
EMERGING ACCELERATOR PLATFORMS FOR DATA CENTERS1 

Muhammet Mustafa Ozdal 

Computer Engineering Department 

Bilkent University 

Ankara, Turkey 

mustafa.ozdal@cs.bilkent.edu.tr 

 

Today’s server architectures are designed considering the needs of a wide range of applications. For 

example, superscalar processors include complex control logic for out of order execution to extract 

instruction-level parallelism (ILP) from arbitrary programs. However, not all workloads utilize the 

features of a superscalar processor effectively. For example, a workload that exhibits a regular execution 

pattern (e.g. a dense linear algebra kernel) may not require the expensive ILP control logic for 

parallelism. Instead, it can be run on a throughput-oriented architecture with thousands of simple cores, 

such as a GPU, which can lead to much better performance and power efficiency. On the other hand, 

only a limited class of data-parallel applications can utilize the high throughputs provided by such 

architectures. As a matter of fact, existing CPU and GPU platforms may not be the most efficient choices 

for the compute patterns of a wide range of applications. 

For big data workloads, access to data is typically at least as important bottleneck as computation. The 

memory subsystems of today’s CPU architectures are optimized for workloads that have reasonable 

data access locality. CPU cache hierarchies include different sizes of caches, which help capture different 

levels of access localities in different applications. However, if an application exhibits very little or no 

locality, the data access operations become inefficient for these architectures.  

As an example, let us consider graph applications that run on very large and unstructured datasets. 

Typically, the data of a vertex is computed/updated based on the data of its neighbors.  In an 

unstructured graph, the neighbors of a vertex are stored in memory locations that may be far from each 

other. So, traversing the neighbors of a vertex may involve a random memory access per neighbor. If the 

graph is large enough so that it does not fit into the last level cache (LLC), each access to a neighbor’s 

data may require a random DRAM access, which is typically hundreds of clock cycles. However, existing 

CPU architectures are not optimized for frequent random DRAM accesses. For example, each Intel 

Haswell Xeon core has 10 line-fill-buffers (LFBs), which means that each core can handle at most 10 L1 

cache misses at a given time. However, an off-chip DRAM latency of hundreds of cycles requires 

hundreds of outstanding memory requests to be able to utilize the full DRAM bandwidth available in the 

system [1]. It was reported that 10 or more Xeon cores were needed for various graph applications to 

fully utilize the available DRAM bandwidth [2]. Furthermore, due to the low compute to memory-access 

ratios in graph applications, these cores are frequently stalled while waiting for data from off-chip 

memory. This leads to high power consumption by 10+ superscalar cores while not doing useful work. It 

was shown that custom architectures that target such communication patterns have the potential to 

improve power efficiency by a factor of 50x or more compared to the general-purpose CPUs [3].      
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It is possible to design domain-specific hardware to achieve significant power and performance 

improvements for specific workloads. Although custom hardware accelerators can significantly improve 

power and performance of certain workloads, they may not always be the best choices in terms of data 

center economy. There may be various reasons for this, such as the overhead of managing 

heterogeneous resources (each with a potentially different set of custom accelerators) in a reliable way, 

rapid changes in the workloads relative to the lifetimes of the servers, and the extra cost of designing 

and manufacturing custom parts for different applications. From these perspectives, FPGAs are good 

candidates for deployment into data centers because they allow programmability and homogeneity 

while allowing custom hardware acceleration for different workloads. That is why several vendors have 

started incorporating FPGAs into their platforms. In the following, we provide a summary of the recent 

industrial prototypes and the recent research on FPGA and ASIC hardware accelerators. 

IBM’s Coherent Accelerator Processor Interface (CAPI) 

IBM implemented CAPI for their Power8 Servers to make it easy to integrate FPGA and custom 

accelerators into server processors. CAPI allows attaching an accelerator to the I/O interface of a 

processor chip without incurring significant device driver and operating system software latencies. Using 

this interface, accelerators and the host processors can have coherent access to a homogeneous virtual 

address space, where caching and coherency is managed by special hardware modules. This interface 

hides from the users the complexities of caching and communications by allowing the user-designed 

accelerators to access the system memory by simple load and store requests [4]. 

Different workloads have been accelerated by researchers using CAPI-enabled FPGAs, including 

genomics algorithms [5, 6], matrix algebra [7], and graph processing [8]. Furthermore, several 

commercial and special-purpose FPGA and ASIC-based CAPI accelerators are now being developed by 

different companies for the OpenPOWER platform [9]. 

Intel’s Xeon + FPGA Integrated Platform 

Although IBM’s CAPI helps reduce the driver and operating system latencies, the communication speed 

between CPU and FPGA is still limited by the PCIe based interconnect. Intel’s prototype Xeon + FPGA 

platforms try to address this limitation by integrating the host CPU and FPGA in a multi-chip package and 

enabling communication through the faster QuickPath Interconnect (QPI) interface in addition to PCIe. 

Figure 1 shows the high-level hardware/software architecture of the Xeon + FPGA platform [10, 11]. The 

in-package FPGA has coherent access to the host memory through QPI and PCIe interfaces as shown in 

this figure. The communication between the host application, the accelerator functional units (AFUs) on 
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the FPGA, and the system memory is facilitated through the provided software framework (running on 

the host CPU) and hardware framework (running on the integrated FPGA).   

The prototype Xeon + FPGA platforms have recently been made available for academic research and 

workloads have been optimized in different domains, including genomics [10], machine learning [10], 

and databases [12, 13, 14]. 

Microsoft’s Configurable Cloud 

As part of the original Catapult project [15], Microsoft researchers integrated FPGA accelerators into a 

production data center to accelerate the search ranking algorithm used by Bing. In this architecture, a 

single FPGA card was connected to each server and the communication between the host CPU and FPGA 

was done through PCIe. In addition, 48 FPGA cards within half-a-rack were connected through a 

secondary mesh network. This allowed the FPGAs within the same network to communicate with each 

other without going through host CPUs. This fabric was deployed at a medium-scale data center of 1632 

servers, and 95% throughput improvement was reported for Bing’s web search ranking algorithm on this 

fabric compared to the pure software implementation. 

Figure 1: Intel's Xeon+FPGA Integrated Platform [10, 11] 

Figure 2: A two-socket Xeon blade server configuration for the Configurable Cloud architecture [16]. 
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Despite the good initial results, the original Catapult architecture was deemed to have severe limitations 

for real data centers, due to the extra cost of the secondary network, ineffective handling of failures, 

relatively small number of FPGAs communicating directly with each other, and the limited acceleration 

opportunities [16].   

These limitations were later addressed by a new architecture, called Configurable Cloud (CC), which is 

reported to have been deployed in most of the new Microsoft datacenters since 2016. A server 

configuration is illustrated in Figure 2 for a two-socket Xeon blade server [16]. Observe that an FPGA 

accelerator card has been placed between the network interface card (NIC) and the ethernet network 

switch. In addition, the FPGA is connected to one of the host CPUs through PCIe.   

This configuration is reported to be flexible enough not only for local workload acceleration, but also for 

acceleration of networking applications and distributed workloads [16]. For local acceleration, a server 

CPU can communicate with the FPGA through the direct PCIe connection shown in Figure 2. A special 

network bridge mode allows all network traffic to pass from NIC to the network switch without 

interacting with the local workload running on the FPGA. For network applications, FPGAs can be 

treated as “bumps-in-the-wire” so that they can accelerate networking flows without incurring 

additional loads on the host CPUs. It was shown that host-to-host line-rate encryption/decryption can 

be performed on these FPGAs without involvement of the host CPUs [16]. This architecture also allows 

acceleration of distributed applications by enabling low-latency FPGA-to-FPGA communication across 

the data center without the need for a secondary network among FPGAs. Each FPGA can generate and 

consume network packets without the interference of the host software. 

The Configurable Cloud architecture also offers flexibility in the data center scale. Since hosts can utilize 

remote FPGAs with low latency, FPGAs can be managed as a global pool of resources orthogonal to the 

CPU resources. Services may request different numbers of CPUs and FPGAs based on the workloads they 

run, while failing nodes are removed from the corresponding pools accordingly [16].  

Google’s Tensor Processing Unit 

Based on a projection that voice-based search will significantly increase the computational demands of 

Google’s datacenters, a custom ASIC chip – called Tensor Processing Unit (TPU) -- was designed and 

deployed by Google in 2015 [17]. TPU is aimed at accelerating the inference phase of different types of 

neural network applications, including multi-layer perceptrons (MLP), convolutional neural networks 

(CNN), and recurrent neural networks (RNN) [18]. 

TPU has been designed as a coprocessor connected to the host CPU through PCIe, thus it can be directly 

plugged into existing server platforms. The host CPU simply sends instructions through PCIe to an 

instruction buffer, and these instructions are executed by the TPU. The main computational block in the 

TPU architecture is a Matrix Multiply Unit, which can perform 64K multiply-and-add operations per cycle 

on 8-bit integer operands.  In addition, 28MB of software-managed on-chip memory is included to store 

the intermediate results and the inputs of the Matrix Multiply Unit. The datapath occupies 67% of the 

TPU floorplan, while the area occupied for control is only 2% [17]. This contrasts with the state-of-the-

art server CPUs and GPUs, in which the control structures occupy significant chip area and lead to 

increased power consumption. 
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It is reported that the performance of TPU on neural networks is 15 and 29 times better than a K80 GPU 

and an 18-core Haswell CPU, respectively. In terms of performance per Watt, the corresponding 

improvements are reported to be 29x and 83x [17]. The main reason for these improvements is that 

CPUs and GPUs have expensive control logic to extract good performance from different types of 

applications, while most of the TPU logic is dedicated to a datapath that is specifically designed for a 

single application domain. 

Other Commercial and Research Platforms 

There are many other commercial, prototype, and research accelerator platforms that have not been 

covered in detail in this paper. In this part, we briefly outline some of those platforms. 

As the potential benefits of hardware acceleration have become apparent, more and more cloud service 

providers are making FPGA resources available to their users. For example, Amazon Web Services (AWS) 

has recently announced the general availability of EC2 F1 compute instances with FPGAs, where each 

instance can contain up to 8 dedicated FPGA boards connected with a PCIe fabric [19].    

At the platform level, FPGAs have been integrated with host CPUs in different ways. An early example is 

the Cray XD1 hybrid system with 12 AMD Opteron processors and 6 Xilinx Virtex II Pro FPGA 

coprocessors in a single chassis, where the FPGAs can access the host system memory through a special 

communications processor [20].  

Another early example is the Novo-G supercomputer with 24 compute nodes, each containing a quad-

core Xeon CPU and 8 FPGAs connected to each other with a fast interconnect [21]. Although direct 

communication between FPGAs within the same node is possible, communication between inter-node 

FPGAs is done through a centralized network (with host involvement), which makes it impractical to 

accelerate communication-intensive distributed applications. A new version of this system – called 

Novo-G# -- has been developed recently to alleviate the communication bottleneck by connecting 64 

FPGA boards with a dedicated 4x4x4 torus network [22]. This system has been targeted for high 

performance computing research. 

On the commercial side, Convey’s hybrid core computers integrate FPGA coprocessors with commodity 

processors in rack-mountable enclosures to improve performance and power efficiency of certain 

workloads. The high-level architecture of the Convey HC-2 Computer is shown in Figure 3 [23]. The 

coprocessor consists of four Xilinx Virtex FPGAs and 16-channel word-addressable scatter-gather DRAM. 

The communication with host CPU is realized through the hybrid-core memory interconnect (HCMI). The 

memory subsystem of the coprocessor is physically separate from the host memory subsystem. 

However, there is shared logical memory -- called hybrid-core globally shared memory (HCGSM) – that 

can be accessed by both the host CPU and the coprocessor through simple load/store instructions using 

virtual addresses. The data movement between different physical memories is handled by a data mover 

engine built into the coprocessor through PCIe interface.  
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While most of the previously mentioned platforms view FPGAs as coprocessors connected to CPUs 

through standard interfaces (e.g. PCIe), it is also possible to decouple FPGAs from CPUs. Weerasinghe, 

et. al. have proposed a hyperscale data center platform where FPGAs can be connected to the network 

as standalone appliances [24]. In their proposed architecture, a module contains an FPGA and an 

optional off-chip memory, where the FPGA has three main parts: 1) custom user logic, 2) network 

service layer to enable communication within the data center, and 3) a management layer to enable 

virtual memory accesses and remote management of this module.  Furthermore, the authors have 

proposed a new provisioning service for OpenStack so that standalone FPGAs can be requested by cloud 

users. In a later work, this architecture has been implemented as prototype, and a distributed text 

analytics application has been ported onto this multi-FPGA fabric with significant performance 

improvements compared to PCIe-attached FPGAs [25].  

FPGAs allow flexibility by allowing application-specific hardware to be reprogrammed as the workloads 

change over time. However, this flexibility comes at the expense of area, power, and performance 

overheads compared to application specific integrated circuits (ASICs). For frequently executed and 

power/performance-critical workloads, it may make economic sense to integrate domain-specific ASIC 

accelerators. Google’s Tensor Processing Unit described above is an example that is targeted for neural 

network applications. Other workloads of interest that may justify ASIC accelerators include 

cryptography [26], compression [27], machine learning [28], database [29], and large-scale graph 

processing [3, 30, 31]. 

Even if computational bottlenecks can be alleviated through the use of accelerators, memory access 

costs can become the limiting factors for achieving substantial power and performance improvements, 

especially for big data workloads. There have been efforts to bring computation closer to where the data 

resides. For example, Minerva is an FPGA-based solid-state drive (SSD) architecture, which allows 

offloading computation code to the FPGA modules inside SSD [32]. Such an architecture is especially 

well-suited for applications with poor memory access locality, because it avoids moving data from disk 

to CPU across a slow I/O interface through main memory and multiple levels of cache hierarchies.  

Figure 3: High-level architecture of Convey HC-2 [23], where HCMI stands for "hybrid-core 
memory interconnect" and HCGSM stands for "hybrid-core globally shared memory". 
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Other near-data processing (NDP) architectures propose to integrate simple compute units next to 

memory controllers to avoid moving data from main memory to CPU. Vermij et. al. have proposed a 

system-level architecture for an NDP-enhanced multi-core CPU, and they have studied various issues 

such as data placement, coherency, communication, and virtual memory support [33]. Similarly, Xi et. al. 

have proposed an NDP accelerator, called JAFAR, for common database operations [34]. 

It is also possible to take NDP one step further to perform computations inside memory. Although 

processing in memory (PIM) computing paradigm was proposed in 1990s to overcome the memory wall 

problems [35, 36, 37, 38], it was not deemed practical in industry due to the high costs of integration. 

However, with the advanced 3D integration technologies available today, the PIM concept has gained 

renewed research interest due to the potential of practical feasibility.  

Hybrid Memory Cube (HMC) architecture was proposed by Micron Technology as a high-performance 

3D memory [39]. HMC consists of four-to-eight layers of stacked DRAM dies with an additional logic die 

at the base. Since then, different research groups have proposed utilizing this logic die for processing in 

memory. For example, Pugsley, et. al. have proposed adding general-purpose in-order cores to the base 

die of a stacked DRAM to run Map-Reduce workloads more efficiently [40]. For throughput-oriented 

computing, the TOP-PIM architecture has been proposed to add programmable GPU compute units 

inside stacked DRAM to achieve significant energy efficiency improvements compared to the traditional 

GPU architectures [41]. Active Memory Cube (AMC) architecture is another example, which targets 

scientific exa-scale computing by adding vector processing elements at the base layer of a 3D memory 

platform [42]. For large-scale graph processing, Ahn et. al. have proposed the Tesseract architecture, 

where programmable graph accelerators are integrated into a 3D memory [43].  

In conclusion, we are starting to see a shift in data center platforms towards more customizable 

hardware to achieve energy efficiency and performance improvements. There are open algorithmic 

research problems, because existing algorithms targeted at traditional von Neumann architectures may 

not be optimal for these emerging heterogeneous platforms. There are also open research problems 

about how to choose the best architecture and how to design the most efficient hardware for a domain 

of applications. With the wide-spread availability of FPGA accelerators, there is a need to raise the 

abstraction layer for hardware design to enable more application developers to utilize these systems. 

We are already seeing improvements in high-level design and synthesis tools to allow C or OpenCL-

based application development for FPGAs. In summary, these platforms have brought new research 

opportunities across multiple domains, including algorithms, architecture, design, automation, and 

technology. 
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