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Modern imaging techniques are an essential component of preoperative planning in 

plastic and reconstructive surgery. However, conventional modalities, including three-di-

mensional (3D) reconstructions, are limited by their representation on 2D workstations. 

3D printing, also known as rapid prototyping or additive manufacturing, was once 

the province of industry to fabricate models from a computer-aided design (CAD) in a 

layer-by-layer manner. The early adopters in clinical practice have embraced the medical 

imaging-guided 3D-printed biomodels for their ability to provide tactile feedback and a 

superior appreciation of visuospatial relationship between anatomical structures. With 

increasing accessibility, investigators are able to convert standard imaging data into a 

CAD file using various 3D reconstruction softwares and ultimately fabricate 3D models 

using 3D printing techniques, such as stereolithography, multijet modeling, selective laser 

sintering, binder jet technique, and fused deposition modeling. However, many clinicians 

have questioned whether the cost-to-benefit ratio justifies its ongoing use. The cost 

and size of 3D printers have rapidly decreased over the past decade in parallel with the 

expiration of key 3D printing patents. Significant improvements in clinical imaging and 

user-friendly 3D software have permitted computer-aided 3D modeling of anatomical 

structures and implants without outsourcing in many cases. These developments offer 

immense potential for the application of 3D printing at the bedside for a variety of 

clinical applications. In this review, existing uses of 3D printing in plastic surgery practice 

spanning the spectrum from templates for facial transplantation surgery through to 

the formation of bespoke craniofacial implants to optimize post-operative esthetics

are described. Furthermore, we discuss the potential of 3D printing to become an 

essential office-based tool in plastic surgery to assist in preoperative planning, developing 

intraoperative guidance tools, teaching patients and surgical trainees, and producing 

patient-specific prosthetics in everyday surgical practice.
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Introduction

Advanced medical imaging has become an essential component of 
preoperative planning in plastic surgery. In breast reconstructive 
surgery, the introduction of computed tomographic angiography 
(CTA) has enabled surgeons to improve clinical outcomes (1) 
through accurate and reliable prospective selection of the donor 
site, �ap, perforators, and the optimal mode of dissection (2, 3). 
Recent development of three-dimensional (3D) and 4D CTA 
techniques have enhanced spatial appreciation of the perforator 
vessels, their vascular territory, and dynamic �ow characteristics 
preoperatively (4, 5). However, current imaging modalities are 
limited by being displayed on a 2D surface, such as a computer 
screen. In contrast, a 3D-printed haptic biomodel allows both the 
surgeon and the patient to develop a superior understanding of the 
anatomy and the procedure with the goal of improved operative 
planning through the ability to interact directly with a model of the 
patient-speci�c anatomy. Historically, the technically challenging 
nature of 3D so�ware and the high prices of early 3D printers 
usually meant that clinicians keen to exploit these advantages 
had to outsource 3D printing and the cost of outsourcing o�en 
precluded it from being implemented widely. In this review, we 
analyze how recent advancements have enabled 3D printing to 
transition from the research and development laboratory to the 
clinical ‘bedside’ potentially making it a ubiquitous application 
in plastic surgery.

3D Printing

3D printing, also known as rapid prototyping or additive 
manufacturing, describes a process by which a product derived 
from a computer-aided design (CAD) is built in a layer-by-layer 
fashion (Figure 1) (Video S1 in Supplementary Material) (6–8). 
In contrast to the conventional manufacturing processes like 
injection molding, 3D printing has introduced an era of design 
freedom and enabled rapid production of customized objects with 
complex geometries (9–11). One of the major advantages of 3D 
printing is the capacity to directly translate a concept into an end 
product in a convenient, cost-e�cient manner. It eliminates the 
typical intermediary stages involved in a product development, 
such as development, production, assembly lines, delivery, and 
warehousing of parts (12), and the subsequent savings made from 
using fewer materials and labor lead to an overall reduction in the 
cost of production (13).

3D printing has been utilized in industrial design since the 
1980s; however, it has only become adapted for medical applica-
tion in the last decade (14). Imaging data from routine computed 
tomography (CT) or magnetic resonance imaging (MRI) can be 
converted into a CAD �le using a variety of 3D so�ware pro-
grams, such as Osirix (Pixmeo, Geneva, Switzerland) or 3D Slicer 
(Surgical Planning Laboratory, Boston, MA, USA) (Figure 1). 
�ese �les are processed into data slices suitable for printing 
by proprietary so�wares from the 3D printer manufacturers. 
While a range of 3D printing techniques have been developed 
for industrial use; stereolithography (SLA), multijet modeling 
(MJM), selective laser sintering (SLS), binder jetting, and fused 
deposition modeling (FDM) are the main approaches that have 

been explored in the clinical setting (Table 1). We will explore 
each of these to evaluate their current and potential applications 
in clinical practice for both bony reconstruction and so� tissue 
reconstruction.

Types of 3D Printing
Stereolithography

Stereolithography is the earliest 3D printing technology described 
for fabricating biomodels, where a layer of liquid photopolymer 
or epoxy resin in a vat is cured by a low-power ultraviolet (UV) 
laser (15). Excess raw materials and the supporting structures must 
be manually removed from the �nal product and cured in a UV 
chamber (16–18). Currently, SLA is considered the gold standard 
in 3D biomodel production and can yield resolutions of up to 
0.025 mm. Moreover, its e�ciency increases when constructing 
larger objects and is able to faithfully reproduce internal structural 
details (19). However, the need for manual post-build handling 
makes it labor-intensive and it still takes more than a day to produce 
a large model. Furthermore, in comparison to other 3D printing 
techniques, it is considered more expensive due to the high cost of 
the raw materials and for the printer upkeep (20, 21). Recently, a 
novel modi�cation to SLA has been developed called continuous 
liquid interface production (CLIP). �is simpli�es traditional 
SLA and increases the production speed by harnessing oxygen 

FIGURE 1 | Steps involved from imaging to 3D-printed models. 

Abbreviations: DICOM, digital imaging and communications in medicine; CT, 

computed tomography; MRI, magnetic resonance imaging.
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TABLE 1 | A summary of the most commonly used 3D printing techniques 

in medical application.

3D printing 

techniques

Pros Cons

SLA Current gold standard

High resolution

Increased efficiency with 

increase in print size

Detailed fabrication of 

internal structures

>1 day of printing time required

Require extensive post-production 

manual handling

High cost related to the materials, 

the printer, and the maintenance

MJM High resolution

Minimal post-production 

manual handling

Multiple materials

High cost related to the material 

and printer

Poorer surface finishing than SLA

SLS Not require support 

structures

Smooth surface finishing

Print delicate structures

Print in metal

Require post-production manual 

handling

High cost related to the materials, 

the printer, and the maintenance

Require expert handling of the 

printer

BJT Not require support 

structures

Multiple colors

Multiple materials

Brittle

Require extensive post-production 

manual handling

Poor surface finish

FDM Low cost

Minimal maintenance

High availability of printers

Require post-production manual 

removal of support structures

Poor surface finish

Mono-color and mono-material 

with the current technology

SLA, stereolithography; MJM, multijet modeling; SLS, selective laser sintering; BJT, 

binder jet technique; FDM, fused deposition modeling.
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inhibition of UV-curable resin photopolymerization (22). �is 
emerging modality has yet to be evaluated in plastic and recon-
structive surgery but holds promise due to its combination of speed, 
structural integrity, and ability to fabricate complex structures.

MultiJet Modeling

Multijet modeling printing, also known as MultiJet Printing (3D 
Systems, Rock Hill, SC, USA) or Poly Jet Technology (Stratasys, 
Edina, MN, USA), is akin to SLA, but the liquid photopolymer is 
immediately cured by the UV light preventing the time-consuming 
post-processing in the UV chamber and the prototypes are built 
with gel-like support materials that are readily dissolvable in water 
(23). MJM can manufacture models with high resolution (16 μ) 
that is comparable to or better than SLA, with an added bene�t of 
the capacity to print in multiple materials for the desired degree 
of tensile strength and durability. Furthermore, a MJM printer is 
easier to maintain than a SLA set-up. However, the high price of 
these printers makes MJM more suitable for large-scale produc-
tions than for o�ce-based/bedside desktop application.

Selective Laser Sintering

Selective laser sintering describes a process where powdered forms 
of thermoplastic, metal, glass, or ceramic material are sintered by 
high-power laser beams in a layer-by-layer fashion (24, 25). Similar 
to SLA, the unsintered powders must be brushed away from the 

�nal product; however, they provide support and eliminate the 
need for support structures. As a result, SLS yields models with 
smoother surface �nish and facilitates the production of delicate 
structures with high accuracy. Furthermore, the unsintered pow-
ders can be reused leading to a reduction in cost compared to 
SLA (20, 26). However, SLS remains signi�cantly more expensive 
than binder jet technique (BJT) (below) and FDM, due mainly to 
the cost of the printer. In addition, SLS printers can be potentially 
hazardous due to the presence of lasers, pistons, and gas chambers 
that can reach extremely high temperatures and hence, requires 
expert handling. �ese features have discouraged it from being 
widely implemented in non-industrial settings.

Binder Jet Technique

Binder jet technique, or powder bed technique, is the �rst 3D print-
ing approach that reduced the cost of 3D printers, thereby enabling 
a widespread consumerization of 3D printing (27). Similar to the 
SLS process, printer heads eject a binder material along with 
colored dye onto a layer of powder, fusing them layer-by-layer into 
a plaster model (28). Unfused powders provide adequate support 
for the “overhanging” designs and hence, simultaneous deposi-
tion of support structures is rarely required. Moreover, binder 
jet 3D printers can print in multiple colors and materials, and 
have multiple printer heads for faster printing. One of the major 
drawbacks of binder jetting is that the �nal product usually lacks 
strength and has a poorer surface �nish than SLA or SLS. Hence, 
all models require post-production strengthening with materials 
such as melted wax, cyanoacrylate glue, or epoxy.

Fused Deposition Modeling

Fused deposition modeling is the most commonly used consumer 
3D printing technology available currently and is also the most 
a�ordable (21, 29, 30). A melted �lament of thermoplastic material 
is extruded from a nozzle moving in the x-y plane and solidi�es 
upon deposition on a build plate (31). A�er each layer, the build 
plate is lowered by 0.1 mm and the process is repeated until the 
�nal product is produced. Acrylonitrile-butadiene-styrene (ABS) 
and polylactic acid (PLA) are the most frequently used raw materi-
als in FDM printers. A notable shortcoming for the use of FDM 
in medical applications is that most anatomical structures have 
complex shapes and hence, would require support structures. 
Although they are easy to remove manually, the a�ermath generally 
leaves super�cial damage to the model compromising its surface 
�nish and esthetics. Hollow internal structures or blind-ended 
openings are particularly di�cult to clean build material from. 
Furthermore, most household FDM printers are currently limited 
to fabricating in mono-color and mono-material. However, this 
can be overcome by recently developed dual-extruder technology, 
where two �laments of di�erent color or material can be extruded 
from a common printer head. It is currently found in printers, such 
as MakerBot Replicator 2X Experimental (MakerBot Industries, 
New York, NY, USA), Cube 3 (3D Systems, Rock Hill, SC, USA), 
and Creatr x1 (Leapfrog, Emeryville, CA, USA). Moreover, the 
second extruder can be con�gured to build support structures 
using MakerBot Dissolvable Filament (MakerBot Industries), 
made up of high impact polystyrene (HIPS) (32). When the �nal 
product is immersed in water with limonene, a widely available 
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FIGURE 2 | 3D-printed haptic model of a heart and the great vessels 

fabricated using Projet x60 series 3D printers. Reproduced with 

permission from Centre for Human Anatomy and Education.
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citrus-scented solvent, the support structures selectively dissolve 
away within 8 to 24 h but these dual extruder printers have not 
yet become established in the mainstream.

3D Printing in Medicine

In the last decade or so, researchers have demonstrated a wide 
range of uses for 3D printing across numerous surgical disciplines. 
Clinically, 3D-printed haptic biomodels provide a tactile feedback 
and enable users to simulate complex anatomical movements, such 
as articulation at the temporomandibular joint, that are di�cult to 
reproduce in a computer so�ware (33). As a result, they facilitate 
an enhanced appreciation of the visuospatial relationship between 
anatomical structures for the surgeons (34). �is can translate into 
shorter operative time, reduced exposure to general anesthesia, 
shorter wound exposure time and reduced intraoperative blood 
loss (18, 35, 36).

Preoperative Planning
In preoperative planning, 3D-printed biomodels have been ben-
e�cial in orbital and mandibular reconstruction in maxillofacial 
surgery (21, 37–41); craniofacial, skull base, and cervical spine 
reconstruction in neurosurgery (35); prefabrication of bony �xa-
tion plates and planning excision of bony lesions in orthopedic 
surgery (42, 43); mapping complex congenital heart defects and 
tracheobronchial variation in cardiothoracic surgery and cardiac 
transplantation (26, 44–52) (Figure  2); endovascular repair of 
abdominal aortic aneurysm and aortic dissection in vascular 
surgery (53–55); partial nephrectomy for renal tumors in urology 
(56); osteoplastic �ap reconstruction of frontal sinus defects in 
ear, nose, and throat surgery (57, 58); and hepatectomy and liver 
transplantation in general surgery (59–61).

Intraoperative Guidance
Furthermore, 3D so�wares have been used to fabricate patient-
speci�c surgical templates and intraoperative guidance devices to 
aid surgeons in maxillofacial surgery (62–67), neurosurgery (68), 
orthopedic surgery (69), hand surgery (70), and general surgery (71).

Education
3D-printed haptic biomodels can be useful for educating patients 
during medical consultations and training surgical trainees (29, 
45, 72–81).

Customized Prosthesis
Moreover, 3D printing has enabled rapid and convenient produc-
tion of customized implants. Investigators have manufactured 
patient-speci�c mandibular implants in maxillofacial surgery 
(82–84), cranial vault implants for cranioplasty in neurosurgery 
(85, 86), hip implants in orthopedic surgery (87, 88), and a 
bioresorbable airway splint for complex tracheobronchomalacia 
in pediatric cardiothoracic surgery (89).

Allied Health
In other areas of medicine, 3D printing has revolutionized the 
manufacturing of hearing aids and currently 99% of all hearing 
aids in the world are 3D printed (90). Additionally, 3D printing 

has helped in making complex diagnoses in forensic medicine 
(91); reformed anatomy education (92); helped in planning repairs 
of Charcot’s foot in podiatry (93); permitted the fabrication of 
custom-made dental implants in dentistry (94–96); produced 
patient-speci�c 3D-printed medication in pharmaceutical 
industry (97, 98); and assembled custom-design tissue sca�olds 
in regenerative medicine (99, 100).

3D Printing at the Bedside

Despite a vast potential scope of 3D printing in clinical practice 
and signi�cant media interest with frequent reports of the latest 
innovative advancements made using this technology (101). �e 
incorporation of 3D printing as a clinical bedside application has 
not been widespread (102). One potential barrier is the perception 
amongst clinicians that 3D printing is technically sophisticated and 
is reserved for planning intricate operations and devising highly spe-
cialized implants (102). As a result, 3D printing is o�en outsourced 
to an external company, which compounds the cost and time. �is 
demonstrates a lack of awareness of the increasing accessibility of 
the 3D so�wares and the declining cost of the 3D printers (102).

3D Reconstruction Software
In order to fabricate a 3D biomodel, two types of so�ware are 
required; �rstly, a “3D modeling” so�ware that translates the 
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TABLE 2 | A summary of 3D modeling softwares that can convert a DICOM data from a standard CT/MRI scans into a CAD file.

Name Company Free Threshold/

segmentation

Export STL Easy user 

interface

OS platform

3D Slicer Surgical Planning Laboratory Y Y Y Y W, M

MITK German Cancer Research Centre Y Y Y Y W, M

Osirix Pixmeo Y Y Y Y M

MIPAV NIH CIT Y Y Y N W, M

MeVisLab MeVis Medical Solutions AG Y Y Y N W, M

InVesalius CTI Y Y Y N W, M

Mimics Materialise NV N Y Y Y W, M

Avizo/Amira FEI Visualization Science Group N Y Y Y W, M

3D Doctor Able Software N Y Y Y W

Dolphin Imaging 3D Dolphin Imaging and Management N Y Y Y W

Analyze AnalyzeDirect N Y Y N W, M

GuideMia GuideMia N Y Y N W, M

OnDemand3D CyberMed N N Y N W, M

VoXim IVS Technology N Y Y N W

ScanIP Simpleware N Y Y N W

STL, standard tessellation language; OS, operating system; Y, yes; N, no; W, Windows OS; M, Mac OS.
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DICOM (digital imaging and communications in medicine) �les 
from CT/MRI scans into a CAD �le, and secondly, a “3D slicing” 
so�ware that divides the CAD �le into thin data slices suitable for 
3D printing (103).

3D Modeling Software

A range of 3D modeling so�wares is available (Table 2); however, 
early ones, such as Mimics (Materialise NV, Leuven, Belgium), 
would incur a high cost for the initial purchase and for the ongoing 
so�ware updates. Driven by the consumerization of 3D printing 
and an increasing number of both professional and community 
so�ware developers, free open-source so�wares, such as Osirix 
(104) and 3D Slicer (105–107), have become widely utilized. Our 
group prefers using them due to the latter’s expansive developer 
community base, called the Slicer Community, a plethora of 
plug-in functions, and a user interface that is intuitive to an 
individual with no engineering background (108, 109). An ideal 
3D modeling so�ware should be free; capable of highlighting 
the region of interest and eliminate undesired areas using the 
threshold and the segmentation function, respectively; export 
the 3D model as a CAD �le in a universally accepted 3D �le 
format, such as STL (standard tessellation language); and possess 
an easy-to-use interface. Encouragingly, there are numerous 3D 
modeling so�wares available in the market currently that �t all 
of the criteria (Table 2).

3D Slicing Software

3D slicing so�wares digitally “slice” a CAD �le into layers suitable 
for 3D printing. However, they are also useful for altering the 
orientation of the CAD �le relative to the printer build plate to 
give an optimal direction, which minimizes the requirement for 
the support structures and, in turn, reduces the amount of material 
used and therefore also reduces the printing time. �is process can 
be readily performed using proprietary so�wares that accompany 
the 3D printers at no extra cost and usually possess a simple graphic 
user interface, such as Cube so�ware (3D Systems) and MakerBot 
Desktop (MakerBot Industries).

3D Printers
�e cost of early 3D printers, consisting of mostly the SLA type 
described above, precluded widespread adoption of 3D printing in 
the initial years; however, the expiration of key patents surrounding 
SLA and FDM in the last decade has fueled a surge in the number 
of commercial developers leading to an increase in the availability 
and a signi�cant reduction of the cost (Table 3). Several a�ord-
able SLA 3D printers have entered the market since then, such as 
Form 1+ (Formlabs, Somerville, MA, USA) and ProJet 1200 (3D 
Systems). However, they are capable of building only small designs 
(i.e., 12.5 cm × 12.5 cm × 16.5 cm) and hence, remain unsuitable 
for many applications. Similarly, current MJM and SLS 3D printers 
are generally bulky and expensive, and require specialized skills 
for safe handling of the hardware and its maintenance. Binder jet 
3D printers are gradually being avoided due to the brittle quality 
of the end-products and the large size of the printer. Currently, 
FDM 3D printers are the preferred option as a desktop application 
in medicine for their a�ordability and practicality. �e accuracy 
and the quality of FDM products are comparable to SLA, SLS, and 
binder jet (110–112). Furthermore, FDM incurs the least cost in 
maintenance from ongoing print materials (Table 4).

3D Printing in Plastic and Reconstructive 
Surgery

In plastic and reconstructive surgery, 3D-printed haptic biomodels 
can potentially play a signi�cant role in preoperative planning, 
intraoperative guidance, training and teaching, and fashioning 
patient-speci�c prosthesis (Table 5).

Preoperative Planning: Soft Tissue Mapping
Perforator �ap surgery is routinely performed in the reconstruction 
of large so� tissue defects a�er trauma or an oncologic resection. 
Preoperative planning with CTA has revolutionized the �eld by 
enabling the reconstructive surgeon to identify an ideal donor 
site, �ap, and perforator for a free �ap transfer (3, 123), facilitat-
ing a greater �ap success rate and an overall improvement in the 
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TABLE 3 | A summary of commercially available 3D printers from ten leading 3D printing companies in the world.

Type Name Company Cost (USD) Print area (cm) Print  

resolution (nm)

Printer size (cm) Printer  

weight (kg)

SLA Form 1+ Formlabs 3,999 12.5 × 12.5 × 16.5 25 30.0 × 28.0 × 45.0 8

SLA ProJet 1200 3D Systems 4,900       4.3 × 2.7 × 15.0 30.5 22.9 × 22.9 × 35.6 9

SLA ProJet 6000 3D Systems 200,000 25.0 × 25.0 × 25.0 50 78.7 × 73.7 × 183.0 181

SLA ProJet 7000 3D Systems 300,000 38.0 × 38.0 × 25.0 50 98.4 × 85.4 × 183.0 272

SLA ProX 950 3D Systems 950,000 150.0 × 75.0 × 55.0 50 220.0 × 160.0 × 226.0 1,951

MJM Objet 24 series Stratasys 19,900 23.4 × 19.2 × 14.9 28 82.5 × 62.0 × 59.0 93

MJM Objet 30 series Stratasys 40,900 29.4 × 19.2 × 14.9 28 82.5 × 62.0 × 59.0 93

MJM ProJet 3510 series 3D Systems 69,500 29.8 × 18.5 × 20.3 16 29.5 × 47.0 × 59.5 43.4

MJM Objet Eden Stratasys 123,000 49.0 × 39.0 × 20.0 16 132.0 × 99.0 × 120.0 410

MJM ProJet 5000 3D Systems 155,000 53.3 × 38.1 × 30.0 32 60.3 × 35.7 × 57.1 53.8

MJM ProJet 5500X 3D Systems 155,000 53.3 × 38.1 × 30.0 29 80.0 × 48.0 × 78.0 115.7

MJM Connex series Stratasys 164,000 49.0 × 39.0 × 20.0 16 140.0 × 126.0 × 110.0 430

MJM Objet Connex series Stratasys 164,000 49.0 × 39.0 × 20.0 16 142.0 × 112.0 × 113.0 500

MJM Objet 1000 Stratasys 614,000 100.0 × 80.0 × 50.0 16 280.0 × 180.0 × 180.0 1,950

SLS sPro series 3D Systems 300,000 55.0 × 55.0 × 46.0 80 203.0 × 160.0 × 216.0 2,700

SLS ProX series 3D Systems 500,000 38.1 × 33.0 × 45.7 100 174.4 × 122.6 × 229.5 1,360

BJT ProJet 160 3D Systems 40,000 23.6 × 18.5 × 12.7 100 74.0 × 79.0 × 140.0 165

BJT ProJet 260C 3D Systems 40,000 23.6 × 18.5 × 12.7 100 74.0 × 79.0 × 140.0 165

BJT ProJet 360 3D Systems 40,000 20.3 × 25.4 × 20.3 100 122.0 × 79.0 × 140.0 179

BJT ProJet 460 Plus 3D Systems 40,000 20.3 × 25.4 × 20.3 100 122.0 × 79.0 × 140.0 193

BJT ProJet 4500 3D Systems 40,000 20.3 × 25.4 × 20.3 100 162.0 × 80.0 × 152.0 272

BJT ProJet 660 Pro 3D Systems 40,000 25.4 × 38.1 × 20.3 100 188.0 × 74.0 × 145.0 340

BJT ProJet 860 Plus 3D Systems 40,000 50.8 × 38.1 × 22.9 100 119.0 × 116.0 × 162.0 363

FDM Huxley Duo RepRapPro 453       13.8 × 14.0 × 9.5 12.5 26.0 × 28.0 × 28.0 4.5

FDM Mendel RepRapPro 586 21.0 × 19.0 × 14.0 12.5 50.0 × 46.0 × 41.0 8

FDM Ormerod 2 RepRapPro 702 20.0 × 20.0 × 20.0 12.5 50.0 × 46.0 × 41.0 6

FDM Tricolor Mendel RepRapPro 863 21.0 × 19.0 × 14.0 12.5 50.0 × 46.0 × 41.0 8

FDM Cube 3 3D Systems 999 15.3 × 15.3 × 15.3 70 33.5 × 34.3 × 24.1 7.7

FDM Buccaneer Pirate 3D 999 14.5 × 12.5 × 15.5 85 25.8 × 25.8 × 44.0 8

FDM Original +  Ultimaker 1,238 21.0 × 21.0 × 20.5 20 35.7 × 34.2 × 38.8 N/A

FDM Replicator mini MakerBot 1,375 10.0 × 10.0 × 12.5 200 29.5 × 31.0 × 38.1 8

FDM Creatr Leapfrog 1,706 20.0 × 27.0 × 20.0 50 60.0 × 50.0 × 50.0 32

FDM Replicator 2 MakerBot 1,999 28.5 × 15.3 × 15.5 100 49.0 × 42.0 × 38.0 11.5

FDM LulzBot TAZ 4 Aleph Objects 2,195 29.8 × 27.5 × 25.0 75 668.0 × 52.0 × 51.5 11

FDM AW3D HDL Airwolf 3D 2,295 30.0 × 20.0 × 28.0 100 61.0 × 44.5 × 46.0 17

FDM Creatr HS Leapfrog 2,373 29.0 × 24.0 × 18.0 50 60.0 × 60.0 × 50.0 40

FDM Replicator 2x MakerBot 2,499 24.6 × 15.2 × 15.5 100 49.0 × 42.0 × 53.1 12.6

FDM Ultimaker 2 Ultimaker 2,500 23.0 × 22.5 × 20.5 20 35.7 × 34.2 × 38.8 N/A

FDM Replicator 5th gen MakerBot 2,899 25.2.19.9 × 15.0 100 52.8 × 44.1 × 41.0 16

FDM AW3D HD Airwolf 3D 2,995 30.0 × 20.0 × 30.0 60 61.0 × 44.5 × 46.0 17

FDM Cube Pro 3D Systems 3,129      20.0 × 23 × 27.0 100 57.8 × 59.1 × 57.8 44

FDM AW3D HDX Airwolf 3D 3,495 30.0 × 20.0 × 30.0 60 61.0 × 44.5 × 46.0 17

FDM AW3D HD2X Airwolf 3D 3,995 27.9 × 20.3 × 30.5 60 61.0 × 45.7 × 45.7 18

FDM Creatr xl Leapfrog 4,988 20.0 × 27.0 × 60.0 50 75.0 × 65.0 × 126.0 37

FDM Replicator Z18 MakerBot 6,499 30.5 × 30.5 × 45.7 100 49.3 × 56.5 × 85.4 41

FDM Xeed Leapfrog 8,705 35.0 × 27.0 × 60.0 50 101.0 × 66.0 × 100.0 115

FDM Mojo Stratasys 9,900 12.7 × 12.7 × 12.7 178 63.0 × 45.0 × 53.0 27

FDM uPrint Stratasys 13,900 20.3 × 15.2 × 15.2 254 63.5 × 66.0 × 94.0 94

FDM Objet Dimension 

series

Stratasys 40,900 25.4 × 25.4 × 30.5 178 83.8 × 73.7 × 114.3 148

FDM Fortus series Stratasys 184,000 91.4 × 61.0 × 91.4 127 277.2 × 168.3 × 202.7 2,869

Where a 3D printer series is characterized, the lowest cost, largest print area, lowest print resolution, largest printer size, and greater printer weight are selected for comparison.SLA, 

stereolithography; MJM, multijet modeling; SLS, selective laser sintering; BJT, binder jet technique; FDM, fused deposition modeling; cm, centimeter; kg, kilograms; nm, nanometers; 

N/A, not available.
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clinical outcomes (1, 2, 124). In addition to CTA, 3D biomodels 
can provide an additional layer of clinical information through 
visual and tactile examination.

In a recent report, our research group described a technique 
of fashioning a “reverse” model representing a so� tissue ankle 
defect that was utilized for planning a perforator �ap-based 

reconstruction (Figure  3) (109). Routine CTA of the lower 
limbs (i.e., recipient site) and the forearms (i.e., donor site) were 
conducted and the DICOM data were converted into a CAD �le 
using Osirix. �e 3D image of the normal contralateral ankle was 
mirrored, superimposed over the image of the pathological side, 
and a�er digital subtraction using Magics so�ware (Materialise 

http://www.frontiersin.org/Surgery/archive
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FIGURE 3 | Photograph of the soft tissue ankle defect showing the 

exposed metal hardware from a previous ankle reconstruction. 

Reproduced with permission from Microsurgery (109).

TABLE 5 | A summary of published application of 3D printing in Plastic 

and Reconstructive Surgery.

Application Example Reference

Preoperative 

planning

Soft tissue 

mapping

Breast reconstruction (108)

Ear reconstruction (113, 114)

Nasal reconstruction (115)

Mandibular soft tissue tumor resection (116)

“Reverse” model of ankle defect (109)

Sacral defect (117)

Vascular 

mapping

Internal mammary artery perforators (118)

DIEA perforators (7)

Bony 

mapping

Basal thumb osteoarthritis (7)

4D printing Thumb movement (119)

Intraoperative guidance Bone reduction clamp (70)

Surgical training N/A

Patient education N/A

Patient-specific 

prosthesis

Craniofacial implant (120)

“Ear and nose library” (121, 122)

DIEA, deep inferior epigastric artery; 4D, four dimensional; N/A, not available.

TABLE 4 | A summary of average raw material cost of each 3D printing 

technique.

Type of 3D printing Average cost of print material (USD)

SLA 200 per L

MJM 300 per kg

SLS 500 per kg

BJT 100 per kg

FDM 50 per kg

SLA, stereolithography; MJM, multijet modeling; SLS, selective laser sintering; BJT, 

binder jet technique; FDM, fused deposition modeling; L, liter.
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NV), a “reverse” model representing the wound defect is created 
(Figure 4). �is mirroring function can also be performed in free 
open-source so�wares, such as Osirix and 3D Slicer. �is helped 
the surgeon preoperatively appreciate the length, width, and depth 
of the free �ap that needed to be harvested in order to adequately 
cover the defect. Both the pathological ankle and the “reverse” 
model were fabricated in PLA �laments using a Cube 2 printer (3D 
Systems) (Figures 5 and 6) (Table S1 in Supplementary Material).

We also recently demonstrated the utility of a 3D-printed 
biomodel for planning perforator �ap reconstruction of a sacral 
wound defect post-oncologic resection (117). Likewise, we used 
Osirix to translate the preoperative sacral CTA data into a CAD 
�le. Due to the maximal build dimensions of the Cube 2 printer 
(i.e., 16 cm × 16 cm × 16 cm), the 3D image of the sacral defect 
was scaled down using the Cube so�ware. �e haptic model still 
accurately represented the shape and depth of the defect and its 
relationship with the surrounding anatomical structures.

3D printing can potentially be a valuable tool in the assess-
ment of so� tissue volume. Volumetric analysis is an essential 
component of breast reconstructive surgery and currently 
surgeons rely on 2D photography or 3D scanning technology, 
such as VECTRA (Can�eld Imaging Systems, Fair�eld, NJ, 
USA) (125), and subjective visual assessment. One of the main 
limitations of 3D photography like VECTRA is the inability 
to account for an underlying chest wall asymmetry that may 

incorrectly lead to an asymmetrical appearance despite equal 
breast parenchymal volumes. Moreover, the accuracy of each 
scan is reliant on the patients standing with their back �at 
against a wall, which may not be feasible in certain conditions, 
such as kyphosis or scoliosis. Recently, we reported the use of 
a 3D-printed model of a patient with post-mastectomy breast 
asymmetry for preoperative planning (Figure 7) (108). Despite 
being scaled down to �t the build size of the printer, having an 
accurate physical replica helped surgeons appreciate the di�er-
ence in the breast shape and volume. Furthermore, using the 
segmentation function in Osirix we were able to quantify the 
breast parenchymal volume di�erence.

FIGURE 4 | 3D images of the right (pathological) ankle is juxtaposed 

to the left (normal) ankle (A). The left ankle is reflected (B) and 

superimposed on to the right ankle (C). These images are subtracted from 

each other to produce a “reverse” model of the soft tissue defect (D-F). 

Reproduced with permission from Microsurgery (109).
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FIGURE 7 | 3D reconstructed CT images of a patient with breast 

asymmetry post-mastectomy (A) and the 3D printed breast model of 

the same patient (B). Reproduced with permission from Breast Cancer 

Research and Treatment (108).

FIGURE 5 | 3D-printed haptic model of the soft tissue ankle defect. 

Reproduced with permission from Microsurgery (109).
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Preoperative Planning: Vascular Mapping
Understanding the vascular anatomy of perforators and their 
relationship with the regional anatomical structures is critical in 
perforator �ap surgery and to this e�ect, CTA is currently the 
gold standard preoperative investigation (1, 2, 123, 126). Recently, 
Gillis and Morris reported a cadaveric study where a model of 
internal mammary artery perforators and the neighboring ribs 
was fabricated using a binder jet 3D printer (ProJet x60 series, 3D 
Systems) (118). �e authors demonstrated the bene�ts of physi-
cally interacting with the model and the ability to visualize it in 
multiple planes to aid dissection and identi�cation of the dominant 
perforator. However, they also noted a signi�cant cost associated 
with outsourcing the 3D printing (USD 400–1,200) and the print 
material was too delicate for small-size blood vessels that required 
post-production strengthening with wax coating.

Likewise, our group 3D printed the perforator anatomy for 
planning a deep inferior epigastric artery perforator (DIEP) �ap 
breast reconstruction. From the preoperative CTA, we created a 
CAD �le of the deep inferior epigastric artery (DIEA) with the sur-
rounding bony landmarks using 3D Slicer and the Cube 2 printer. 
Despite having to scale down the model to �t the printer dimensions, 
surgeons could intuitively discern the arterial anatomy from the 
replica. Interestingly, the current technique impeded the perforators 
of DIEA to be 3D printed. Considering that the DICOM data of 
the CTA and the Cube 2 printer have a resolution of 0.625 and 
0.200 mm, respectively, and the mean diameter of a DIEA perfora-
tor ranges between 1 and 1.4 mm (127), this may be most likely 
explained as a limitation of the 3D modeling so�ware, 3D Slicer. �is 
may be prevented in the future by installing free add-on so�ware 
functions, such as Vascular Modeling Toolkit (VMTK, Orobix, 
Bergamo, Italy) in 3D Slicer, that are designed to speci�cally segment 
vascular structures. Currently, these are still early in the development 
phase and are di�cult to manipulate without signi�cant computer 
engineering pro�ciencies. As the �eld advances, we would naturally 
expect the user interface of these so�wares to become easier to use.

Preoperative Planning: Bony Mapping
3D printing bony pathology in the forearm, wrist, and hand is 
another suitable utility of this technology in plastic and reconstruc-
tive surgery. CT scans have been the most commonly used imaging 
modality for medical 3D printing. Since they readily di�erentiate 
bones, 3D printing bony structures has become well established in 
various surgical disciplines, such as maxillofacial surgery (20, 21, 

FIGURE 6 | 3D-printed haptic model of the “reverse” image 

representing the wound defect. Reproduced with permission from 

Microsurgery (109).
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FIGURE 8 | 4D-printed haptic models of carpal and metacarpal bones 

demonstrating thumb abduction (from left to right). Reproduced with 

permission from Journal of Reconstructive Microsurgery (119).
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33, 128–130), neurosurgery (35, 68, 86), and orthopedic surgery 
(131–135). Using Osirix and Cube 2 printer, our research group 3D 
printed a model of a subluxed �rst carpometacarpal joint. Being able 
to visualize the model from various angles and the tactile feedback 
facilitated an intuitive understanding of the anatomical relationship 
between the �rst metacarpal and the trapezium. �e information 
was useful for planning the optimal method of reduction.

A New Evolution: 4D Printing
Recently, we described for the �rst time the concept of applying 
3D printing to 4D CT scans, or 4D printing, where time is added 
as the fourth dimension to the standard 3D printing (119). 4D CT 
is a novel imaging modality developed to remove motion artifacts 
from organs, such as lungs, in order to enhance the image quality 
and facilitate precise delivery of radiotherapy (136, 137). In plastic 
surgery, investigators have utilized 4D CTA to assess the vascular 
territories and the dynamic �ow characteristics of an individual 
perforator (4, 5). Using Osirix and Cube 2 printer, our group 3D 
printed the carpal and metacarpal bones of a patient in life-size at 
various stages of the thumb movement, such as thumb abduction 
(Figure 8). In contrast to the 3D reconstructions on a 2D computer 
screen and 3D models, 4D-printed haptic models accurately 
depicted the position of the carpal bones during each movement 
and enabled an instinctive appreciation of the spatiotemporal 
relationship between them. One of the major disadvantages was 
the reliance on the clinician reviewing the 4D CT data to select the 
scans most representative of the carpal bone transition during each 
movement for 3D printing. �is can be overcome as 3D printers 
become faster thus allowing more models to be fabricated.

Intraoperative Guidance
�e convenience of 3D printing has propelled an innovation in cus-
tom designs of surgical templates and equipments that help guide the 
surgeon intraoperatively. In the literature, investigators have demon-
strated the utility of 3D printing a modi�ed army/navy surgical retrac-
tor (71); patient-speci�c orthognathic templates to guide osteotomy 
(66) and mandibular fracture reduction device (138) in maxillofacial 
surgery; screw �xation guide system in spinal neurosurgery (139); 
and drill templates to aid surgical correction of multilevel cervical 
spine instability in orthopedic surgery (69). In plastic and reconstruc-
tive surgery, Fuller et al. illustrated how 3D printing can expedite the 

development of a custom-made bone reduction clamp design for 
hand fractures, in comparison to the conventional processes that can 
become protracted and actually be discouraging to innovation (70). 
�e authors collaborated with an engineer to produce 3D prototype 
designs and converted them into CAD �les using free 3D so�wares, 
such as SketchUp (Trimble Navigation, Sunnyvale, CA, USA) and 
MeshLab (ISTI-CNR, Pisa, Italy), respectively. 3D printing of the 
FDM prototypes was outsourced, costing USD 75 and 1–3 days for 
the delivery to arrive. �e �nal design was manufactured in metal 
using an additive manufacturing technique, called direct metal laser 
sintering, and was again outsourced, costing USD 1,200 and 2 days 
for the delivery. �e authors acknowledged that the 3D so�wares for 
designing prototypes are currently not intuitive for clinicians with 
only basic computer pro�ciency. Furthermore, the �nal cost exceeded 
the cost of purchasing a standard equipment. However, as 3D printing 
technology advances and the 3D printing is performed “in-house”, 
the di�erence may become minimal in the future.

Surgical Training
Detailed knowledge of anatomical structures and their spatial rela-
tionships are essential assets of a plastic surgeon and objectives of a 
surgical training program. �rough the standard medical training, a 
surgical aspirant can gain procedural experiences from performing 
dissections on human cadavers as a medical student and assisting 
senior surgeons in the operating theater as a resident, leading toward 
a gradual acquisition of competence. However, human cadavers are 
becoming relatively scarce from the anatomical education curricula 
due to high maintenance costs, cultural and social controversies, 
and safety issues associated with the formalin-containing embalm-
ing �uids (92, 140). Furthermore, the operative experience gained as 
an assistant to a senior surgeon is secondary to a primary operator 
experience. To this end, 3D-printed anatomical models can serve 
as an accurate, tactile visualization tool and a surgical simulation 
device. Moreover, 3D-printed haptic biomodels can be utilized to 
reproduce complex, patient-unique pathologies that facilitate the 
surgical trainees to preoperatively predict potential intraoperative 
challenges and postoperative outcomes and aid in their learning. 
Subsequent improvement in the surgeon’s competence may lead to 
enhanced clinical outcomes and a reduced risk of complications. 
Investigators from various surgical disciplines have demonstrated 
the utility of 3D printing in training, such as neurosurgery (72–77, 
141, 142), cardiothoracic surgery (54, 78–80, 143–145), urology 
(81, 146), and general surgery (29) However, one of the major 
limitations currently is the ability to print in materials that closely 
mimic the biomechanical properties and modulus of real human 
tissue as well as possessing realistic colors. As more materials enter 
the scope of 3D printing, future 3D-printed biomodels will be able 
to more closely reproduce true anatomy (50, 72, 74, 79).

Patient Education
3D-printed replicas can be useful to facilitate the physician–patient 
interaction during a consultation with the aim of improved under-
standing of the intended procedure, its potential outcomes and 
complications and thus can form an important aspect of informed 
consent. Traditional CT/MRI scans are o�en di�cult to compre-
hend for patients from a non-medical background. In recent times, 
plastic surgeons have utilized 3D scanning technology, such as 
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VECTRA (Can�eld Imaging Systems), to accurately simulate 
potential outcomes from a cosmetic procedure on a computer 
screen (125). However, studies have consistently demonstrated 
that visual and tactile feedback from a 3D haptic model provides 
a superior understanding of anatomical details compared to 2D 
or 3D imaging techniques (34, 58, 147).

Patient-Specific Prosthesis
As modern medicine ultimately progresses toward individualized 
treatment approaches, customizability of 3D printing can transform 
the manufacturing of patient-speci�c prostheses to being widely 
accessible and a�ordable. In comparison to a standard implant, a 
custom-made one is more likely to yield superior functional and 
esthetic outcomes (148, 149). Typical 3D printing materials can be 
sterilized using chemicals, such as Food and Drug Administration 
approved glutaraldehyde protocols (71), steam (20), and gas (150) 
for intraoperative handling. In the last decade, investigators have 
reported 3D-printed prostheses of nose (121, 151), ears (122, 
152–155), eyes (156, 157), face (158, 159), and hand (6, 160). 
Furthermore, an Italian research group led by De Crescenzio and 
Ciocca has established an “Ear and Nose Library” where CAD �les of 
3D scanned ears and noses of normal university students are stocked 
(121, 122). When patients have pathology a�ecting both ears or 
the entire nose that impedes mirroring of the normal contralateral 
side to reconstruct the defect, the clinicians can select the most 
suitable CAD �le from this database to fashion a prosthesis. In plastic 
surgery, standard breast implants are available in di�erent volumes, 
but in a limited number of shapes. To this e�ect, 3D-printed breast 
implants customized to conform to the individual variations in the 
chest wall anatomy and the patient’s desired breast shape and size 
may lead to a more esthetic and satisfactory outcome.

Most reports have indicated that 3D-printed custom prostheses 
provide superior esthetics in comparison to the traditional wax-
based handcra�ed prosthetics (152, 154, 155). Furthermore, cus-
tomized implants eschew the need to intraoperatively modify and 
adjust associated with the standard implants, which can directly 
lead to improved clinical outcomes, such as a reduction in the 
length of surgery, reduced exposure to anesthetics, and a decreased 
risk of complications like infection (161, 162). Currently, one of the 
major drawbacks is that most custom implants are manufactured 
using expensive 3D printing techniques, such as MJM (157) and 
SLS (151, 160). In contrast, the a�ordable FDM 3D printers are 
used to fabricate negative molds for silicone or wax-based casts, 
which ironically increases the overall production time and cost 
(121, 122, 152–154, 156, 158). �is is mainly because at present, 

only ABS and PLA �laments are available for FDM and their hard 
material characteristic makes them unsuitable for producing so� 
tissue prosthetics. However, as research and development in 3D 
printing continues to grow exponentially and more materials 
become available for FDM, we expect to be able to directly create 
a custom-made prosthesis a�ordably in the near future.

Future and Conclusion

In the last decade, image-guided 3D-printed haptic biomodels 
have proven to represent a valuable adjunct to the conventional 
2D imaging modalities in plastic surgery for preoperative 
planning, producing intraoperative guidance tools, educating 
surgical trainees and patients, and fashioning patient-speci�c 
implants. In the early years, the technical complexity of 3D 
so�wares and the prohibitive cost of 3D printers restricted 
accessibility of 3D printing in medicine. �e expiration of key 
3D printing patents has fueled an exponential development in 
the �eld and a signi�cant reduction in the cost. Ultimately, we 
envision that 3D printing has the potential to become ubiquitous 
and function as an essential clinical bedside tool for a plastic 
surgeon.
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TABLE S1 | A summary of the printing time and the amount of print 

material used to produce the 3D printed models in plastic and 

reconstructive surgery mentioned in the manuscript.

VIDEO S1 | A video demonstrating the binder jet 3D printing technique 

using a ProJet x60 series printer (3D Systems, Rock Hill, SC). After 

a layer of powder is deposited, a binder material mixed with colored dye is 

ejected on to the powder bed to fabricate a 3D haptic model in a layer-by-

layer fashion. Filmed by PGM.
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