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Abstract— In this paper, we study the learning mechanisms
that facilitate autonomous discovery of an effective affordance
prediction structure with multiple actions of different levels of
complexity. A robot can benefit from a hierarchical structure
where pre-learned basic affordances are used as inputs to
bootstrap learning of complex affordances. In a developmental
setting, links from basic affordances to the related complex
affordances should be self-discovered by the robot, along with a
suitable learning order. In order to discover the developmental
order, we use Intrinsic Motivation approach that can guide
the robot to explore the actions it should execute in order
to maximize the learning progress. During this learning, the
robot also discovers the structure by discovering and using the
most distinctive object features for predicting affordances. We
implemented our method in an online learning setup, and tested
it in a real dataset that includes 83 objects and the discrete
effects (such as pushed, rolled, inserted) created by three poke
and one stack action. The results show that the hierarchical
structure and the development order emerged from the learning
dynamics that is guided by Intrinsic Motivation mechanisms
and distinctive feature selection approach.

I. INTRODUCTION

Studies with infant chimpanzees[1] and human infants[2]

revealed that there is a dramatic increase in exploration

and success of object-object combinatory actions at around

1.5 years of age while such actions were at a very low

frequency before that period. This data suggests that the

infants first develop basic skills and affordances that are

precursors of combinatory manipulation actions. They also

probably use the learned action grounded object properties

in further development of complex action affordances.

In learning complex action affordances, i.e. affordances

that are provided by pairs of objects, we proposed a learning

framework where a developmental robotic system learns

object affordances1 in two-stages [3]. In the first stage,

the robot learns predicting single-object affordances (such

as pushability and rollability) by pushing single objects in

different directions, and learning the relations between visual

object features and the created discrete effects. In the second

stage, these single-object affordance predictions, i.e. effects

predicted to be obtained by the single-object actions, were

used along with other object features to learn paired-object

1In this study, the affordances provided by an object is defined as the list
of discrete effects (e.g. pushed, rolled, inserted) predicted to be obtained
by the discrete actions such as ‘poke a single object’ and ‘stack a pair of
objects’. Learning affordances refers to building a multi-category classifier
for each action that predicts the effect of that action given continuous
visual features and other predicted affordances of the object(s) involved. The
discrete actions and discrete effects are assumed to be discovered before.

(a) Flat prediction (b) Hierarchical prediction

Fig. 1. (a) shows a flat affordance learning structure, where the affordances
are predicted based on low level object features, action parameters, and all
other perceived affordances. (b) shows a simple hierarchical structure where
simple affordance predictions can be used to detect complex affordances.
This paper aims automatic discovery of such a hierarchical structure along
with the corresponding development order of its components.

affordances in stacking task. In this context, we showed

how complex affordance learning was bootstrapped by using

pre-learned basic-affordances encoded as additional features.

While such an approach was effective in efficient learning

of increasingly more complex affordances, the development

order and hierarchical prediction structure was manually

designed based on the pre-defined complexity levels of ac-

tions and affordances. A truly developmental system, on the

other hand, should be able to self-discover such a structure

(see Fig. 1(b)), i.e. links from basic to related complex

affordances, along with a suitable learning order.

E. J. Gibson argued that learning affordances is neither

the construction of representations from smaller pieces, nor

the association of a response to a stimulus. Instead, she

claimed, learning is “discovering distinctive features and

invariant properties of things and events” [4]. Learning is not

“enriching the input” but discovering the critical perceptual

information in that input. We will argue that learning and

prediction based on the most distinctive features not only

provide perceptual economy (as in [5]), but can be used

to autonomously determine the structure of the learning

problem.
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Affordance learning through exploration requires the em-

bodied agent to deal with the high-dimensional nature of

the sensorimotor development in an open-ended learning

framework. Intrinsic Motivation approach, which can be

regarded as a set of active learning mechanisms for de-

velopmental robots, enables efficient and effective learning

in such environments by guiding the robot learning with

intelligent exploration strategies[6]. Intrinsic Motivation (IM)

approach in developmental robots [7] was inspired from

curiosity based motivation mechanisms in human develop-

ment, and has recently been effectively applied to cognitive

robots where object knowledge is developed through self-

exploration and social guidance [8]. This approach adap-

tively partitions agent’s sensorimotor space into regions of

exploration and guides the agent to select the regions that

are in intermediate level of difficulty. This is achieved by

maximizing reduction in prediction error, in other words by

maximizing the learning progress. In this paper, we propose

to use this approach to guide the robot to explore different

affordances by adaptively selecting the actions to execute,

and updating the models of the affordance predictions based

on the results of these actions. Through IM approach, we aim

to achieve a developmental progression similar to those of

infants in learning simple-to-complex skills and affordances.

In summary, we study the mechanisms that enable au-

tonomous structuring of affordance learning problem along

with development order of its components. Our prediction

system starts in a flat form as shown in Fig. 1(a) with

no assumption on the relative complexity of actions and

predictions. In each learning step, the robot actively selects

the most “interesting” action to explore based on Intrinsic

Motivation[9], and updates the prediction model of the

corresponding action based on the observed effect. The

robot also distinguishes “the most distinctive features” for

prediction of each different affordance in order to “discover

the information that specifies an affordance”[10] in training

the prediction model. We expect these two mechanisms,

namely (i) the Intrinsic Motivation based selection of actions

to explore, and (ii) the use of the most distinctive features

in affordance predictions, enable emergence of a hierarchical

structure, similar to the one shown in Fig. 1(b) along with

the corresponding developmental order of its components.

II. ACTIVE LEARNING OF AFFORDANCES WITH

DISTINCTIVE FEATURES

This section gives the outline of the online learning

algorithm. In our scenario, the robot needs to interact with

the objects using its action repertoire in order to learn their

affordances. Learning affordances corresponds to training a

classifier for each action that predicts the effect of that action

given object features. Thus, in each learning episode, the

robot selects an action, executes this action on a number

of objects, observes the effects created on these objects, and

updates the predictor of the explored action with the acquired

experience.

Algorithm 1 gives the online learning outline. At line 1,

visual object features are computed for the objects observed

in the environment. Next, predictors and their learning-

progresses are initialized with an initial phase of random

exploration which correspond to 10 interactions for each

action. The first step of the main loop (line 4) is to select

the next action to explore with the highest learning progress

based on Intrinsic Motivation criteria (see Section II-C).

Next, a number of objects are selected for exploration by

this action (Section II-D). The selected action is executed

on each selected object and the effects generated by these

executions are observed (line 6). Based on the observed

effects, the predictor of the executed action, along with its

learning progress, is updated (lines 7 and 8). The most

distinctive features used for predicting the effect of this

action are also updated by finding the relevant features of the

updated predictor at the same step (Section II-B). Finally, the

effect predictions for all objects are updated. Note that we

described the algorithm with single-object actions in order to

provide a clear overall picture, thus omitted several details.

Algorithm 1 Active learning of affordances with distinctive

features
1: compute object features
2: initialize predictors and affordance predictions
3: for each online learning time-step do
4: select action based on Intrinsic Motivation
5: select objects to explore
6: execute the selected action on the objects and observe effects
7: update the effect predictor of the selected action
8: find the most distinctive features for the updated predictor
9: update learning progress of the selected action

10: update the effect predictions for all objects for the selected
action

11: end for

A. Learning of affordances

Learning of affordances corresponds to learning the re-

lations between objects, actions and effects [11]. In this

study, object affordances are encoded as the list of effects

achievable by executing different actions of the robot:

affordanceso = (εoa1
, εoa2

, ...)

where εoa1
is the discrete effect created on object o by action

a1.

Predicting the effect of each action is learned by executing

the corresponding action on different objects. The resulting

effect of one action depends on various features of objects,

and is related to the other affordances the object provide. For

example, stackability affordance can be related to rollability

affordance and some other object features such as the object

sizes. Here, object features corresponds to general-purpose

basic ones computed mostly from visual perception with no

explicit link to robot’s actions. These may include standard

features used in literature, related to size and shape properties

of the objects. On the other hand, as we defined above,

affordances encode object-action interaction dynamics for the

available actions.

In order to learn affordances, and acquire the ability to

predict action effect based on object features and affordances,
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the following classifier (Pred) is trained for each action.

Specifically, we use Support Vector Machine (SVM) classi-

fiers with Radial Basis Function (RBF) kernel and optimized

parameters to learn these predictors[12]. The multi-category

classifier, after training, can predict the effect category given

features and affordances as follows:

εoai
= Predai

(featureso, affordanceso\εoai
)

Here, affordances\εoai
denotes ‘other affordances’, i.e.

the effect predictions of other classifiers. The general in-

put/output structure is provided in Fig. 2.

Fig. 2. Input/output links of the affordance predictors.

The recurrent connections in Fig. 2 might seem counter-

intuitive in a non-dynamical system, where both of the

predictors expect input from each other. This is achieved by

keeping the predictions for all the objects in memory, and

using the input values from the memory. Before training,

the predictions for all objects are fixed to non-existing effect

categories (-1). When a predictor is updated with exploration

and learning, its predicted effects on all objects are updated

in the memory as well. However these updated predictions

are not propagated to other predictors immediately; they are

used only by a new predictor that is being updated in the

next time-step. In this way, we avoided potential instability

issues of interdependent predictors.

Finally, this prediction mechanism can be generalized

to actions that involve more than one object, by simply

including all object features and affordances as the input

attributes of the predictors. In this paper, we indeed use an

action that involves two objects, where the predictor takes

the following form:

ε(o1,o2)ai
= Predai

(featureso1 , featureso2 ,

affordances(o1,o2)\ε(o1,o2)ai
)

(1)

Paired-object affordances, i.e. affordances offered by the

corresponding two objects, correspond to collection of the

effects (expected to be) obtained by the execution of all

available actions:

affordances(o1,o2) = (εo1a1
, εo1a2

, ...εo2a1
, εo2a2

, ..., ε(o1,o2)ai
, ε(o1,o2)aj

)

B. Discovering the most distinctive features

The most distinctive features that specify an affordance

correspond to the minimal set of inputs of the corresponding

effect predictor with the maximum achievable prediction ac-

curacy. We used Sequentialfs (sequential features selection)

method to select these features. The Sequentialfs method

generates near-optimal relevant feature sets in a way similar

to the one used in Schemata Search[13]. Starting from an

empty relevance feature set, it selects one feature and adds

it to the feature set of previous iteration. At each iteration,

a candidate feature set for each not-yet-selected feature is

formed by adding the corresponding feature to the previous

feature set. Then, the candidate feature sets are evaluated

through 10-fold cross-validations on SVM classifiers that

use these candidate feature sets. The best performing can-

didate set is then transferred to the next iteration. In the

experiments, we empirically observed that not more than 10

features were necessary to achieve best accuracy, thus we

limited the iteration number to 10. We also eliminated the

ones that have no effect in accuracy increase, finalizing the

most distinctive features for each trained predictor Pred.

C. Action selection with Intrinsic Motivation

Intrinsic Motivation, in its original formulation by Oudeyer

et. al.[7], is used to adaptively partition agent’s sensorimotor

space into regions of exploration, and to guide the agent to

select the regions that provide maximal learning progress.

In our study, Intrinsic Motivation is used to guide our robot

to select actions in order to maximize the learning progress,

which is defined as the increase in prediction accuracy of the

corresponding action.

The robot keeps learning progress of each action and in

each time-step, it selects an action to explore based on the

learning progress using ǫ-greedy strategy[14] where ǫ is set

to 0.05. If an action (ai) and a number of objects are selected

for exploration at time-step t, the robot first computes the

effects predicted to be achieved on these objects using

Predai
. Next, the action is executed on these objects and

the generated effects are observed. The success of the robot

in predicting the effects, denoted by γai
(t), is defined as the

ratio of the correct predictions on objects explored by ai,

and is used to update the learning progress of the action.

The learning progress (LP ) of action ai is formally

defined as the actual increase in the mean prediction accuracy

of the predictor (Predai
) of the corresponding action:

LPai
(t+ 1) = γai

(t+ 1)− γai
(t+ 1− τ)

where γai
(t + 1) and γai

(t + 1 − τ) are defined as the

current and previous mean prediction accuracies of the effect

predictor, and τ is a time window, set to 2.

Here we define mean prediction accuracy by setting a

smoothing parameter θ to 5:

γai
(t+ 1) =

∑θ

j=0 γai
(t+ 1− j)

θ + 1

This is only a local measure that approximates the real

accuracy. We used this local accuracy measure in our online

incremental learning setup as the robot cannot access to

ground truth, i.e. it cannot know the effect categories of the

objects without actually executing its actions on all of them

in a real setting.
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Fig. 3. A subset of the objects used in the experiments.

D. Active object selection

The aim is to select the next object set so that the

diversity of the objects in the training set is maximized.

For this purpose, the Euclidean distance between objects are

computed using one of the three feature types randomly (as

computing distance in the joint space of different types would

be sensitive to relative weighting of the features). We select

the next object from the set of possible objects (PossObjs)

by maximizing the total distance from the next object to the

already explored objects (ExpObjs) as follows:

nextObj = argmax
o1∈PossObjs

∑

o2∈ExpObjs

distt(o1, o2)

where distt(o1, o2) is the Euclidean distance between two

objects in space t, which is sampled uniformly from the set

of feature types {size, shape, distance}.

III. EXPERIMENT SETUP

1) Interaction Dataset: We collected data from 83 objects

(Fig. 3) by placing them on the table in front of our

robot. Using these objects, we aimed to create an interaction

database composed of (object, action, effect) tuples. In order

to collect such a dataset, the robot, for example, was required

to make (83 × 83) = 6889 interactions for an action that

involves two objects, which is not feasible in the real world.

Thus, we used a human expert to fill-up the effect field of

the complete table2

2) Actions: The robot is equipped with a number of

manually coded actions that enable single and multi object

manipulation. The robot can poke a single object from

different sides using front-poke, side-poke, and top-poke

actions. It can also stack one object on the other using stack

action, where it grasps the first object, move it on top of the

other one and release it.

2Guessing the effects of actions and filling up the table without any ref-
erence to robot’s real world performance have the risk of creating a human-
biased interaction dataset. In order to reduce this risk, we implemented poke
and stack in our hand-arm robot system and let the expert observe the robot
action executions on a number of different sample objects; and generalize
his observations to other objects.

3) Action effects: The effect of stacking objects on top of

each other depends on their relative size. For example, while

‘inserted-in’ effect is generated when a small box is stacked

on a hollow cylinder, ‘piled-up’ effect is observed when the

box is larger than the opening on top of the cylinder. Using

the objects, we marked the interaction results for each object

pair for stack action. Different poke actions also generate

different effects even on the same objects. For example, when

poked from side, lying cylinders will roll away, boxes will

be pushed, objects with holes in poke direction will not be

affected as finger would go through the hole without any

interaction, and tall objects will topple down. The set of

manually encoded actions and their effects are as follows

• Actions: {side-poke, top-poke, front-poke, stack}

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}

• Stack-effects: {piled-up, inserted-in, covered, tumbled-over}

Note that all the effects can be differentiated based on

changes in visual features of the objects, except for the

effects ‘resisted’ and ‘nothing’, which require force readings

from the end effector of the robot.

4) Object features: The objects are segmented based on

depth information of Kinect sensor that is placed over the

torso of the robot. Features are encoded in a continuous

vector composed of shape, size and local distance related

properties for object o:

featureso = (shapeo, dimo, disto)

Shape features are encoded as the distribution of local surface

normal vectors from object surface. Specifically histograms

of normal vectors along each axis, 8 bins each, are computed

to form 3 × 8 = 24 sized feature vector. dim encodes

the object size in different axes. dist features encode the

distribution of the local distance of all pixels to the neigh-

boring pixels. For this purpose, for each pixel we computed

distances to the neighboring pixels along each 4 direction

on Kinect’s 2D depth image. For each direction, we created

a histogram of 20 bins with bin size of 0.5cm, obtaining a

4× 20 = 100 sized vector for the dist.

IV. EXPERIMENT RESULTS

Using the database of 83 objects, 4 actions, and their cor-

responding effects, we applied active learning of affordances

with distinctive features method (Algorithm 1) to discover

the structure and development order of the affordance learn-

ing system.

A. Discovered development order

This section provides the obtained development order of

the affordance predictors. Recall that development order

refers to maturation order of the action predictors, and can be

analyzed by examining the order and frequency of actions,

selected during each iteration of the online learning of the

complete system (Algorithm 1, Step 7). The action selected

for exploration in each iteration step is shown in Fig. 4. As

shown, the less complex poke actions are learned first, and

more complex stack action is learned later. As the effect

of paired-object actions depend on the relations between
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properties of two objects, stack is a more complicated

action, difficult to learn. Prediction of stack action can also

benefit from simple-affordances (as we will show in the

next section). Thus, stack action is explored and learned

automatically after all other simpler actions are explored. In

the figure, the stack action is observed to be explored also

in the beginning of the learning in a number of steps either

because of momentarily increases in local accuracy or due

to the ǫ-greedy strategy.

0 40 80 120 160 200 240 280 320

Front−poke

Side−poke

Top−poke

Stack

Number of interactions

Fig. 4. The action selected for exploration and learning in each iteration
of online learning of affordances. As shown, single-object affordances, i.e.
prediction of effects of top-poke, side-poke and front-poke. are learned ini-
tially. As prediction of the effect of stack action requires learning of features
(and probably affordances) of both objects, paired-object affordances are
explored later.

We also plotted the local prediction accuracy γ evolution

of each action in Fig. 5. The actions that are selected in

the corresponding iteration step is illustrated with a mark

along with its accuracy plot. As we defined in Section II-A,

the accuracy of the predictors are computed using the small

number of objects (denoted by objs in Algorithm 1; 4 objects

in this experiment) explored in that iteration. This causes a

jerky performance evolution as shown in the figure. We run

the same algorithm with different initial conditions (initial

objects), and observed that the exact shape of each accuracy

plot and the exact order among single-object actions change.

However, the tendency of learning single-object affordances

first, and paired-object affordances later, remained consistent.
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Fig. 5. The evolution of prediction accuracy of each predictor during online
learning. In each time-step, one of the four predictors is being updated
depending on the selected action, where this selection is illustrated by the
marks on the plots.

B. Discovered affordance prediction structure

This section gives the results of the structure evolution of

the affordance prediction system. Recall that the prediction

Fig. 6. Evolution of the distinctive features for prediction, where solid
lines correspond distance, shape and dimension features, and dashed lines
correspond to the predicted affordances. As shown, only effect prediction
of the stack action uses affordances as distinctive features. Note that use
of affordances for prediction starts after step 30, probably after effect
predictors of poke actions (and their affordance corresponding predictions)
have developed.

structure is defined over the most distinctive features that

are discovered to be most effective in predicting affordances

(Section II-B). The robot learns the affordances similar to the

previous experiment, but in order to analyze the discovered

structure independent of an action selection strategy, the

next action in each iteration is selected randomly in this

experiment. The ratio of the types of distinctive features

used in prediction in different phases of the online learning

are shown in Fig.6. Each plot in this figure corresponds

to evolution of the used features and affordances for a

different action. As shown in the plots, each low-level feature

affects affordance predictions in different levels, and shape

features are observed to be the first discovered distinctive

features especially in the initial phases of development for

all actions. However, more important in the context of this

paper, affordances are observed not to be used in the initial

phases, and are only found to be used in predicting effect

of stack action, i.e. predicting stackability affordances. Note

that stack predictor starts using single-object affordances

after around 30 samples, probably because the single-object

affordance prediction was not good enough before that time-

point.

We also plotted the exact structure, i.e. features and af-

fordances used by different effect predictors by highlighting

the links in the prediction system in Fig.7. Different plots

provide the structure in different iterations of learning. As

shown, at the end, a hierarchical structure is formed as

expected, where learned simple affordances are used in

learning and prediction of more complex affordances.

V. CONCLUSION

In this paper, we studied how interdependent affordance

learning tasks can be autonomously structured along with its

developmental order. In an online learning framework, we

showed that intrinsic motivation mechanism, which select
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(a) Initial structure with no training. (b) Discovered structure after trained with 10 objects.

(c) Discovered structure after trained with 20 objects. (d) Discovered structure after trained with 80 objects.

Fig. 7. Evolution of the structure discovery of the affordance prediction system. Black lines correspond to the “distinctive” features that are used by
affordance predictors. As shown, a hierarchy gradually emerges where at the end (d), single-object affordances are predicted based on only object features,
and further used in predicting paired-object affordances.

the next action to explore, based on learning progress of the

model of that action, can discover such a development order

where paired-object affordance learning follows maturation

of single-object affordances learning. Next, we showed that

by using the most discriminative features for affordance

prediction, the expected hierarchical structure emerged au-

tonomously where the learning system discovered that pre-

dictions of the single-object affordances are connected to

the paired-object affordances. We validated our approach

in a real dataset composed of 83 objects and pairs of

these objects along with the effects of three poke actions

and one stack action. The results show that hierarchical

structure and development order emerged from the learning

dynamics that is guided by Intrinsic Motivation mechanisms

and feature selection approach. In order to further verify our

approach, we are currently working on realizing the learning

cycle in the real robot with the aim of self-discovering the

effect categories autonomously and analyzing the results with

multiple independent trials.

In this paper, we assumed existence of discrete action

primitives and effect categories. We safely made such sim-

plifications and assumptions in the developmental setting of

this paper, as we already showed that a set of basic primitive

actions can be self-discovered through in interaction based

on observed tactile profiles in [15], and effect categories can

be autonomously found for different actions, such as rolled-

out-of-table, pushed, no-change, grasped in [11].

ACKNOWLEDGEMENTS

This research was supported by European Community’s

Seventh Framework Programme FP7/2007-2013 (Specific

Programme Cooperation, Theme 3, Information and Com-

munication Technologies) under grant agreement no. 270273,

Xperience.

REFERENCES

[1] M. Hayashi and T. Matsuzawa, “Cognitive development in object
manipulation by infant chimpanzees,” Animal Cognition, vol. 6, pp.
225–233, 2003.

[2] M. Ikuzawa, Development diagnostic tests for children, 2000.
[3] E. Ugur, S. Szedmak, and J. Piater, “Bootstrapping paired-object

affordance learning with learned single-affordance features,” in 4th

International Conference on Development and Learning and on Epi-

genetic Robotics, Genoa, Italy, 2014.
[4] E. J. Gibson, “Perceptual learning in development: Some basic con-

cepts,” Ecological Psychology, vol. 12, no. 4, pp. 295–302, 2000.
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