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Abstract: To solve the global shortage of land and offshore resources, the development of deep-sea
resources has become a popular topic in recent decades. Deep-sea composites are widely used
materials in abyssal resources extraction, and corresponding marine exploration vehicles and mon-
itoring devices for deep-sea engineering. This article firstly reviews the existing research results
and limitations of marine composites and equipment or devices used for resource extraction. By
combining the research progress of smart composites, deep-sea smart composite materials with
the three characteristics of self-diagnosis, self-healing, and self-powered are proposed and relevant
studies are summarized. Finally, the review summarizes research challenges for the materials, and
looks forward to the development of new composites and their practical application in conjunction
with the progress of composites disciplines and AI techniques.

Keywords: deep-sea composite materials; deep-sea exploration technology; smart composites;
self-diagnosis; self-healing; self-powered

1. Introduction

With the economic development and population growth, the world faces extreme
resources shortage. Since land and offshore resources are gradually becoming deficient,
deep-sea energy exploitation has become a hot trend in recent decades [1]. Ocean energy,
also named “blue energy”, has the advantages of pollution-free, wide distribution, and
convenient collection. Blue energy harvesting devices based on friction generation tech-
nology rekindle the popularity of the research on the most concerned marine renewable
energy [2]. Deep-sea resources are important strategic resources for the future sustainable
energy, including petroleum, natural gas, and minerals. In order to better use these re-
sources, the core issue that needs to be addressed is the stable operation of the resource
extraction equipment in harsh marine environments, such as low temperature and high
pressure due to the water depth [3]. At present, countries all over the world attach great
importance to the technology research related to deep sea energy exploitation, for example,
deep-sea mining devices, oil drilling platforms, submersible equipment, etc., as well as
the special materials used in these deep-sea engineering [4]. In case of carrying out the
exploration of marine resources, underwater acquisition and delivery systems for mining
units and drilling platforms, as well as marine submersibles, present many new challenges
to the operating conditions and functional requirements of exploration equipment [5,6].
For example, the superposition of extremely high seawater pressure and the structural
stress of equipment itself, resulting in the horrible working conditions of the equipment.
As another example, the deficient oxygen in abyssal conditions has a significant effect
on the surface passivation of the material, accelerating the corrosion, or increasing the
cracking tendency [7]. The adaptability of materials to the deep-water environment is
an important foundation to ensure the stable operation of marine exploration equipment.
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Therefore, theoretical and practical research on deep-sea materials occupies an important
position in the field of deep-sea resource exploration [8]. Smart materials are the fourth
generation of materials after natural materials, synthetic polymer materials, and artificially
designed materials. They have a self-executing ability to sense, evaluate and respond to
external stimuli and can generate electricity by converting the kinetic energy [9]. From the
perspective of global environment protection and sustainable development, exploring the
evolution and application of deep-sea materials is important to alleviate the energy crisis
and achieve carbon neutrality [10].

This article reviews the existing research results and limitations of marine composites
and equipment or devices used for resources extraction. The rest of the review article is
organized as: Section 2 summarizes the current research on the performance prediction,
optimization design and fabrication processes of deep-sea composites, including both
traditional and artificial intelligence methods, and the defects of existing methods are
pointed out. By summarizing the advanced research results in the field of composite
materials, the trend toward self-diagnosis and self-healing is proposed. Section 3 introduces
two common types of deep-sea resources extraction, namely deep-sea underwater vehicle
and deep-sea engineering (e.g., oil rig). The high demand for electrical energy supply of
both the working process of deep-sea underwater vehicle and the monitoring equipment
used for safety observation of engineering are pointed out, respectively. Thus, we put
forward the future trend of developing deep-sea composites in the direction of self-powered
energy. Based on the existing research and the demand for new composite materials in
marine environment, we propose the concept of “deep-sea smart composite materials” in
Section 4. We firstly present the functions of smart materials. Then, we introduce their
concepts and roles of “self-diagnosis, self-healing, and self-powered”, respectively, and
summarize existing research results. The scheme of smart composite materials is shown
in Figure 1. Section 5 focuses on the research obstacles and trends of deep-sea smart
composites. We present the challenges for self-diagnosis, self-healing, and self-powered
materials, respectively, and point out the corresponding possible solutions. Then, based
on the advanced properties and research challenges of these materials, it is proposed to
progress more mature and advanced composites in conjunction with the development of
artificial intelligence techniques, so as to apply them to individual components, integral
equipment, and engineered structures in marine environment.
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2. Deep-Sea Composite Materials

The primary demand for deep-sea structural materials is compressive resistance.
There are three types of materials commonly used in deep-sea environment, namely, high-
performance steels, alloys, and composites. Particularly, composites are the most widely
used and promising materials due to their excellent compressive and corrosion resistance,
water tightness, lightweight, and biological adhesion prevention [11]. High-performance
steel has the advantages of high load-bearing capacity, easy processing, low cost, good
fatigue strength, and energy absorption, but require precise control in their welding process.
Alloy materials mainly include titanium, nickel, aluminum, and copper–nickel alloys, with
low density, high strength, and corrosion resistance, but their surface corrosion-resistant
passivation films are prone to corrosion cracking and environmental pollution under
deep-sea high-pressure and low-density conditions [12,13]. The most commonly used
composites are polymer and resin-based fiber-reinforced materials. The resin includes
thermoplastic and thermosetting resin, and the reinforced fiber has carbon and glass fiber.
Carbon fiber weights five times as much as glass fiber; however, carbon fiber owes high
tensile strength and elastic modulus due to its lightweight. Other materials, such as high-
strength ceramics, solid buoyancy materials, and protective coatings are commonly used
for deep-sea exploitation as well [14,15].

2.1. A Brief Introduction of Composite Materials

Composite materials are a type of material that consists of a polymeric or metallic
material, or a ceramic material as a matrix and a fiber or granular material as a reinforce-
ment. Composite materials have many advantages for the use of deep-sea materials, such
as lightweight, high strength, corrosion resistance and moisture resistance, and favorable
fatigue performance [16]. The most commonly used matrices in marine environments are
polymer and resin-based, while the reinforcements are fibers. The development of polymer-
based fiber-reinforced composites is nearly maturity [17]. Due to the specific requirements
for lightweight and corrosion resistance of materials in deep-sea, fiber-reinforced compos-
ites have been widely developed and applied for civil/military ships, offshore oil and
gas extraction, and wind turbines [18]. The composition, structure and performance of
composite materials are increasingly complicated due to the application requirements of
different scenarios. The traditional models based on experimental observation, theoretical
modeling and numerical simulation have encountered new scientific problems and techni-
cal bottlenecks in the design, analysis, and fabrication of deep-sea composite materials [19].
Insufficient experimental observations, lack of theoretical models, limited numerical analy-
sis, and difficulties in result validation have restricted the future engineering applications
of deep-sea composites to some extent [20]. The prediction, design, and fabrication of
composites play a crucial role on their mechanical performance and application fields.

Advances in simulation models and practical applications are needed to move from
the understanding of basic material properties to the development of quantitative meth-
ods that can interpret and predict experimental results [21]. In order to achieve accurate
validation of composite simulations, computing systems should combine new theories
and innovative applications that utilize powerful computational methods and infrastruc-
tures [22]. Advances in simulation and software will allow researchers to more realistically
verify the complexity of composite materials [23].

2.2. Modern Intelligent Computing Methods in Composite Materials

Artificial intelligence (AI) techniques, such as deep learning (DL) and reinforcement
learning (RL), have promising applications in composites as the analysis of big data and
computational power increase [24]. Firstly, in terms of performance prediction, large num-
bers of data can be obtained through experimental tests and numerical simulations. By
using these data, AI can extract complex relationships among high-dimensional variables
and establish fast parametric and performance response [25]. Nosengo et al. [26] argued
that candidate materials with typical desired properties can be quickly surfaced through
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computer modeling and machine learning. The amount of keyword search data on AI+
new materials are exploding. In addition, there is an urgent need to develop automated
tools for processing and analyzing data. Secondly, there is no need to rely on experience or
inspired intuition in optimal design. After setting an appropriate objective function, design
strategies can be automatically updated for global optimization or exact inverse design [27].
Zhao et al. [28] proposed a material design system supported by AI and driven by data
and introduced new material discovery and design method based on big data combined
with AI and ML algorithms. This material system is designed for functional materials and
covers semiconductor materials, dielectric materials, and metallic materials. Generative
adversarial networks (GAN) have been successfully applied to inverse design, and deep
reinforcement learning (DRL) has also emerged in optimal design [29,30]. Finally, in terms
of fabrication processes, AI techniques will rapidly investigate the effects of various manu-
facturing parameters on the mechanical properties of composites and apply new techniques
to large and complex structures through improved fabrication processes [31]. To a certain
extent, these methods can reduce limitations of the dataset under a reasonable environment.
It is expected that these methods can lead to the development of material optimization
design models integrated with mechanical principles and the design of composite materials
with various excellent properties [32]. Here, as shown in Table 1, the above three aspects of
deep-sea composites are briefly reviewed in order to summarize the existent problems and
report future trends of deep-sea composite materials and structures.

Table 1. Summary for the recent research outcomes by means of composite materials, studied
phenomena and corresponding methods.

Ref. Application Studied Phenomena Method

[33] Composites Topology of base materials, toughness, strength Finite element method (FEM), Linear,
Convolutional neural networks (CNN)

[34] Composites Topology of base materials, stiffness FEM, CNN

[35] Hierarchical composites Topology of unit cells, toughness, strength FEM, CNN

[36] Sphere, unsteady Stokes equations Failure analysis, experimental testing parameters Tensile test, Acoustic Emission, K-means (K-M)

[37] Bi-directional woven fibers Failure analysis, impact damage Thermography, Artificial neural network (ANN),
FEM simulations

[38] Composite beams, plates, and shells Design, optimization, and discovery Machine learning (ML), Experimental, FEM

[39] Laminated composite plates Buckling resistance, stiffness, and strength Genetic algorithm (GA), ANN, Simulated
annealing (SA), Ant colony optimization (ACO)

[40] Composite structures
(functionally graded)

Stress distribution, critical buckling load,
fundamental frequency GA, Particle swarm optimization (PSO), ANN

[41] Composites plates Smart manufacturing Deep learning (DL)

[42] Composites Materials design ML

[43] Composites tubes Materials, processing, and structures engineering DL, ML

[44] Inorganic oxide, electrolyte, and
metallic materials Materials discovery and design ML, Experimental

[45] Composites Design, optimization, properties prediction and
discovery of materials ML

[46] Ti-2Al-9.2Mo-2Fe beta titanium alloy Failure analysis, delamination Ultrasonic, K-nearest neighbor (KNN), Decision
tree (DT)

[47] Lightweight foamed concrete Experimental data, Damage mechanism analysis Tensile test, Acoustic emission, Information
coefficient (IC), KNN

[48] Composite laminates Experimental data, Design of
fatigue-resistant composite

Hybrid algorithm, including GA and general
phase-stepping algorithm (GPSA)

[49] Glass fiber/matrix
volume composites Prediction of glass fiber/matrix volume fraction Vibration-based test, ANN

[50] Ferro cement composite structures Damage mechanism analysis Buckling test, Acoustic emission, K-M,
Fuzzy c-means

[51] Fiberglass-reinforced
polyester composites

Experimental testing parameters, Prediction of
fatigue lifecycles

Extreme learning machine (ELM), General
regression neural network (GRNN)

[52] Composite laminates Experimental data, Buckling optimization Hybrid algorithm, including GA, and general
phase-stepping algorithm (GPSA)

[53] Cylindrical shells Buckling optimization ANN, FEM simulations
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Table 1. Cont.

Ref. Application Studied Phenomena Method

[54] Composite and sandwich plates Construction of building trades directory,
Experimental data GA, ANN

[55] 3D woven composites Multi-scale analysis and optimization GA

[56] Composite stiffened panels Mechanical and hydrothermal loads FEM simulations, GA, ANN

[57] Polymer composites Temperature control of microwave curing process CNN, Experiment

[58] Laminate stacking Optimization DT

[59] Composite textiles Optimization of manufacturing parameters and
draping process ANN, FEM simulations

[60] Carbon Fiber-reinforced Plastics Automated fiber placement processes Levenberg–Marquarelt (LM), Experiment

2.3. Performance Prediction

Traditional prediction methods for composite materials have many problems, such as
the lack of theoretical models, incomplete numerical analysis, and difficulty in validating
results, which seriously limit the rapid development of future applications of deep-sea
composites [61]. Due to the complex and unique micro/nano-structural properties of
deep-sea composites, three aspects of material, structure, and process should be considered
in the design, which helps to achieve the best performance [62]. The prediction scheme
of deep-sea composites, whether using FEM or other methods, can be summarized as
follows. At first, the characteristic parameters of the material are needed to evaluate the
material performance. Based on this, intelligent algorithms can be employed to update
these parameters. Then, iterative processes are conducted until the properties cannot be
improved [63].

AI-enabled methods are directly data-driven, eliminating the need for pre-built com-
plex physical models or empirical parameters and transforming performance prediction
from a traditional cause-and-effect relationships to an artificially intelligent variable mecha-
nism [64]. The use of AI approaches to predict macroscopic mechanical properties based
on microstructure images and design parameters can extract properties accurately and
achieve good results in multi-scale mechanical prediction of composite materials [65,66], as
shown in Figure 2b,c. In Figure 2a, Yang et al. [67] used 3D microstructures as the input,
and the effective stiffness obtained from the finite element calculation is used as the output
to train CNN model, and established the effective internal relationship between them. The
CNN improved the prediction results by 54% accuracy compared with the conventional
method. Ahmad et al. [68] proposed an AI-based gene expression programming approach
to model the properties of bio-composites. A mathematical model of density, compressive
strength, and thermal conductivity of bio-composites was proposed, as shown in Figure 2d,
presenting a high degree of generalizability and predictability. Artificial intelligence al-
gorithms still have to overcome the following issues in predicting the performance of
deep-sea composites: (i) constructing sufficient experimental and numerical simulation
databases, (ii) extracting key characteristic parameters to reduce the computational costs,
(iii) quantifying the uncertainties and effects of parameters in the designed structure, (iv) in-
troducing mechanical models and physical constraints in the AI-enabled prediction process,
(v) implementing mechanical theory to the guidance of AI methods [69,70].

2.4. Optimization Design

The design of composite materials requires the preparation of materials with well-
defined target properties based on summarized experimental laws and generalized sci-
entific principles. Compared with an isotropic and homogeneous single materials, the
mechanical properties and design requirements of composites are more complex, and
empirical design methods are currently dominant [71,72]. Traditional design paradigm is
trial-and-error, which usually relies on extensive experiments. This method requires lots of
manpower, time, and resources through repeated experiments, while the final optimized
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design may not actually be the optimal one [73]. Hence, computer science is currently
helping to design composite materials.
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The application of AI to design composite materials can effectively reduce the design
cost and time [74]. Nowadays, with the maturity of numerical simulation technology
and the continuous development of AI, it has become a reality to use computers for
simulation experiments to explore more design options instead of research experiments,
which provides an effective way and a new idea for accurate and efficient optimal de-
sign [75]. Herein, two antipodal approaches to material design can be used: a goal-oriented
forward-optimized design and a demands-oriented reverse-optimized design, as shown
in Figure 3a,b [76,77]. For example, as shown in Figure 3c, Qian et al. [78] developed an
efficient artificial neural network-based inverse design method for designing architectural
composites with novel properties. By employing adaptive learning and optimization
strategies, the design space can be efficiently explored, thereby significantly reducing
the amount of labeled training data required. As shown in Figure 3d, Chen and Gu [79]
constructed an inverse design neural network to optimize the microstructure design of
composites, containing two artificial neural networks. One can be trained with data to
predict the performance; the other will use the weight matrix generated by the prediction
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network and output the optimal design solution instead of updating the weight matrix in
the back-propagation stage.
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using backpropagation and active learning [76]. Copyright 2020 Elsevier. (b) Design of architectured
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Existing studies have shown that the use of AI-supported methods is an effective way
to seek the optimal design path, depending on the influence of different micro/nano-scale
parameters. However, the core of an intelligent computational approach lies in effective
creation of material property datasets at an early stage [80,81]. Due to the complex multi-
scale internal characteristics of deep-sea composites, a wide range of design parameters can
be selected. Therefore, it remains a challenge to eliminate redundant features, find the most
relevant optimal design parameters, and accurately quantify the uncertainties of design
models to achieve an efficient optimization [82].

2.5. Fabrication Processes

In practical applications, internal defects will significantly affect the mechanical prop-
erties of materials. During the manufacturing process, the use of sensors to detect their
condition is beneficial to adjust relevant parameters and reduce damages of materials, so
as to obtain expected mechanical properties [83]. During the molding process of deep-sea
composites, appropriate parameters must be selected to evaluate the preferred material
properties. Traditionally, the selection of molding parameters has been focused on the
matrix; however, with industrialization, automated fiber placement (AFP), an advanced
automated forming technique, is widely used to manufacture composites [84,85]. AFP can
efficiently perform automated placement of complex curved surfaces with large curvature.
Nevertheless, several factors can contribute to certain defects in the AFP process, such as
lay-up speed and path, temperature, fiber tension, and so on. By introducing AI into AFP,
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defects in the forming processes can be found autonomously and fiber lay-up paths can be
intelligently planned to further improve forming accuracy and efficiency [86]. For example,
as shown in Figure 4a, Brasington et al. [85] proposed a novel approach for a closed-loop
AFP circle, where the entire process has been composed of several isolated pillars: design,
process planning, manufacturing, and inspection. Vijayachandran et al. [87] combined
neural networks with genetic algorithm to optimize the flexural properties of composites
(see Figure 4b). Sacco et al. [88] utilized full CNN and Marching Squares algorithm to
drive robotic arms for repairing defects in composites, realizing the combination of AI and
precision robotic system, as shown in Figure 4c.
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Composite material processing has always been a problem. For example, precision
machining, such as cutting and drilling, is prone to cause material damages, such as
delamination, tearing and ablation, as well as severe tool wear. By introducing AI into
deep-sea composites processing, thermal and mechanical problems, as well as processing
parameters can be modeled and explored. In addition, real-time condition of tools and
work pieces can be monitored and analyzed using AI-enabled methods to achieve dynamic
sensing, judgement, and optimization [89]. Future developments will focus on studying
the influence of various manufacturing parameters on composites properties, improving
forming and processing techniques, and even cooperating with precision robotic systems
to produce large complex composites structures [90].

2.6. Summary

In this section, we summarized the advanced research results on the performance pre-
diction, optimization design and fabrication processes of deep-sea composites. The research
methods for these three areas are divided into traditional methods and AI-supported meth-
ods. The trend of deep-sea composites materials toward self-diagnosis and self-healing is
proposed based on deficiency of existing studies.
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3. Composites in Deep-Sea Resources Exploration

There are usually two ways to explore deep-sea resources: one is to use deep-sea
exploration equipment to obtain real-time data from designated areas of the ocean or
seafloor by means of sensing or sampling. The second one is to construct large engineering
structures, such as submarine space stations and offshore drilling platforms, to exploit
deep-sea resources. Existing deep-sea exploration equipment includes three categories [91],
namely, (i) deep-sea underwater vehicle (DUV) can carry varieties of electronic equipment,
mechanical devices, and specialized personnel to reach all sorts of depth and environments
quickly and accurately; (ii) sensing and detection technologies, including acoustic, optical,
electromagnetic, and thermal sensing, are widely used in deep-sea data acquisition, navi-
gation positioning, and target detection; (iii) sampling and detection techniques, such as
biological sampling, seawater sampling, and core sampling [92,93]. Among them, the DUV
technology is the main method of deep-sea exploration. However, due to the characteristics
of poor visibility, high water pressure and complex topography of the marine environment,
the development and application of DUV has always been the focus of scholars’ attention.
Deep-sea exploration equipment needs long-term stable power supply during the working
process. Similarly, engineering structures require real-time safety observation by using
sensors and other monitoring devices in the course of their working process. These devices
also need a long-term stable electricity in deep-sea environments [94,95]. Therefore, the
study of abyssal self-powered materials is of great importance to solve these problems.

3.1. Two Applications of Composites in Exploration

Marine environments contain vast biological, energy, and metal resources, and DUV
plays an irreplaceable role in the exploration of deep-sea resources. DUV includes three
categories: human occupied vehicle (HOV), unmanned underwater vehicle (UUV), and
other ocean survey equipment, such as deep-sea underwater gliders and towed mapping
systems, etc. Among them, UUV, also known as underwater robot, is divided into remotely
operated vehicle (ROV) and autonomous underwater vehicle (AUV) according to whether
there is cable connection between the unmanned submersible and mother ship [96]. Cable
controlled ROV can be divided into different types, such as floating, towed, crawling, and
attached types, based upon its different movement modes. Non-cable controlled AUV can
be categorized into pre-programming, monitoring type, and completely intelligent type
from its intelligence level. With the development of UUV technology, some new UUVs
have emerged in recent years, such as autonomous and remotely-operated vehicles (ARVs),
which are a new type of UUV that combines some characteristics of ROV and AUV, with
fiber optics for communication and power supply, and can be used as AUV without fiber
optics, and has ROV function with fiber optics. In addition, a deep-sea exploration system
also includes underwater glider, buoy automatic monitoring system, sonar, etc. [97].

Another method to exploit marine resources is to construct large deep-sea engineering.
Structural health monitoring for these structures needs a large number of underwater
navigation devices and buoys, such as underwater glider, deep-sea monitoring devices
(DMDs), observation ROV, etc. It can provide real-time and accurate information for deep-
sea resources exploration, management, and scientific research [98]. Currently, the power
supply for DMDs mainly relies on batteries. In this review, the devices and equipment used
for deep-sea SHM are collectively referred to as DMDs, which means no distinction is made
here between sensing devices and detection devices [99,100]. Widely distributed DMDs
face severe power supply challenges on account of the complex deep-sea environment
and limited battery capacity. Due to the difficulties of fuel replenishment, exhaust gas
emission and pressure bearing, DMDs put higher demands on power energy. Table 2 lists
the state-of-the-art DUVs and DMDs with their materials composition, exploitation or
sensing principles, and energy power supply.



Materials 2022, 15, 6469 10 of 22

Table 2. State-of-the-art DUVs and DMDs, and the materials, working principles, power supply
categories.

DMD Ref. Major Material Principles Power Supply

AUV [101] Foaming material outside Marine salvage and submarine
construction operations

2000 W, rechargeable
lithium-ion batteries

Pressure
sensor [102] Composite materials Measuring the pressure level

and the water temperature. 0.7 W

Sonar [103] Steel, aluminum, titanium,
composite, ceramic

Calculating echoes off the
ocean bottom and floor

Average: 17 W; Max: 42 W,
Silver-zinc, lead-acid, gel,

alkaline lithium,
nickel-cadmium batteries

Temperature
sensor [104] Composite materials

Being mounted on Aanderaa
Recording Instruments

top-end plate

0.7 W; based on
thermistor-bridge

ROV [105] Titanium alloy, glass
fiber-reinforced composite

Aquaculture, underwater
detection, physical and

image sampling
>2000 W

Buoy [106] Polyethylene float. SS316
deployment tube

Plug-n-play, depending on
sensor selections at time

of purchase
27 W

Wave
recorder [107] Composite materials

Being sampled and
temperature compensated by

an advanced Digital
Signal Processor

0.7 W; based on a silicon
piezoresistive pressure sensor

Conductive
sensor [108] Composite materials Being mounted in a String

System node 1.4 W; the inductive principle

pH sensor [109] Composite materials
Ocean acidification, coral reef

physiology and sensitivity,
near-shore biological research

0.4 W (max); batteries, 5.4 kg
(in air), 0.1 kg (in water)

Underwater
glider [110] Titanium alloy, glass

fiber-reinforced composite

Trailing a 10 cm long
cylindrical antenna mounted

on a 1 m stalk behind the main
vehicle body

6.5 W; 81 D Lithium cells in
2 packs, Energy 10 MJ, Mass

9.4 kg

Chlorophyll [111] Xenoy, Lexan, Bronze, Titan,
Edelstahl 316

Kor Interface Software,
Bluetooth, Datenkabel, USB 0.24 W

Oxygen
sensor [112] Composite materials

based on the ability of selected
substances to act as dynamic

fluorescence quenchers
1.4 W

Nitrate [113] Xenoy, Lexan, titanium,
316 stainless steel

KorEXO Software, RS-485,
Mod Bus, USB, SDI-12 0.24 W

Glider
payload [114] T-C Duct, pressure-protected

thermistor

Conductivity, Temperature,
Pressure, and up to seven

auxiliary sensors

0.175 W; internal alkaline
batteries (can be

powered externally)

Turbidity
sensor [115] Composite materials RS-422, Simple Single Pair,

2400 Baud 0.12 W

Ultrasonic
gauge [116] Sound velocities between 1000

and 9995 m/s
CygLink, Cygnus Topside

Repeater 4.5 W, 550 g (19.4 oz)

3.2. Power Energy Sources for DUVs and DMDs

Electrical power supply in deep-sea environments should not only overcome the
difficulties of high pressure, low temperature, and corrosion resistance, but also achieve the
goals of high stability, controllability, and capacity and maintain low cost [117]. The current
power energy sources for marine exploration mainly include batteries, such as lead-acid,
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silver-zinc, and nuclear energy, ocean thermal energy, as well as diesel fuel. Among them,
the silver-zinc battery is commonly used as a power source with the advantages of high
specific power and energy, safety, and stability. However, it also has the shortcomings of
limited recharge times, short life span, and extremely high cost [118]. Lithium battery is
the best comprehensive power energy source with the advantages of high voltage, strong
capacity, long life, and fast charging. Large military submarines are usually powered by
small nuclear energy units or closed-cycle diesel engines. Nuclear energy is advantageous
on unlimited endurance, high safety, and long continuous working time [119]. However, the
complexity of marine environments, limited battery capacity, and unsolved bio-attachment
issues prevent large-scale deployment of DUVs and DMDs.

Blue energy is a clean, economical, and sustainable resource that can be converted
from the ocean kinetic energy. There are two sources of blue energy, namely ocean currents
and ocean waves. The kinetic energy is beneficial for powering distributed DMDs and
small DUVs due to its availability and repeatability [120,121]. Considering the low power
consumption of most DMDs, blue energy harvesting devices are expected to provide
long-term efficient power supply. Currently, there are several advanced energy harvesting
techniques to power marine exploration vehicles and monitoring devices [122,123]. Existing
research and applications have demonstrated advances in small-scale energy harvesting
and self-powered sensing devices, and can further improve ocean energy and ecological
resource utilization to an unprecedented level.

Energy harvesting devices that are deployed on floating bodies or along cables can
convert wave, solar, wind, or other renewable energy sources into usable electricity. For
distributed sensing devices that require low power consumption and high repeatability,
energy harvesting may be the most efficient approach for power supply [124]. Blue energy
is expected to replace conventional batteries and seabed cables for future deep-sea power
transmission. The converted energy can fully meet the needs of small and low-power
electrical equipment and has the potential to be a stable long-term power source for deep-
sea monitoring equipment. Blue energy resources are typically generated in areas of
strong waves and currents; however, under realistic conditions, the interaction between
waves, currents, winds, and temperature may reduce the efficiency of the associated energy
conversion [125]. Given the instability and specificity of waves and currents, blue energy is
still in its infancy and are expected to grow rapidly in the next decade.

3.3. Summary

This section introduces two common ways of deep-sea resources exploration, and
focuses on the problem of supplying electrical energy to the equipment required for the
extraction process. Traditional research approach lies in improving the energy density of
the battery. Combined with the application of energy harvesting devices in ocean energy
collection, blue energy is a feasible power supply solution. We illustrate the principles of
harvesting blue energy from the ocean and claim that the problem of unstable wave and
current energy harvesting still needs to be solved.

4. Deep-Sea Smart Composite Materials

In the process of deep-sea resources extraction by DUVs and marine engineering,
cracks and fractures or other types of damage can occur due to the fatigue and aging of
materials in harsh abyssal environments. With the expansion of cracks and fractures, the
composite material splits could lead to the failure of composite structures. Traditional
damage detection methods are limited by outdated equipment, low intelligence and poor
timeliness, making it difficult to directly detect defects [126]. To avoid irreversible disasters
caused by fatigue and aging, and to reduce manpower and financial costs required for
periodic inspection, it is necessary to adopt deep-sea smart composites to meet the existing
needs [127].
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4.1. Main Function of Smart Materials

Two cores of smart materials are multifunctional composition and bionic design.
Based on four mechanisms of sensing, feedback, response, and information recognition and
accumulation, there are three main research directions of smart materials, including self-
diagnosis, self-healing and self-powered [128]. For sensing, smart materials can perceive
various changes in external and material self-conditions, such as load, stress, vibration,
heat, light, etc. Feedback can be achieved by comparing the input and output information
of the sensing system and providing the comparison results to the control system. Response
can also be initiated by acting in a timely and dynamic manner based on the external and
materials self-conditions. The sensing system performs identification by accumulating
various information [129]. Based on prior mechanisms, self-diagnostic composites can be
developed to solve problems, such as system failures and misjudgments, by analyzing
and comparing system conditions with its past conditions [130]. Self-healing function is
achieved by repairing damages through regenerative mechanisms, such as self-propagation,
self-growth, and in situ reorganization. In terms of self-powered capability, on the one
hand, the output of electrical signals can be used as active sensing; on the other hand,
energy storage units and energy management modules can be integrated to obtain a sensing
system that allows continuous real-time monitoring of state information without external
power supply [131].

4.2. Self-Diagnosis Deep-Sea Composites

Existing non-destructive testing (NDT) methods use sensing devices, such as X-ray,
fiber optic, and acoustic emission sensors, but almost all conventional health monitors
require knowledge of the damage area in advance, which is almost impossible for deep-
sea environments [132,133]. However, self-diagnostic composites can sense resistance
changes for overall real-time monitoring without the need for additional sensors. There
are two methods to realize self-diagnostic composites. One is to implant sensors into
the matrix of composites so as to collect damage signals and then assess the material or
structural conditions. The other enables self-diagnosis without the need for additional
sensors. For the former, the principle is to place conductive materials such as conductive
fiber/nanoparticles, piezoelectric ceramic elements, and optical fibers in the matrix, thus
forming a detection network that can conduct electricity. Then, the collected electrical
or optical signals are analyzed to detect damage area and extent, thus enabling real-time
monitoring of deep-sea composite materials and structures [134]. For the latter, large
numbers of experiments have shown that damage detection can be effectively performed by
incorporating conductive materials, such as carbon fiber-reinforced polymer (CFRP) in the
matrix, which will contribute to the corresponding response on the resistance brought about
by environmental changes, as shown in Figure 5a,b [135,136]. For glass fiber-reinforced
polymer (GFRP) and other non-conductive materials, it is unlikely that changes in resistance
can be detected directly; however, the addition of conductive nanofillers is a favorable
way to build up the conductive network of the material by reducing the contact resistance
between fibers, as shown in Figure 5c,d [137,138].

4.3. Self-Healing Deep-Sea Composites

Self-healing composites have covered many fields, such as concrete, polymers, ce-
ramics, metals, and so on. The damage patterns targeted by self-healing process include
corrosion, fatigue, and other failure modes. Research on self-healing composites has mainly
involved micro/macro structural design, fabrication system construction, structural perfor-
mance assessment, and material mechanism prediction [139]. Self-healing materials can be
classified into polymer-based, metal-based, and inorganic non-metallic-based types. The
polymer-based type has intrinsic and extrinsic stimulation mechanisms. Metal-based bases
focus mainly on engineered concrete and ceramics. In current research, polymer-based
and metal-based fiber-reinforced composites have been used for deep-sea structures, with
polymer-based being more established [140]. Due to the high brittleness and poor wear
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resistance of polymers, homogenous or heterogeneous cracking of material macromolecular
chains can occur, generating microcracks that then lead to fractures and other failures [141].
Based on the mechanisms of action, polymer-based self-healing fiber-reinforced composites
can be classified as intrinsic and extrinsic type. Intrinsic polymers use reversible reactions
or chain segment movements of polymer molecules under external excitation to reorganize
internal microstructure and achieve self-healing of micro-cracks. Such polymer-based
self-healing fiber-reinforced composites can realize self-healing function for the damage
situations, such as acid and alkaline environments, light, heat, and magnetic fields [142],
but their applications are limited because the self-healing process cannot proceed sponta-
neously. Figure 6a,b illustrate that microcapsules and hollow fiber tubes of sealing repair
agent are embedded in a polymer matrix, whose rupture can be triggered by micro-crack
propagation, as a result, causing the release and curing of the repair agent, as well as
the self-healing of damages [143,144]. Compared to the intrinsic type, the extrinsic type
does not change the original chemical structure of polymers, and has better environmental
resistance, wider range of use, and more diverse preparation systems and process schemes,
as shown in Figure 6c,d [145,146]. However, they are rarely applied under practical condi-
tions due to their difficulty in processing, long-term storage, and composition uniformity
control. Meanwhile, micro-capsulated particles dispersed in a polymer matrix can reduce
the mechanical properties of materials due to interfacial cleanliness and strength.
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4.4. Self-Powered Deep-Sea Composites

Nanogenerators are new devices for converting and harvesting energy from natural en-
vironments. There are three types of nanogenerators, including piezoelectric nanogenerator,
pyroelectric nanogenerator, and triboelectric nanogenerator (TENG) [147,148]. TENG is the
most widely used and promising technology for applications of deep-sea composites, which
utilizes the coupling effect of triboelectric and electrostatic induction between two materi-
als with different electron gain and loss abilities. It can convert irregular low-frequency
mechanical energy into usable electrical energy in human living environment. TENG has
four basic working patterns, including vertical contact separation, horizontal sliding, single
electrode, and independent friction layer [80,149]. Given its unique mechanism, TENG
offers the advantages of superior output performance, unprecedented robustness, and
universal applicability. Its applications cover biomedical and healthcare, chemical and envi-
ronmental monitoring, smart transportation, smart cities, and energy harvesting from ocean
waves [150,151]. At the same time, TENG offers an innovative way of harvesting large-scale
blue energy from the ocean. For example, Figure 7a demonstrates that Liang et al. [152]
proposed a spring-assisted multi-layer spherical blue energy harvesting device, based on
the characteristics of TENG to collect low-frequency vibration energy, which can obtain
wave energy from all directions. They also set a power management module to control the
energy output. However, single energy harvesting technology cannot meet the demands
of high-power deep-sea equipment. In order to achieve more efficient energy collection.
As shown in Figure 7b, Wang et al. [153] developed a hybrid system, in which TENG
complemented the functionality with an optimized internal topology. However, in the
field of composites, current research focuses on ionic polymer-metal composites, which
are characterized by lightweight, simple fabrication, low cost, good bending, and braking
properties, as well as fast response, making them become an ideal choice for low-frequency
energy acquisition in deep-sea. Figure 7c show that Wen et al. [154] designed and fabri-
cated a flower-like TENG for kinetic energy harvesting with six degrees of freedom, which
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primarily collects kinetic energy with two degrees of freedom for horizontal motion and
with three degrees of freedom for rotational motion.
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4.5. Summary

The deep-sea smart composite materials proposed in this paper have three bionic
functions “self-diagnosis, self-healing and self-powered”. The first two functions mainly
aim at deep-sea composite materials, which can be used to construct deep-sea smart com-
posite engineering and equipment to achieve the goal of self-diagnosis and self-healing.
Self-powered property can be applied to provide continuous and stable electric energy for
deep-sea exploration vehicles or monitoring devices. In summary, the deep-sea smart com-
posite materials offer a new idea for deep-sea resources exploitation and scientific research.

5. Challenges and Prospects
5.1. Challenges

Since the self-diagnosis of marine composites is performed by installing conductive
fibers or nanoparticles, piezoelectric ceramic elements, and optical fibers inside the matrix,
a self-diagnostic network is formed. Then, real-time monitoring of composite components
is realized by analyzing defect areas and damage degrees. Self-diagnostic composites can
improve the safety and reliability of deep-sea exploration engineering and equipment,
but there are disadvantages of complicated manufacturing and high cost, as well as the
need to improve the detection sensitivity and environmental tolerance of composites. In
addition, it is required to combine the damage mechanisms with self-diagnostic principles
of composite materials to further optimize the detection schemes, accurately locating defect
areas and determine damage degree.

After a considerable period of development, self-healing technologies still have some
issues, such as high material costs, harsh external incentive conditions, and unclear in situ
self-healing mechanisms. Hence, there is still a long way to go before large-scale engineer-
ing applications [155]. Future research on self-healing materials should mainly focus on the
micro-structure design for typical failure patterns, the construction of new self-healing ma-
terial systems, performance matching, and the evolutionary patterns of damage conditions,
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as well as dynamics and mechanisms of in situ damages self-healing [156]. Furthermore,
we can implement active control and precise regulation of self-healing performance by
further integrating real-time health condition sensing, rapid response and decision making,
and in situ damages self-healing.

To solve the problem of powering deep-sea devices, conventional methods have been
adopted to improve the energy density of batteries. Future research will concentrate
on power enhancement and storage integration of energy harvesting devices [157]. By
integrating energy harvesting and storage devices into a single system, self-charging power
system (SCPS) can provide a continuous power supply. However, at present, SCPS is still in
the proof-of-concept stage with hindrances, such as low integrated management efficiency
and energy storage device selection, and research on different SCPS mechanisms is still
ongoing. Nevertheless, the development of SCPS will help to solve problems of unstable
wave and current energy harvesting and ensure long-term stable operation of DUVs and
DMDs [158].

5.2. Prospects

We have summarized the existing research on deep-sea smart composites. The main
advantages of the three bionic properties of marine smart materials are that they enable
lightweight, miniaturized, mature, and stable abyssal exploration equipment. The self-
diagnostic feature can monitor its own safety, and the self-healing characteristics can repair
its own defects, which helps to realize stable operation of the equipment and structures for
a long time in harsh environments. The self-powered feature does not need power supply
units anymore, which will help to further reduce the size of the exploration equipment.

Deep-sea smart composites have a potential future in deep-sea exploration and in-
novative product development [159]. However, these composites are still in their early
stage and have a long way ahead. In addition to overcoming the above-mentioned prob-
lems of bionic properties, the development of more advanced composite manufacturing
processes will further reduce the cost of the equipment and engineering [160]. The most
important issue is to achieve the use of marine bionic composites from labs to a wide range
of practical applications.

In the near future, newer iterations of AI techniques, such as DL, and data mining
by computer scientists will help to further investigate the development and applications
of new smart composites. Experts in the field of composite materials will also combine
these methods to explore more new smart composites in terms of performance prediction,
optimization design, and fabrication processes. Additionally the development of marine
smart composites enables the application from several components, such as propeller
blades and ship hulls, to deep-sea exploration equipment and structural engineering. This
has tremendous potential to extend the service life span of the equipment and reduce main-
tenance costs. Additionally, it is of great significance to help mankind better understand
the deep-sea, so as to explore and develop resources in the extreme conditions.

6. Conclusions

Deep-sea composites play a significant role in deep-sea exploration technology. How-
ever, the development of existing deep-sea composites faces opportunities and challenges
in three aspects, mainly in performance prediction, optimization design, and fabrication
processes. Therefore, under the harsh deep-sea environment, it is of great importance to
achieve self-diagnosis and self-healing of defects in the material itself. Corresponding to
the specific application of the material can be divided into two categories, DUV and DMD.
DUV is the main way of deep-sea exploration, DMD is used for real-time safety monitoring
of deep-sea structures to ensure the safety and stability of the resource extraction process.
In marine environment, both DUVs and DMDs require a long-term stable power supply.

To address these severe challenges of deep-sea exploration technology in terms of
deep-sea composites, resources exploration vehicles, and monitoring devices, this article
provides a perspective overview of deep-sea smart composite materials, a type of material
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with three bionic functions: self-diagnosis, self-healing, and self-powered. Deep-sea smart
composites are important for risk assessment and prevention of DMDs and DUVs, as well
as power supply, which has important implications for abyssal resources extraction. The
self-diagnostic composites can sense resistance changes and allow for overall real-time
monitoring without additional sensors. Self-healing composites can spontaneously repair in
situ microcracks that cannot be detected in the early stages of the composite. Self-powered
composites can collect energy from ocean currents and waves, and the collected blue energy
can provide continuous and stable power for DUVs and DMDs. Finally, we summarize
the research challenges of bionic functions and propose corresponding possible solutions.
Combined with the development of AI techniques, we look forward to the development of
new deep-sea smart composites and the popular application of these materials in marine
equipment and structural engineering.
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