

smaller then the injection scale have recently been reported

from hydrodynamic theory of active fluids [56]. We refer

6
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Figure 8. Spatial autocorrelation functions of the vertical velocity component gvy(r) (equation (16)) at various filling fractions φ for SPRs
with a = 16. Particle snapshots of the stationary states at (a) φ = 0.05 (disordered, incoherent motion), (b) φ = 0.21 (swarming), (c)
φ = 0.32 (initial stage of lane formation), and (d) φ = 0.42 (fully developed laning state). The lateral box dimension corresponds to 38ℓ.
Colour coding is used to indicate the orientation uy = û · êy of each rod.

Figure 9. Number fluctuations 1N2 = 〈(NL − 〈NL〉)
2〉 as a function of the average particle number 〈NL〉 (see text) in a system of

N = 1 × 104 SPRs. (a) Typical results for the different emergent states: the power-law scaling 1N ∝ 〈NL〉
γ reveals giant number

fluctuations (γ ∼ 1) for the swarming case while fluctuations are strongly suppressed (γ < 0.5) in the dense states (jammed, turbulent and
laning). (b) Density-dependence of the number fluctuations for SPRs with a = 9. The arrow locates the density where a crossover from
swarming to turbulent flow can be expected upon increasing φ.

the reader to [44] for a more detailed discussion comparing

meso-scale turbulence in active suspensions and regular

high-Reynolds-number turbulent flow.

For small aspect ratios the vortical motion slowly dies out

upon lowering the density in favour of incoherent, disordered

motion. The crossover roughly takes place at the overlap

density φ∗ (equation (13)) which thus delimits the low-density

boundary of turbulent flow. At larger aspect ratios the scenario

is different. Here, density fluctuations become stronger and

stronger upon lowering the density, and eventually cause the

homogeneous vortical flow to break up into isolated polar

swarms of SPRs separated by regions which are almost

completely devoid of particles (see also figure 8(b)). In the

high-density regime a sharp transition towards laning-type

flow occurs due to a sudden ‘stretching’ of the vortices into

stratified patterns. Both of these states will be described in

more detail in the next section.

3.4. Long rods: swarming and lane formation

At low to moderate density, slender rods with a > 10 tend

to form large compact flocks (figure 8(b)) which strongly

resemble of the cooperative structures observed in large

groups of organisms, e.g. schools of fish, flocks of birds [57,

58]. The dynamical swarming state is accompanied by

anomalously large (‘giant’) number fluctuations as routinely

found in active system [16–18, 30, 41, 59–61]. The results in

figure 9(a) are obtained by measuring the fluctuation 1N2 =

〈(NL − 〈NL〉)2〉 of the average number of SPRs 〈NL〉 =

NL2/A present in a square sub-compartment of linear size L.

From the power-law behaviour 1N ∝ 〈NL〉γ we can extract

an exponent γ = 0.9 ± 0.2 which is much larger than the

value γ = 0.5 one would expect for a system in thermal

equilibrium. The number fluctuations are much weaker for

the incoherent state although the anomalous exponent (γ ∼

0.6) hints at some degree of clustering taking place even
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at low densities [16] (cf figure 8(a)). For the dense states,
fluctuations are strongly suppressed (γ ∼ 0.3), which implies
that the turbulent and laning flow can be regarded as nearly
incompressible. The transition from swarming to turbulence
at smaller aspect ratios can be located from a steep decrease
in the density fluctuations at lower packing fractions as
indicated in figure 9(b). The arrow thus locates a smooth
crossover from strongly fluctuating flocking-type flow to
homogeneous vortical flow where density fluctuations are
strongly suppressed due to packing effects.

At larger volume fractions distinct laning patterns emerge
that consist of cooperative stratified motion (figures 8(c)–(d)).
The transition from flocking to laning as a function of
the volume fraction can be localized from the equal-time
VACF for the velocity components along the lane directions
(in this case the vertical y-component). The characteristic
decay of the VACF gvy(r), shown in figure 8, allows a
distinction between the disordered state at low densities
where rod clusters are small and velocity correlations decay
rapidly and the emergence of large cooperative flocks with
velocity correlations spanning several dozens of rod lengths.
A marked divergence of the correlation length occurs around
φ ≈ 0.4 where the flocks start to span the entire system
and self-organize into lanes moving in opposite directions.
The same effect occurs if a is increased at fixed density
and the crossover from turbulence to laning can be inferred
from a sudden increase of the velocity correlation length.
We remark that the preferred direction of the lanes along
the y-axis is due to a small bias imparted by the squared
simulation box and the periodic boundary conditions applied
in both Cartesian directions. Similar laning patterns may
appear along the horizontal axis if a different orientation of
the rectangular lattice is used as a starting configuration. Other
laning directions (e.g. along the diagonal) are favoured only
transiently before collective redirection takes place along one
of the easy axes of the simulation box. The considerable
enstropy of the swarming state (figure 5) does not reflect
homogeneous vortical flow but rather the curved trajectories
of the isolated swarms which move with considerable speed
owing to the strong local alignment and the low friction
associated with slender rods (cf figure 3(a)). In the laning
state the vorticity is strongly localized in the boundaries
between adjacent layers moving in opposite directions. Here,
the collective friction is even smaller than in the swarms and
the average SPR velocity is close to the maximum swimming
speed of a single SPR.

The laned flow patterns remain stable throughout the
sampled time interval and no sign of break-up is observed
over time even for large systems. We have verified the stability
of the lanes against small fluctuations of the rod orientations
that could be induced by thermal motion of the embedding
medium or by some internal source, e.g. bacterial flagella. The
rotational fluctuations are represented by a Gaussian white
noise contribution 1û to the equation of rotational motion of
each rod α (cf equation (4)):

∂tûα = −f−1
R ·∇ûα

U + 1ûα. (18)

The stochastic term has zero mean 〈1ûiα〉 = 0 and
correlations 〈1ûiα(t)1ûjβ(t′)〉 = 2D∗

Rδijδαβδ(t − t′) (with

i = x, y) in terms of some effective rotational diffusion

rate D∗
R. Although ‘run-and-tumble’ motion as commonly

observed in bacterial systems (notably E. coli [4]) is strictly

non-Brownian at short times [62], its long-time behaviour

is well captured by a rotational diffusion process with a

diffusion constant much larger than the Stokes–Einstein

value DR = kBT/f0fR (where kBT is the thermal energy) for

passive Brownian rods. The strength of the tumbling motion

is conveniently expressed in terms of the dimensionless

tumbling parameter ℓD∗
R/v0, which is the ratio of the

translation time a free SPR needs to swim over a distance

ℓ and the typical tumbling time 1/D∗
R. Typical values for E.

coli and other swimming bacteria are ℓD∗
R/v0 ∼ 0.01 [4]. In

the dense regime, the particle velocities are dominated by

rod–rod collisions rather than thermal fluctuations and the

intrinsic rotational diffusivity of the SPRs does not incur any

qualitative change to the laning structures. In general, we

assume that the spatio-temporal states and the topology of

the phase diagram are robust against weak fluctuations in

the swimming direction of the SPRs. We remark that similar

laning states have been encountered in binary mixtures of

SPRs with different self-motility at finite temperature [41].

In case of mixtures of active particles or macroscopically

driven passive particles the laning instabilities can usually be

rationalized from the disparity between the species mobility

which favours segregated flow if the mobility ratio exceeds

a certain threshold [37, 41]. In our case, however, such an

intrinsic driving force is absent since all particles have equal

microscopic mobility. We remark that banded and chaotic

patterns of cooperative motion have been predicted recently

in continuum descriptions of polar active particles [63–65] as

well as in modified Vicsek models [33] which include nematic

alignment [30] or density-dependent local mobility [66]. It

would be intriguing to see if the laning patterns observed

here can be reproduced from these models by means of

a full account of the short-wavelength volume-exclusion

correlations that are prevalent in dense systems of rigid SPRs.

4. Conclusions

We have studied the collective dynamical behaviour of a

simple two-dimensional model of self-propelled rigid rods

(SPRs) by means of numerical simulation. Depending on

the rod shape and density, the SPR model exhibits a wealth

of different emergent dynamical states including swarming,

turbulence, laning and jamming. Although many of these

states have been encountered in various setups, most notably

(mixtures of) spherical particles in different external fields, the

SPR model is able to generate these dynamical states upon

variation of only two basic system parameters; the particle

shape and density. The present approach may therefore serve

as a benchmark to characterize the collective properties

of different classes of self-motile organisms and artificial

micro-swimmers of various shapes. As for the turbulent state,

it was recently shown that the SPR model is capable of

reproducing the velocity statistics obtained from experiments

on strongly confined B. subtilis suspensions [44]. Future

experiments on dense systems of self-propelled particles
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with low and high particle anisometry will hopefully allow

for similar comparisons for the jammed and laned state,

respectively.

Future efforts could be aimed at extending the

SPR model and the associated equations of motion

by accounting for effects that could be relevant to

concentrated bacterial systems. These include details of the

self-propulsion mechanism and the associated many-body

hydrodynamic interactions mediated by the solvent, particle

flexibility and body forces transmitted by chemical gradients

(chemotaxis) [42, 67]. The influence of stochastic forces

could be incorporated if one wishes to assess the effect of

translational and rotational noise (bacterial tumbling) in more

detail. It is also desirable to explore the SPR model in three

spatial dimensions, for instance, to study the phenomenology

of fully developed three-dimensional meso-scale active

turbulent flow which has been unexplored so far. Finally, it

would be challenging to construct microscopic theories that

are capable of linking the particle anisometry to the various

emergent states observed in this study. Dynamical density

functional theory for anisotropic particles [12, 32, 68, 69]

could provide a promising avenue for this.
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