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Abstract

We consider a large class of exponential random graph models and prove the existence

of a region of parameter space corresponding to the emergent multipartite structure,

separated by a phase transition from a region of disordered graphs. An essential feature

is the formalism of graph limits as developed by Lovász et al. for dense random graphs.
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1. Introduction and statement of results

Complex networks, including the Internet, World Wide Web, social networks, biological

networks, etc., are often modeled by probabilistic ensembles with one or more adjustable

parameters; see, for instance, [4], [5], [9], [12], and the many references therein. We will use

one of these standard families, the exponential random graph models (see the references in [2],

[9], [12], and [13]), to study how the multipartite structure can exist in such networks, stable

against random fluctuations, in imitation of the modeling of the crystalline structure of solids

in thermal equilibrium.

Let H1 be an edge, and let H2 be any finite simple graph with k ≥ 2 edges. We will be

considering the two-parameter family of exponential random graph models, with probability

mass function on graphs GN with N nodes given by

Pβ1,β2(GN ) = exp{N2[β1t1(GN ) + β2t2(GN ) − ψN (β1, β2)]}, (1)

where ti(GN ) is the density of graph homomorphisms Hi → GN :

ti(GN ) =
|hom(Hi, GN )|

|V (GN )||V (Hi )|
. (2)

Here V (·) denotes a vertex set, and the term ψN (β1, β2) in (1) gives the probability

normalization.

We think of the parametersβ1 andβ2 as representing mechanisms for influencing the network,

as pressure and temperature do in models of materials in thermal equilibrium. Indeed, it is easy

to see by differentiation that if β1 is fixed, varying β2 will vary the mean value of the ‘energy’

density, t2(GN ); similarly, if β2 is fixed, varying β1 will vary the mean value of the edge

density, t1(GN ). Furthermore, if the mean value Eβ1,β2 [t1(GN )] of t1(GN ) is fixed and β2 ≪ 0
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then, as we will see below, the random graph will have a very low value for the mean value

Eβ1,β2 [t2(GN )] of t2(GN ). However, if Eβ1,β2 [t1(GN )] is fixed, any variation of β2 > 0 does

not affect Eβ1,β2 [t2(GN )] (when N is large) [15]. It is natural to treat separately the cases

β2 < 0 and β2 > 0. The former is called repulsive, the latter attractive; see [15]. The attractive

case β2 > 0 has been completely analyzed in [15], so we concentrate here on the case with

repulsion, β2 < 0.

It is useful to analyze the phenomenon in the last paragraph, as regards β2 ≪ 0, in two stages.

First, consider the nonprobabilistic optimization problem in which one minimizes the density

t2(GN ) among graphs GN of N nodes, corresponding intuitively to β2 = −∞. Such problems

have been widely studied following the pioneering work of Turán [16]. One can understand

the exponential random graph models as a means of analyzing such ‘extremal graph theory’

problems using the language of statistical mechanics [14], [17]. The function ψN (β1, β2)

represents the free energy of a grand canonical ensemble, which is the Legendre transform of

the entropy of a microcanonical ensemble. The latter is the usual setting for extremal graph

theory problems.

Fundamental to our results are questions of analyticity of the normalization in (1), which

we discuss next. (See [8] for elementary properties of real analytic functions of several real

variables.) An explicit formulation of the normalization is

ψN (β1, β2) =
1

N2
ln

(

∑

GN

exp{N2[β1t1(GN ) + β2t2(GN )]}

)

. (3)

It is proven in [2] that

ψ∞(β1, β2) = lim
N→∞

ψN (β1, β2)

exists for all β1, β2. By Theorem 6.1 of [2], the method, using analyticity, of the proof of

Theorem 3.10 of [15] can be immediately extended to prove that ψ∞(β1, β2) is analytic in the

real variables β1 and β2 when |β2| < 2/[k(k − 1)], where k is the number of edges in H2. It is

also noted in [15] that at points where ψ∞ is analytic,

∂

∂βj

ψ∞(β1, β2) = lim
N→∞

∂

∂βj

ψN (β1, β2), (4)

that is, the partial derivatives commute with the limit N → ∞. Partial derivatives of ψ∞,

when they exist, give information on the large-N mean and variance of the densities t1(GN )

and t2(GN ) (see [15]), and it is standard in the corresponding modeling of materials, in part for

this reason, to define phases and phase transitions as follows (see [6]).

Definition. A phase is an open connected region of the parameter space {(β1, β2)} which is

maximal for the condition that ψ∞(β1, β2) is analytic. The ‘high temperature phase’ is that

domain of analyticity of ψ∞(β1, β2) which contains the strip −2/[k(k − 1)] < β2 < 0. There

is a phase transition at (β∗
1 , β∗

2 ) if (β∗
1 , β∗

2 ) is a boundary point of an open set on which ψ∞ is

analytic, but ψ∞ is not analytic at (β∗
1 , β∗

2 ).

In this notation our main result is as follows.

Theorem 1. Assume that the chromatic number χ(H2) of H2 is at least 3. Then there is a

function s(β1), −∞ < β1 < ∞, with s(β1) ≤ −2/k(k − 1), such that, for every β1, the

interval {(β1, β2) | β2 ≤ s(β1)} does not intersect the high temperature phase.
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2. Proof of Theorem 1

We write P for the probability mass function Pβ1,β2 given by (1), and E for the expectation

Eβ1,β2 .

Before beginning we need some notation; see [1], [2], [3], [9], and [10] for discussions of

the ideas behind these terms, which basically provide the framework for ‘infinite volume limits’

for graphs, in analogy with the infinite volume limit in statistical mechanics [14].

To each graph G on N nodes we associate the following function on [0, 1]2:

f G(x, y) =

{

1 if (⌈Nx⌉, ⌈Ny⌉) is an edge of G,

0 otherwise.

We define W to be the space of measurable functions h : [0, 1]2 → [0, 1] which are symmetric,

i.e. h(x, y) = h(y, x) for all x, y. For h ∈ W , we define

t (H, h) =

∫

[0,1]ℓ

∏

(i,j)∈E(H)

h(xi, xj ) dx1 · · · dxℓ,

where E(H) is the edge set of H and ℓ = |V (H)| is the number of nodes in H , and note that,

for a graph G, t (H, G) defined in (2) has the same value as t (H, f G). For g ∈ W , we write

ti(g) = t (Hi, g) for i = 1, 2.

We define an equivalence relation on W as follows: f ∼ g if and only if t (H, f ) = t (H, g)

for every simple graph H . Elements of the quotient space, W̃ , are called ‘graphons’, and the

class containing h ∈ W is denoted h̃.

On W̃ we define a metric in steps as follows. First, on W we define

d�(f, g) = sup
S,T ⊆[0,1]

∣

∣

∣

∣

∫

S×T

[f (x, y) − g(x, y)] dx dy

∣

∣

∣

∣

.

Let � be the space of measure preserving bijections σ of [0, 1], and, for f in W and σ ∈ �,

define fσ (x, y) = f (σ(x), σ (y)). Using this, we define a metric on W̃ by

δ�(f̃ , g̃) = inf
σ1,σ2

d�(fσ1 , gσ2).

In the topology induced by this metric, W̃ is compact [11].

Next we need a few terms associated with ψ∞. Define, on [0, 1],

I (u) = 1
2
u ln(u) + 1

2
(1 − u) ln(1 − u),

and, on W̃ ,

I (h̃) =

∫

[0,1]2
I (h(x, y)) dx dy.

Also, on W̃ we define

T (h̃) = β1t1(h) + β2t2(h).

The above is relevant because it was proven in Theorem 3.1 of [2] that ψ∞(β1, β2) is the

solution of an optimization problem:

ψ∞(β1, β2) = sup
h̃∈W̃

[T (h̃) − I (h̃)]. (5)
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(Note that it follows immediately from (5) that ψ∞(β1, β2) is convex.) From Theorem 3.2 of

[2] one has some control on the asymptotic behavior as N → ∞, i.e.

δ�[G̃N , F̃ ∗(β1, β2)] → 0 in probability as N → ∞,

where F̃ ∗(β1, β2) is the (nonempty) subset of W̃ on which T −I is maximized, and G̃N = f̃ GN .

We now return to our proof. Our proof will be by contradiction, so we assume from here

on that ψ∞(β1, β2) is analytic in β1 and β2 on the entire half-line L = {(β∗
1 , β2) : β2 < 0},

where β∗
1 is arbitrary but fixed. We will find a contradiction, which will prove the existence of

the function s(β1). Consider the function

C(β1, β2) :=

(

∂ψ∞

∂β1
(β1, β2)

)k

−
∂ψ∞

∂β2
(β1, β2), (6)

where k is the number of edges in H2. Note that C(β1, β2) is analytic on L, since ψ∞(β1, β2) is.

Proposition 3.2 of [15] proves that, for all β2 < 0, there is a unique solution u∗(β1, β2) to

the optimization of

β1u + β2u
k − 1

2
u ln u − 1

2
(1 − u) ln(1 − u)

for u ∈ [0, 1]. Then from Theorems 6.1 and 4.2 of [2] we can use the same argument as used

to prove Equations (33) and (34) of [15] to prove that, for −2/[k(k − 1)] < β2 < 0,

∂

∂β1
ψ∞(β1, β2) = lim

N→∞
E[t1(GN )] = t1(u

∗) = u∗(β1, β2),

∂

∂β2
ψ∞(β1, β2) = lim

N→∞
E[t2(GN )] = t2(u

∗) = (u∗(β1, β2))
k.

It follows that C(β∗
1 , β2) = t1(u

∗)k − t2(u
∗) = 0 for −2/[k(k−1)] < β2 < 0. Since a function

of one variable which is analytic on L and constant on a subinterval must be constant on L, it

follows that

C(β∗
1 , β2) = 0 on L, (7)

and so C is identically 0 on the whole high temperature phase. (Any point in the phase can be

connected to the β1 axis by an analytic curve.)

Fix ε > 0 and i ∈ {1, 2}. Recall that β1 = β∗
1 is fixed arbitrarily. Write F̃ ∗(β2) for the set

F̃ ∗(β1, β2) ⊂ W̃ defined above. Using Theorem 7.1 of [2], choose β ′
2 sufficiently negative so

that, for every β2 < β ′
2,

sup
f̃ ∈F̃ ∗(β2)

δ�(f̃ , pg̃) <
ε

3k
, (8)

where p = e2β1/(1 + e2β1) and g(x, y) = 1 unless ⌊(χ(H2) − 1)x⌋ = ⌊(χ(H2) − 1)y⌋, in

which case g(x, y) has value 0.

Let β2 < β ′
2. Using Theorem 3.2 of [2], choose N0(β2) such that N > N0(β2) implies that

P

(

δ�(G̃N , F̃ ∗(β2)) ≥
ε

3k

)

<
ε

3k
. (9)

Let N > N0(β2) and Aε,N = {GN : δ�(G̃N , F̃ ∗(β2)) < ε/(3k)}. There exist h̃GN
∈ F̃ ∗(β2)

corresponding to each GN ∈ Aε,N such that

δ�(G̃N , h̃GN
) <

ε

3k
. (10)
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Write E|A for the restriction of the expectation to the set A. Using (8) and (10), we have

E|Aε,N
[δ�(G̃N , pg̃)] =

∑

GN∈Aε,N

δ�(G̃N , pg̃)P(GN )

≤
∑

GN∈Aε,N

[δ�(G̃N , h̃GN
) + δ�(h̃GN

, pg̃)]P(GN )

<
∑

GN∈Aε,N

[

ε

3k
+

ε

3k

]

P(GN )

≤
2ε

3k
(11)

for N > N0(β2).

From Lemma 4.1 of [10], it is easy to see that

|ti(GN ) − ti(pg)| ≤ kδ�(G̃N , pg̃). (12)

Write Āε,N = {GN : δ�(G̃N , F̃ ∗(β2)) ≥ ε/(3k)}. From (9), (11), (12), and the fact that

δ�(·, ·) ≤ 1,

|E[ti(GN )] − ti(pg)| ≤ E[|ti(GN ) − ti(pg)|]

≤ kE[δ�(G̃N , pg̃)]

= k(E|Aε,n [δ�(G̃N , pg̃)] + E|Āε,N
[δ�(G̃N , pg̃)])

< k

(

2ε

3k
+

ε

3k

)

= ε (13)

for N > N0(β2). Direct computation of (3) shows that

∂ψN

∂βi

(β∗
1 , β2) = E[ti(GN )]. (14)

Combining (14) with (4), we may take the limit N → ∞ in (13) to obtain

∣

∣

∣

∣

ti(pg) −
∂ψ∞

∂βi

(β∗
1 , β2)

∣

∣

∣

∣

< ε.

Since ε > 0 was arbitrary,

lim
β2→−∞

∂ψ∞

∂βi

(β∗
1 , β2) = ti(pg). (15)

Direct computation using Equation (2.10) of [2] yields

t2(pg) = 0 and t1(pg) =
e2β1(χ(H) − 2)

(1 + e2β1)(χ(H) − 1)
> 0. (16)

Now, by combining (6) with (15)–(16), we find that limβ2→−∞ C(β∗
1 , β2) > 0, in contradiction

with (7), which proves the theorem.
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3. Conclusion

Consider any of the two-parameter exponential random graph models with repulsion covered

by our theorem. We have proven that the high temperature phase is separated from the

low energy regime by a phase transition. Our proof is based on the traditional modeling

of equilibrium statistical mechanics using analyticity and an order parameter [7], [14], [17].

We also emphasize that this method could not have been used to prove the transition found

in [15] for attractive exponential random graph models since there is a critical point for that

transition: indeed, there is only one phase for β2 > 0.

There remain many open questions. Perhaps the most pressing is the character of the

singularity of ψ∞(β1, β2) at the boundary of the high energy phase. In the attractive case there

is only one phase, but there are jump discontinuities, in the first derivatives of ψ∞(β1, β2)

(namely, the average edge and energy densities), across a curve where two regions of the phase

abut, while the edges are independent in the probabilistic sense throughout the phase [15]. We

do not know the nature of the singularity at the boundary of the high energy phase for the

case of repulsion studied in this paper, though we expect the first derivatives of ψ∞(β1, β2)

to be discontinuous across the boundary. In analogy with equilibrium materials there may be

multipartite phases with different numbers of parts at low energy, though this may require more

complicated interactions [2].
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