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difficult to treat. Co-deletion of the SUZ12 gene in addition 
to NF1 further increases the MPNST risk in NF1 micro-
deletion patients. Here, we summarise current knowledge 
about genotype–phenotype relationships in NF1 microde-
letion patients and discuss the potential role of the genes 
located within the NF1 microdeletion interval whose hap-
loinsufficiency may contribute to the more severe clinical 
phenotype.

Introduction

Neurofibromatosis type 1 (NF1; MIM#162200) is a tumour 
predisposition syndrome with an incidence at birth of 1 in 
2000–3000 (Crowe et al. 1956; Lammert et al. 2005; Uusi-
talo et al. 2015). The hallmark features of NF1 are café-
au-lait spots (CALS) and the pathognomonic neurofibro-
mas. The majority of NF1 patients are characterised by 
mutations residing within the boundaries of the NF1 gene, 
which spans 287-kilobases (kb) of chromosome 17q11.2 
and comprises 57 constitutive and 3 alternatively spliced 
exons.

Only a few genotype–phenotype correlations in NF1 
have been identified to date. One of these relates to spinal 
neurofibromatosis (SNF) which is characterised by bilateral 
neurofibromas located at all 38 spinal nerve roots. The risk 
of having SNF versus NF1 without spinal neurofibromas, 
or NF1 with neurofibromas affecting only some but not all 
spinal nerve roots, is significantly increased in individu-
als harbouring NF1 missense mutations (Ruggieri et al. 
2015). Furthermore, the recurrent three base-pair in-frame 
deletion, c.2970-2972 delAAT, within exon 17 of the NF1 
gene leads to the loss of a single amino acid (p.Met992del) 
and is associated with a relatively mild NF1 phenotype that 
is characterised by the occurrence of CALS and skinfold 

Abstract The most frequent recurring mutations in neu-
rofibromatosis type 1 (NF1) are large deletions encompass-
ing the NF1 gene and its flanking regions (NF1 microdele-
tions). The majority of these deletions encompass 1.4-Mb 
and are associated with the loss of 14 protein-coding genes 
and four microRNA genes. Patients with germline type-1 
NF1 microdeletions frequently exhibit dysmorphic facial 
features, overgrowth/tall-for-age stature, significant delay 
in cognitive development, large hands and feet, hyperflex-
ibility of joints and muscular hypotonia. Such patients 
also display significantly more cardiovascular anomalies 
as compared with patients without large deletions and 
often exhibit increased numbers of subcutaneous, plexi-
form and spinal neurofibromas as compared with the gen-
eral NF1 population. Further, an extremely high burden of 
internal neurofibromas, characterised by >3000 ml tumour 
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freckling but a lack of externally visible cutaneous or plexi-
form neurofibromas (Upadhyaya et al. 2007). The second 
well-established genotype–phenotype correlation in NF1 
is associated with missense mutations affecting codon 
p.Arg1809. Individuals with these very specific missense 
NF1 mutations exhibit CALS (with or without freckling) 
and Lisch nodules, but no externally visible plexiform 
neurofibromas or cutaneous neurofibromas (Pinna et al. 
2015; Rojnueangnit et al. 2015). Approximately, 25% of 
the individuals with missense mutations affecting codon 
p.Arg1809 have Noonan-like features including pulmo-
nic stenosis and short stature whilst 50% of them exhibit 
developmental delay and/or learning disability (Rojnueang-
nit et al. 2015). However, missense mutations affecting 
codon p.Arg1809 appear to be quite rare, since they were 
observed in only 1.2% of the cohort of 7000 NF1 patients 
with identified mutations. In the same cohort of patients, 
the prevalence of the recurrent one amino acid deletion 
(p.Met992del) was 0.8% (Rojnueangnit et al. 2015).

The third genotype–phenotype relationship evident 
in NF1 is that associated with large NF1 deletions and is 
the topic of this review. An estimated 4.7–11% of all NF1 
patients have large deletions encompassing the entire NF1 
gene and its flanking regions at 17q11.2 (Cnossen et al. 
1997; Rasmussen et al. 1998; Kluwe et al. 2004; Zhang 
et al. 2015). Large deletions of the NF1 gene and its flank-
ing regions (generally termed ‘NF1 microdeletions’) are 
frequently associated with a severe clinical manifestation 
of NF1 as described below.

Altogether, four types of large NF1 deletion (type-1, 2, 
3 and atypical) have been identified that are distinguish-
able in terms of their size and breakpoint location, by the 
number of genes located within the deletion region or by 
the frequency of somatic mosaicism with normal cells not 
harbouring the deletion. Most frequent are the type-1 NF1 

deletions which encompass 1.4-Mb and include 14 protein-
coding genes as well as four microRNA genes (Fig. 1) 
(Dorschner et al. 2000; Jenne et al. 2001; López-Correa 
et al. 2001). Type-1 deletions account for 70–80% of all 
large NF1 deletions and usually occur as germline deletions 
that are present in all cells of the affected patients (Mes-
siaen et al. 2011). Most type-1 NF1 deletions are caused 
by interchromosomal non-allelic homologous recombina-
tion (NAHR) during maternal meiosis (López-Correa et al. 
2000; Steinmann et al. 2008). The NAHR events causing 
type-1 NF1 deletions are mediated by the low-copy repeats, 
NF1-REPa and NF1-REPc. Within these low-copy repeats, 
recurrent breakpoints have been detected within two 
NAHR hotspots, termed paralogous recombination sites 1 
and 2 (Forbes et al. 2004; De Raedt et al. 2006; Bengesser 
et al. 2014; Hillmer et al. 2016).

In contrast to type-1 NF1 deletions, type-2 deletions 
encompass only 1.2-Mb and are associated with hemizygo-
sity for 13 protein-coding genes since the LRRC37B gene 
is absent from the deleted region (Fig. 1). At least 10% of 
large NF1 deletions are type-2 but this is very likely to be 
an underestimate (Messiaen et al. 2011). Type-2 deletions 
are also mediated by NAHR but in contrast to type-1 NF1 
deletions, their breakpoints are located within SUZ12 and 
its highly homologous pseudogene SUZ12P1 which flank 
NF1-REPc and NF1-REPa, respectively (Fig. 1) (Petek 
et al. 2003; Vogt et al. 2012). Type-2 NF1 deletions are fre-
quently of postzygotic origin, mediated by mitotic NAHR, 
and hence are associated with somatic mosaicism of nor-
mal cells lacking the deletion (Kehrer-Sawatzki et al. 2004; 
Steinmann et al. 2007; Roehl et al. 2010, 2012).

Type-3 NF1 deletions are very rare; these 1.0-Mb dele-
tions occur in only 1-4% of all patients with gross NF1 
deletions and are mediated by NAHR between NF1-REPb 
and NF1-REPc leading to hemizygosity for a total of nine 

Fig. 1  Schema of the genomic region at 17q11.2 harbouring the 
NF1 gene and its flanking genes included within the boundary of the 
type-1 NF1 deletion interval encompassing 1.4-Mb (red bar). The 

arrows given subsequent to the symbols of the genes denote their 
transcriptional orientation. SUZ12P1 and LRRC37B-P are non-func-
tional pseudogenes. cen centromeric direction, tel telomeric direction



351Hum Genet (2017) 136:349–376 

1 3

protein-coding genes (Fig. 1) (Bengesser et al. 2010; Pas-
mant et al. 2010; Zickler et al. 2012). As their name sug-
gests, atypical large NF1 deletions do not exhibit recurrent 
breakpoints and are quite heterogeneous in terms of their 
size and the number of genes located within the deleted 
region (Upadhyaya et al. 1996; Cnossen et al. 1997; 
Dorschner et al. 2000; Kehrer-Sawatzki et al. 2003, 2005, 
2008; Venturin et al. 2004a; Gervasini et al. 2005; Man-
tripragada et al. 2006; Pasmant et al. 2008, 2009, 2010; 
Vogt et al. 2014). It has been estimated that 8–10% of all 
large NF1 deletions are atypical (Pasmant et al. 2010; Mes-
siaen et al. 2011). Atypical NF1 deletions may occur as 
germline mutations but can also be of postzygotic origin 
and hence may be associated with somatic mosaicism with 
normal cells (Taylor Tavares et al. 2013; Vogt et al. 2014). 
Atypical NF1 deletions are not only highly heterogeneous 
in terms of their length but also in terms of their underly-
ing mutational mechanisms which may involve aberrant 
DNA double strand break repair and/or replication and 
retrotransposon-mediated mechanisms (Vogt et al. 2014 
and references therein). The architecture of the genomic 
regions flanking the NF1 gene in 17q11.2, characterised 
by low-copy repeats, predisposes to large deletions medi-
ated by various different mutational mechanisms occurring 
in the germline of an unaffected parent or during mitotic 
postzygotic cell divisions.

NF1 microdeletions are important from the clinical 
standpoint because, as noted above, they are often associ-
ated with more severe manifestations of NF1 than those 
noted in patients with intragenic NF1 mutations. One inter-
pretation of this observation is that some of those genes co-
deleted with NF1 exert an influence on the clinical manifes-
tation of the disease in patients with NF1 microdeletions. 
In the following, we shall review current knowledge about 
NF1 microdeletions in terms of potential genotype–pheno-
type relationships and the putative modifier role of genes 
located within the NF1 microdeletion interval.

Genotype–phenotype relationships in patients 

with NF1 microdeletions

The NF1 gene was identified more than 25 years ago 
(Viskochil et al. 1990; Wallace et al. 1990). Genotype–phe-
notype analyses suggested from very early on that patients 
with NF1 microdeletions often exhibit a more severe clini-
cal phenotype than patients with intragenic NF1 mutations; 
the former are frequently characterised by dysmorphic 
facial features and severe developmental delay (Kayes et al. 
1992, 1994; Wu et al. 1995, 1997, 1999; Riva et al. 1996, 
2000; Upadhyaya et al. 1996, 1998; Leppig et al. 1997; 
Tonsgard et al. 1997; Valero et al. 1997; Rasmussen et al. 

1998; Streubel et al. 1999; Dorschner et al. 2000; Kob-
ayashi et al. 2012).

Subsequent follow-up studies confirmed that these dele-
tions frequently lead to severe clinical manifestations of the 
disease including a high tumour load and cardiovascular 
anomalies (Venturin et al. 2004b; Mensink et al. 2006; Pas-
mant et al. 2010; Zhang et al. 2015). Although, as a group, 
NF1 microdeletion patients tend to exhibit a comparatively 
severe form of NF1, some variability of clinical symptoms 
has nevertheless been observed when comparing individu-
als with NF1 microdeletions. These clinical phenotypic dif-
ferences may be influenced by the variable expressivity of 
NF1 characteristic of all NF1 patients, irrespective of the 
type of NF1 gene mutation involved (Sabbagh et al. 2009; 
reviewed by Pasmant et al. 2012). However, a certain pro-
portion of the phenotypic variability exhibited by patients 
with NF1 microdeletions who were investigated in the 
above-mentioned studies may have been due to differences 
in deletion size and breakpoint location which together 
determine the number of genes included within the deletion 
interval.

Somatic mosaicism with cells not harbouring the NF1 
microdeletion in question is likely to have a dispropor-
tionately large impact upon the manifestations of disease 
(Rasmussen et al. 1998; Tinschert et al. 2000; Maertens 
et al. 2007; Kehrer-Sawatzki and Cooper 2008; Roehl et al. 
2012; Kehrer-Sawatzki et al. 2012). This is particularly rel-
evant since some types of NF1 microdeletion, such as the 
type-2 and atypical NF1 deletions, are frequently of postzy-
gotic origin and hence occur as mosaic deletions alongside 
normal cells in the body of an affected patient (Steinmann 
et al. 2007; Vogt et al. 2014). By contrast, type-1 NF1 dele-
tions are only very rarely of postzygotic origin (Messiaen 
et al. 2011). This notwithstanding, in many of the reported 
studies of genotype–phenotype correlations in patients 
with NF1 microdeletions, neither deletion size nor somatic 
mosaicism has been specifically taken into consideration.

To refine the genotype–phenotype analysis of NF1 
microdeletions, Mautner et al. (2010) investigated 29 
NF1 patients with non-mosaic type-1 (1.4-Mb) NF1 dele-
tions. A combination of breakpoint-spanning PCRs and/
or polymorphic marker analysis confirmed that the dele-
tion breakpoints were located within specific regions of 
the NF1-REPs. Thus, all 29 patients studied were hemizy-
gous for the same number of genes at 17q11.2 (Fig. 1). 
The clinical analysis of these 29 patients with type-1 NF1 
microdeletions served to confirm that several clinical 
phenotypic features were relatively frequent in patients 
with NF1 microdeletions but less common (or even not 
identifiable) in the general NF1 population (as may be 
concluded from the studies listed in Table 1). These fea-
tures included facial dysmorphism, overgrowth/tall-for-
age stature, significant delay in cognitive development, 
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Table 1  Frequency of clinical 
symptoms in patients with 
type-1 NF1 microdeletions 
investigated by Mautner et al. 
(2010) and in the general NF1 
population

Clinical features Frequency in patients  
with type-1 NF1  
deletions, (%)

Frequency in the general  
NF1 population (reference), (%)

Facial dysmorphism 90 n.d.

Hypertelorism 86 n.d.

Facial asymmetry 28 8
6

(Friedman and Birch 1997)
(Sbidian et al. 2012)

Coarse face 59 n.d.

Broad neck 31 n.d.

Tall-for-age stature 46 n.d.

Macrocephalya 39 45
29
43
24

(Huson et al. 1988)
(Riccardi 1992)
(North 1993)
(Sbidian et al. 2012)

Large hands and feet 46 n.d.

Pes cavus 17 n.d.

Café-au-lait spots 93 87
95
86
99

(McGaughran et al. 1999)
(Friedman 1999)
(Duong et al. 2011)
(Sbidian et al. 2012)

Axillary and inguinal 
freckling

86 86
89

(Duong et al. 2011)
(Plotkin et al. 2012)

Lisch nodules 93 63
93
50
45

(McGaughran et al. 1999)
(Huson et al. 1988)
(Friedman 1999)
(Sbidian et al. 2012)

Significant delay in cogni-
tive development

48 17 (Klein-Tasman et al. 2014)

General learning difficulties 45 45
47
32
39
31

(North et al. 1995)
(Brewer et al. 1997)b

(Hyman et al. 2006)
(Krab et al. 2008)c

(Plotkin et al. 2012)

IQ < 70 38 8
7

(Ferner et al. 1996)
(Hyman et al. 2005)

Attention deficit hyperactiv-
ity disorder

33 49
38

(Mautner et al. 2002)
(Hyman et al. 2005)

Skeletal anomalies 76 31 (Plotkin et al. 2012)

Scoliosis 43 26
12
10
20
25
28

(Friedman and Birch 1997)
(McGaughran et al. 1999)
(Riccardi 1999a)
(North 2000)
(Duong et al. 2011)
(Plotkin et al. 2012)

Pectus excavatum 31 50
12

(Riccardi 1999b)
(Castle et al. 2003)

Bone cysts 50 1 (Plotkin et al. 2012)

Hyperflexibility of joints 72 n.d.

Excess soft tissue in hands 
and feet

50 n.d.

Congenital heart defects 29 2
1.6–2

(Friedman and Birch 1997)
(Lin et al. 2000)

Epilepsy 7 7
4
13
4

(Huson et al. 1988)
(North 1993)
(Ferner et al. 1996)
(Kulkantrakorn and Geller 

1998)
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scoliosis, bone cysts, large hands and feet with excessive 
soft tissue, hyperflexibility of joints of hands and feet and 
pronounced muscular hypotonia. Further, patients with 
type-1 NF1 microdeletions exhibited a variety of fea-
tures that were markedly more frequent than in the gen-
eral NF1 population including intellectual disability, high 
numbers of subcutaneous and spinal neurofibromas, and 
the occurrence of plexiform neurofibromas (Table 1). An 
increased frequency of optic gliomas was however not 

observed in patients with type-1 NF1 deletions as com-
pared to the general NF1 population. In the studies listed 
in Table 1 that compared the frequency of clinical fea-
tures, NF1 patients were analysed irrespective of the type 
of NF1 mutation they harboured; these patients are there-
fore referred to as the ‘general NF1 population’. Such 
comparisons will tend to err on the conservative side since 
4.7–11% of the individuals in the general NF1 population 
harbour NF1 microdeletions.

Table 1  continued Clinical features Frequency in patients  
with type-1 NF1  
deletions, (%)

Frequency in the general  
NF1 population (reference), (%)

Muscular hypotonia 45 27 (Wessel et al. 2013)

Speech difficulties 48 25
20–55

(North 1999 n.d.)
(Alivuotila et al. 2010)d

Subcutaneous neurofibromas 76 48 (Tucker et al. 2005)

Cutaneous neurofibromas 86 38–44
59
85
76
84

(Friedman and Birch 1997)
(McGaughran et al. 1999)
(Tucker et al. 2005)
(Duong et al. 2011)
(Plotkin et al. 2012)

Plexiform neurofibromas 76 15
44
50
30
54

(McGaughran et al. 1999)
(Waggoner et al. 2000)
(Ferner et al. 2007)
(Duong et al. 2011)
(Plotkin et al. 2012)

Malignant peripheral nerve 
sheath tumours

21 2–5
7

(Ferner and Gutmann 2002)
(Duong et al. 2011)

Spinal neurofibromas 64 30
24

(Tucker et al. 2005)
(Plotkin et al. 2012)

Optic pathway gliomas 19 15
19
14
11
18

(Lewis et al. 1984)
(Listernick et al. 1997)
(Duong et al. 2011)
(Plotkin et al. 2012)
(Millichap 2015; Prada et al. 

2015)

T2 hyperintensities 45 34
77
79
71

(Ferner et al. 1993)
(Itoh et al. 1994)
(Sevick et al. 1992)
(Hyman et al. 2007)

n.d. not determined; these features are either absent or rare in the general NF1 population
a The evaluation criteria in these studies included a definition of macrocephaly as an occipitofron-
tal circumference greater than the 98th centile or two standard deviations above the mean. Despite 
consistent evaluation criteria having been employed, a high degree of variability in terms of the fre-
quency of macrocephaly has been observed
b 39% of the children with NF1 analysed by Brewer et al. (1997) exhibited general learning dis-
abilities whereas an additional 14% exhibited visuospatial-construction deficiencies (specific learning 
disabilities)
c 39% of the children with NF1 investigated by Krab et al. (2008) had general learning disabilities 
whilst an additional 39% had specific learning disabilities
d  Alivuotila et al. (2010) investigated the speech characteristics of 62 NF1 patients (40 adults and 
22 children) and compared them with those observed in 24 control individuals. Patients with NF1 
exhibited deviations in voice quality (35% of the adult NF1 patients and 55% of the children with 
NF1), problems in regulating pitch (53% of the adult NF1 patients and 55% of the children), deviant 
nasality (20% of the adult NF1 patients and 45% of the children) and disfluency (20% of the adult 
NF1 patients and 41% of the children)
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In addition to the previously mentioned clinical fea-
tures, type-1 NF1 microdeletion patients were found to 
have an increased risk of malignant peripheral nerve sheath 
tumours (MPNSTs) (De Raedt et al. 2003; Mautner et al. 
2010) (Table 1). These findings confirmed that patients 
with non-mosaic type-1 NF1 deletions exhibit, as a group, 
a severe form of NF1. However, even within this group of 
patients that are hemizygous for the same number of genes, 
some variability in expression of the clinical symptoms has 
been detected (Mautner et al. 2010). Hence, the phenotype 
associated with NF1 microdeletions is likely to be influ-
enced to a certain degree by the genetic background (e.g. 
the expression level of non-deleted genes), as well as by 
environmental factors.

It should be emphasised that many of the studies that 
have addressed the question of whether or not specific dis-
ease features occur disproportionately more frequently in 
patients with NF1 microdeletions have employed, for the 
purposes of comparative analysis, frequency values for 
these clinical features that were derived from the general 
NF1 population obtained in different studies. More appro-
priate would have been a methodical comparative analysis 
of a large number of age-matched patients with and without 
germline type-1 NF1 deletions investigated by standardised 
analytical tools. Although such comparative analyses have 
been attempted to assess differences in height (Ning et al. 
2016), cognitive capability (Descheemaeker et al. 2004) or 
the frequency of cardiovascular anomalies (Nguyen et al. 
2013), they have not as yet been performed methodically in 
the context of the number of neurofibromas and other NF1 
microdeletion-associated clinical features.

In the following, the clinical features associated with 
type-1 NF1 microdeletions are explored in greater detail.

High number of neurofibromas in patients with NF1 

microdeletions

Several studies have suggested that NF1 microdeletion 
patients frequently exhibit a disproportionately high num-
ber of cutaneous and subcutaneous neurofibromas (Men-
sink et al. 2006 and references therein; Pasmant et al. 
2010). Indeed, the 29 patients with type-1 NF1 microdele-
tions investigated by Mautner et al. (2010) exhibited sig-
nificantly increased numbers of subcutaneous but also 
spinal neurofibromas by comparison with the general NF1 
population as concluded from some of the studies listed 
in Table 1. Additionally, externally visible plexiform neu-
rofibromas are significantly more frequent in patients with 
NF1 microdeletions than in the general NF1 population 
(Table 1; Mautner et al. 2010). Remarkably, 10 of 20 (50%) 
of the adult type-1 NF1 microdeletion patients investigated 
by Mautner et al. (2010) exhibited a very high number of 

cutaneous neurofibromas (N > 1000). Such a high burden 
of cutaneous neurofibromas may also be present in some 
patients with intragenic NF1 mutations but the precise 
frequency of this feature in this subgroup of NF1 patients 
is currently unknown. Plotkin et al. (2012) reported that 
13% of 141 NF1 patients exhibited more than 500 cutane-
ous neurofibromas, but the precise proportions of patients 
harbouring either NF1 microdeletions or intragenic NF1 
mutations among the 141 NF1 patients investigated had 
not been determined. A detailed comparison between 
both patient groups, involving the careful age-matching of 
patients, would be necessary to clarify whether a very high 
load of cutaneous neurofibromas (N > 1000) is encoun-
tered significantly more frequently in patients with type-1 
NF1 microdeletions as compared to patients with intra-
genic NF1 mutations. In passing, it should be pointed out 
that counting neurofibromas one by one in NF1 patients 
who may have thousands of such tumours is likely to be 
subject to considerable intra- and inter-examiner variabil-
ity, and hence the precise number of neurofibromas in each 
patient should always be regarded as a rough estimate. In 
an attempt to improve upon this state of affairs, Cunha 
et al. (2014) developed a new method using paper frames 
to quantify cutaneous neurofibromas. Combined with com-
puterised analysis, this method could yet prove to be very 
useful for the comparative quantification of cutaneous neu-
rofibromas in patients with NF1 microdeletions and those 
lacking such deletions.

Several studies have suggested that patients with NF1 
microdeletions not only exhibit a high number of cutane-
ous neurofibromas but also an early (pre-pubertal) onset of 
cutaneuous neurofibroma growth (Kayes et al. 1992, 1994; 
Mensink et al. 2006; Leppig et al. 1997; Dorschner et al. 
2000). However, a comprehensive analysis of age-matched 
children has not yet been performed to ascertain whether 
an early (pre-pubertal) onset in growth of multiple cutane-
ous neurofibromas is significantly more prevalent in chil-
dren with NF1 microdeletions as compared to children with 
intragenic NF1 mutations.

In addition to tumours that are visible by external inves-
tigation, NF1 patients may also possess internal neurofi-
bromas (mostly of the plexiform type) which would only 
be detectable by magnetic-resonance imaging (MRI). 
Kluwe et al. (2012) showed that an extremely high bur-
den of internal neurofibromas, characterised by >3000 ml 
tumour volume as determined by whole-body MRI, was 
significantly more frequent in non-mosaic type-1 and 
type-2 NF1 microdeletion patients than in NF1 patients 
with intragenic lesions (13 vs. 1%). Consequently, a read-
ily identifiable subgroup of NF1 patients with germline 
NF1 microdeletions is likely to exhibit an extremely high 
burden of internal tumours. These patients require special 
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attention in terms of clinical care and surveillance since a 
strong association has been observed between the presence 
of internal neurofibromas and the occurrence of malignant 
peripheral nerve sheath tumours (MPNSTs) (Tucker et al. 
2005; Mautner et al. 2008; Nguyen et al. 2014). MPNSTs 
are very aggressive, have a poor prognosis and frequently 
arise in pre-existing plexiform neurofibromas (Ferner and 
Gutmann 2002) which are often diagnosed before the age 
of 5, suggesting that they are congenital lesions (Waggoner 
et al. 2000). This postulate receives strong support from 
the observation that children with NF1 who do not exhibit 
plexiform neurofibromas upon first MRI examination are 
unlikely to develop new plexiform neurofibromas later in 
life (Nguyen et al. 2012). Hence, a high burden of inter-
nal neurofibromas may well be strongly associated with 
an increased MPNST risk and this should be taken into 
account when planning the clinical care of patients with 
NF1 microdeletions.

Increased risk of MPNSTs in patients with NF1 

microdeletions

MPNSTs are rare soft tissue sarcomas occurring with an 
incidence of 0.001% in the overall (general) population 
(Ducatman et al. 1986) and are known to have an asso-
ciation with NF1. Thus, some 28–52% of patients with 
MPNSTs also have NF1 (Ducatman et al. 1986; Evans 
et al. 2002). The estimated lifetime risk of an MPNST in 
all NF1 patients is 8–13% (Evans et al. 2002, 2012) or 
15.8% according to Uusitalo et al. (2016). However, indi-
viduals with NF1 microdeletions have an even higher life-
time MPNST risk, in the range of 16–26% (De Raedt et al. 
2003; Mautner et al. 2010). Further, MPNSTs may occur 
significantly earlier in patients with NF1 microdeletions 
as compared with NF1 patients with intragenic mutations 
(De Raedt et al. 2003). These findings clearly indicate that 
patients with NF1 microdeletions constitute a high-risk 
group for the development of MPNSTs. Hence patients 
with NF1 microdeletions should be under regular surveil-
lance from an early age.

MPNSTs are difficult to treat, particularly if they are 
at an advanced stage and have already metastasized. The 
complete surgical excision of non-metastatic MPNSTs 
represents the mainstay of an effective therapy but this is 
only possible if the tumour is detected at an early stage 
(reviewed by Karajannis and Ferner 2015). MPNSTs rep-
resent the biggest contributory factor to reduced life expec-
tancy in NF1 (Evans et al. 2012). It may well be that an 
NF1 microdeletion and high internal tumour load are inde-
pendent risk factors for MPNST. Thus, patients with an 
NF1 microdeletion and a high internal tumour load could 
represent an ultra-high risk group for MPNST. For this 
group of patients, long-term follow-up investigations using 

whole-body MRI and serial 18Fluorodeoxyglucose positron 
emission tomography (PET) scans are likely to be critically 
important to identify malignant transformation at an early 
stage (Salamon et al. 2015).

Intellectual disability in patients with NF1 

microdeletions

An estimated, 4.8–8% of all NF1 patients are characterised 
by intellectual disability (mean full-scale IQ (FSIQ) <70), 
a somewhat higher proportion than the 2% observed in the 
normal population (Ferner et al. 1996; reviewed by North 
et al. 1997). Several studies have suggested that intellectual 
disability occurs disproportionately more frequently in NF1 
microdeletion patients than in the general NF1 population 
(Kayes et al. 1994; Rasmussen et al. 1998; Korf et al. 1999; 
Venturin et al. 2004b; reviewed by Mensink et al. 2006). 
However, some of the early studies were biassed by includ-
ing mostly patients with a particularly severe phenotype 
and uncharacterised deletion size. Only in two studies, the 
frequency of intellectual disability has been analysed sys-
tematically by including exclusively non-mosaic patients 
with NF1 microdeletions of the same size (type-1 deletions 
spanning 1.4-Mb) (Descheemaeker et al. 2004; Mautner 
et al. 2010). Intellectual disability was evident in eight of 
21 patients (38%) with type-1 NF1 deletions analysed by 
Mautner et al. (2010) and in two of 11 patients with type-1 
NF1 microdeletions (18%) investigated by Descheemaeker 
et al. (2004). Taken together, these findings indicate that 
intellectual disability is markedly more frequent in patients 
with type-1 NF1 microdeletions as compared to patients 
with intragenic NF1 mutations. Furthermore, borderline 
intellectual disability, characterised by a full-scale IQ 
(FSIQ) higher than 70 but lower than 85 (70 ≤ FSIQ ≤ 85), 
was noted in seven (33%) of the 21 type-1 NF1 microdele-
tion patients analysed by Mautner et al. (2010) and in nine 
of the 11 type-1 NF1 microdeletion patients (82%) investi-
gated by Descheemaeker et al. (2004).

Patients with NF1, irrespective of their mutation type, 
have a mean FSIQ of 88-99 which is in the range of one 
standard deviation lower than the FSIQ of the general 
population (100 ± 15) (North et al. 1997; Krab et al. 
2008). A mean FSIQ of 76.9 was documented in the 21 
type-1 NF1 microdeletion patients investigated by Maut-
ner et al. (2010). This is similar to the mean FSIQ of 76.0 
ascertained in the 11 type-1 NF1 microdeletion patients 
analysed by Descheemaeker et al. (2004). By compari-
son, a mean FSIQ of 88.5 was determined in 106 NF1 
patients without an NF1 deletion (Descheemaeker et al. 
2004). Despite the relatively small numbers of individu-
als available in these studies, the tentative conclusion to 
be drawn from them is that the mean FSIQ in patients 
with type-1 NF1 microdeletions is markedly lower than 
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the mean FSIQ in patients with intragenic NF1 muta-
tions. However, Descheemaeker et al. (2004) noted a 
considerable overlap regarding the range of the FSIQ 
observed in patients with NF1 microdeletions (65–85) 
as compared with the range observed in patients without 
microdeletions (54–126), even though the average intel-
ligence (as measured by FSIQ) of type-1 NF1 microdele-
tion patients is generally lower than that of NF1 patients 
without large microdeletions.

Overgrowth associated with NF1 microdeletions

Stature is reduced to some extent in virtually all patients with 
intragenic NF1 mutations. On average, adolescents and adults 
with NF1 are one standard deviation shorter than would be 
expected for their age and sex (Clementi et al. 1999; Szudek 
et al. 2000). Short stature, characterised by a height of more 
than two standard deviations below the predicted mean, is 
evident in 8–13% of children with NF1 (Szudek et al. 2000; 
Sbidian et al. 2012; Soucy et al. 2013) whilst a body height 
below the third percentile has been observed in 15% of chil-
dren with NF1 (Clementi et al. 1999).

Short stature in children with NF1 and intragenic NF1 
mutations has been suggested to be caused by a paucity of 
growth hormone as a consequence of abnormal hypotha-
lamic–pituitary axis function (Vassilopoulou-Sellin et al. 
2000). Support for this hypothesis comes from the phe-
notype observed in conditional knockout mice with spe-
cific Nf1 gene inactivation in neuroglial progenitor cells 
using the brain lipid-binding protein promoter (Hegedus 
et al. 2008). These mice exhibit significantly reduced body 
weight and anterior pituitary gland size caused by the loss 
of neurofibromin expression in the hypothalamus, lead-
ing to reduced production of growth hormone releasing 
hormone, pituitary growth hormone and liver-expressed 
insulin-like growth factor-1 (IGF1). Thus, it would appear 
that neurofibromin plays a critical role in hypothalamic–
pituitary axis function and hence its loss may cause growth 
abnormalities in patients with NF1 (Hegedus et al. 2008).

In contrast to the reduced stature observed in most 
patients with intragenic NF1 mutations, tall stature in adults 
and childhood overgrowth has been reported to occur fre-
quently in patients with NF1 microdeletions (van Asperen 
et al. 1998; Spiegel et al. 2005; Mensink et al. 2006; Pas-
mant et al. 2010). Tall-for-age stature, with height measure-
ments at or above the 94th percentile, was noted in 46% 
of patients with germline type-1 NF1 deletions (Mautner 
et al. 2010). Since intragenic NF1 mutations lead to shorter 
height, and total loss of the NF1 gene plus flanking genes 
often results in tall-for-age stature, it may be concluded that 
haploinsufficiency of a gene or genes co-deleted in patients 
with NF1 microdeletions causes this overgrowth phenotype 
(Mautner et al. 2010). In a study of 21 patients with type-1 

NF1 microdeletions, overgrowth was most evident in pre-
school children (2–6 years, n = 10) (Spiegel et al. 2005). 
These findings were confirmed by Ning et al. (2016) who 
performed longitudinal growth measurements in 56 NF 
patients with NF1 microdeletions and 226 NF1 patients 
with intragenic NF1 mutations. Most height measurements 
in 2–18-year-old boys and girls with NF1 microdeletions 
were greater than the median observed in non-deletion 
NF1 patients. However, extreme body height (more than 
three standard deviations above the mean) was still unusual 
among patients with NF1 microdeletions (Ning et al. 2016). 
These authors also showed that children with NF1 micro-
deletions were usually much taller than non-deletion NF1 
patients after the age of 2 years. In early infancy, before the 
age of 2, the body length of microdeletion and non-deletion 
NF1 patients was found to be similar (Ning et al. 2016). 
The reasons for these differences in growth pattern are cur-
rently unknown.

Dysmorphic facial features

Patients with NF1 microdeletions frequently exhibit dys-
morphic facial features not seen in patients with intragenic 
NF1 mutations. These features include broad neck, hyper-
telorism, downslanted palpebral fissures, a broad nasal 
bridge and a coarse, sometimes fleshy facial appearance 
(Mensink et al. 2006 and references therein; Venturin et al. 
2004b; Pasmant et al. 2010; Mautner et al. 2010). A dys-
morphic facial appearance is the most commonly observed 
feature in patients with NF1 microdeletions (Table 1) and is 
probably caused by haploinsufficiency for a gene or genes 
located within the deletion interval. The dysmorphic facial 
appearance as seen in patients with NF1 microdeletions is 
generally absent in patients with intragenic NF1 mutations. 
Using Face2Gene facial recognition software (http://www.
fdna.com) may be helpful in characterising and quantify-
ing the dysmorphic facial features observed in patients with 
NF1 microdeletions, particularly if comparison is made 
with family members lacking the NF1 microdeletion.

Cardiovascular malformations

Several studies have reported the occurrence of heart 
defects in a proportion of patients with NF1 microdele-
tions (Kayes et al. 1994; Tonsgard et al. 1997; Wu et al. 
1997; Dorschner et al. 2000; Riva et al. 2000; Oktenli 
et al. 2003; Mensink et al. 2006; Venturin et al. 2004b; De 
Luca et al. 2007). However, the overall frequency of such 
defects in patients with NF1 microdeletions has remained 
unclear. In the study of Mautner et al. (2010), eight (29%) 
of the 28 type-1 NF1 deletion patients investigated had 
cardiovascular anomalies. The first detailed analysis of 
the prevalence of heart defects in patients harbouring NF1 

http://www.fdna.com
http://www.fdna.com
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microdeletions was performed by Nguyen et al. (2013) 
who observed major cardiac abnormalities in 6 of 16 NF1 
microdeletion patients whereas none of 16 patients with 
intragenic NF1 mutations exhibited heart defects. Con-
sequently, it would appear that heart defects are signifi-
cantly more common in patients with NF1 microdeletions 
as compared to patients with intragenic NF1 mutations. 
However, the type and frequency of the heart defects 
observed in patients with NF1 microdeletions are quite 
heterogeneous, including pulmonic stenosis, ventricular 
septal defect, aortic stenosis, atrial septal defect, aortic 
stenosis, mitral valve prolapse or insufficiency, and hyper-
trophic cardiomyopathy (Table 2). Larger studies are 
clearly required to ascertain the type and the frequency 
of heart defects in patients with NF1 microdeletions with 
more precision.

Co-deleted genes with the potential to influence 

the clinical phenotype in patients with NF1 

microdeletions

In addition to the deletion of the NF1 gene, hemizygosity 
of any one of a number of genes located within the deletion 

interval at 17q11.2 may contribute to the clinical pheno-
type observed in patients with NF1 microdeletions. Some of 
these genes may have tumour suppressive functions and their 
hemizygosity could predispose to an increased tumour risk or 
might facilitate tumour progression. There is certainly good 
evidence that biallelic SUZ12 loss promotes MPNST pro-
gression (De Raedt et al. 2014; Lee et al. 2014; Zhang et al. 
2014). Haploinsufficiency of other genes during early embry-
onic development and/or during later stages may, however, 
contribute to clinical sequelae such as overgrowth, reduced 
cognitive capabilities, heart defects and dysmorphic facial 
features. Thus, RNF135 haploinsufficiency is associated with 
dysmorphic facial features and overgrowth (Douglas et al. 
2007). The consequences of the deletion of the other genes 
located within the 1.4-Mb NF1 microdeletion region (listed 
in Table 3) are less clear. This notwthstanding, the function, 
as well as the expression pattern of some of these genes, 
renders it highly likely that their loss impacts upon the NF1 
microdeletion-associated phenotype. The haploinsufficiency 
of some of these genes may even synergize with the loss 
of the NF1 gene to aggravate the clinical manifestations of 
patients with NF1 microdeletions. To estimate the likely con-
sequence of haploinsufficiency of genes located within the 
NF1 microdeletion region, the probability of loss-of-function 

Table 2  Heart defects 
observed in patients with NF1 
microdeletions

a In the study of Nguyen et al. (2013), 6 of 16 NF1 microdeletion patients had major cardiac abnormali-
ties. Two of these patients exhibited several heart abnormalities: Patient 5a had an aortic and a mitral valve 
insufficiency as well as a cardiac tumour whereas patient 8a had aortic stenosis, mitral valve insufficiency 
and hypertrophic cardiomyopathy

Type of heart defect Number of NF1 microdeletion patients exhib-
iting the heart defect (reference)a

Pulmonic stenosis 1 (Tonsgard et al. 1997)
2 (Dorschner et al. 2000)
2 (Riva et al. 2000)

Ventricular septal defect 1 (Tonsgard et al. 1997)
1 (Venturin et al. 2004b)
1 (Nguyen et al. 2013)

Atrial septal defect 1 (Kayes et al. 1994)
1 (Dorschner et al. 2000)

Aortic stenosis 1 (Nguyen et al. 2013)

Aortic dissection 1 (Leppig et al. 1997)

Patent ductus arteriosus 1 (Upadhyaya et al. 1996)

Mitral valve prolapse 1 (Wu et al. 1997)
3 (Mensink et al. 2006)
1 (Venturin et al. 2004b)
1 (Oktenli et al. 2003)

Mitral valve insufficiency 1 (Venturin et al. 2004b)
2 (Nguyen et al. 2013)

Aortic valve insufficiency 1 (Nguyen et al. 2013)
1 (Dorschner et al. 2000)

Hypertrophic cardiomyopathy 1 (Mensink et al. 2006)
1 (Venturin et al. 2004b)
3 (Nguyen et al. 2013)

Intracardiac neurofibromas 2 (Nguyen et al. 2013)
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(LoF) intolerance may be considered as calculated from the 
ExAC data set (Lek et al. 2016). The metric ‘probability of 
being LoF intolerant (pLI)’ separates genes into LoF intoler-
ant (pLI ≥ 0.9) or LoF tolerant (pLI ≤ 0.1) categories. Impor-
tantly, ATAD5, RAB11FIP4, LRRC37B and SUZ12 reside 
in the category of LoF intolerant genes suggesting that their 
haploinsufficiency in patients with NF1 microdeletions is 
highly likely to have pathological consequences. By contrast, 
TEFM, ADAP2, RNF135, EVI2A and UTP6 are LoF tolerant 
(Table 3). It cannot, however, be excluded that the hemizy-
gosity of these latter genes may still contribute in one way or 
another to the NF1 microdeletion phenotype.

Our current knowledge of the genes located within the NF1 
microdeletion region that have the potential to modify the 

clinical phenotype in patients with NF1 microdeletions, as con-
cluded from previously published studies, is summarised below.

RNF135 may be involved in overgrowth 

and dysmorphic facial features

The RNF135 gene located upstream of NF1 represents a 
good candidate to account for the overgrowth phenotype 
observed in NF1 microdeletion patients. This conclusion 
derives directly from the findings of Douglas et al. (2007), 
who analysed a cohort of 245 individuals with overgrowth, 
learning disability, dysmorphic facial features and detected 
RNF135 mutations in 6 of them. The 245 patients inves-
tigated by Douglas et al. had been previously shown to be 

Table 3  Protein-coding and microRNA genes located within the NF1 microdeletion region at 17q11.2

a The ExAC browser (http://exac.broadinstitute.org/) provides the constraint metric termed “probability of loss of function” (pLI). To determine 
the pLI metric, the observed and expected variant counts for a given gene included in the ExAC dataset are considered. The closer the pLI value 
is to one, the more loss of function-intolerant the gene appears to be. A pLI value ≥ 0.9 is indicative of genes extremely intolerant of loss func-
tion variants

Official HGNC gene symbol Alternative names MIM# Official gene name Probability of 
loss of function 
intolerance
(pLI)

CRLF3 FRWS; CRLM9; p48.2;CYTOR4; 

CREME-9
614853 Cytokine receptor-like factor 3 0.98

ATAD5 ELG1; FRAG1; C17orf41 609534 ATPase family, AAA domain 
containing 5

1.00

TEFM C17orf42 616422 Transcription elongation factor, 
mitochondrial

0.04

ADAP2 CENTA2; Cent-b; HSA272195 608635 ArfGAP with dual PH domains 2 0.00

RNF135 L13; MMFD; REUL; Riplet 611358 Ring finger protein 135p 0.00

MIR4733 None ̶ microRNA 4733

NF1 WSS; NFNS; VRNF 162200 neurofibromin 1 1.00

OMG OMGP 164345 Oligodendrocyte myelin glyco- 
protein

0.86

EVI2B EVDB; CD361; D17S376 158381 Ecotropic viral integration site 
2B

0.18

EVI2A EVDA; EVI2; EVI-2A 158380 Ecotropic viral integration site 
2A

0.00

RAB11FIP4 FIP4-Rab11; RAB11-FIP4 611999 RAB11 family-interacting protein 
4

0.99

MIR193A MIRN193; MIRN193A; mir-193a 614,733 microRNA 193a

MIR365B MIR365-2; mir-365b; MIRN365-
2;hsa-mir-365b

614,733 microRNA 365b

MIR4725 mir-4725 ̶ microRNA 4725

COPRS TTP1; COPR5; C17orf79; 

HSA272196

616477 Coordinator of PRMT5 and 
differentiation stimulator

0.83

UTP6 HCA66; C17orf40 ̶ UTP6, small subunit processome 
component

0.00

SUZ12 CHET9; JJAZ1 613675 SUZ12 polycomb-repressive 
complex 2 subunit

1.00

LRRC37B None 616558 Leucine-rich repeat containing 
37B

0.95

http://exac.broadinstitute.org/
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negative for NSD1 mutations, a frequent cause of Sotos 
syndrome characterised by overgrowth, dysmorphic facial 
features and learning disability (Tatton-Brown et al. 2005). 
Five of the six RNF135 mutation-positive patients identified 
by Douglas et al. harboured intragenic RNF135 mutations 
whereas the other patient exhibited a microdeletion resulting 
from an NAHR event between NF1-REPa and NF1-REPb 
which included RNF135 plus five other genes, but not NF1 
(Douglas et al. 2007). Inactivating mutations or entire gene 
deletions of RNF135 do not appear to be frequent in patients 
with an overgrowth phenotype since RNF135 mutations 
were not detected in another cohort of 160 NSD1 mutation-
negative patients with features of Sotos syndrome (Visser 
et al. 2009). Remarkably, among these 160 patients with 
suggested Sotos syndrome and overgrowth was a 4-year-old 
girl with dysmorphic facial features, two CALS and devel-
opmental delay who was found to have an NF1 microdele-
tion. This finding indicates that an NF1 microdeletion should 
be considered in the differential diagnosis of children with 
Sotos syndrome-associated features (Visser et al. 2009).

RNF135 encodes an E3 ubiquitin ligase with an N-ter-
minal RING finger domain and C-terminal SPRY and PRY 
motifs. It is expressed in many different tissues (Oshiumi 
et al. 2009). RNF135 ubiquitinates RIG-I (retinoic acid-
inducible gene-I protein) and promotes its signal transduc-
tion capacity so as to produce antiviral type-I interferon 1 
(Oshiumi et al. 2010). Owing to its ring finger domain and 
the PRY motif, RNF135 is likely to bind numerous pro-
teins, suggestive of a wide range of functions. The mecha-
nism underlying the overgrowth phenotype mediated by the 
loss of one RNF135 copy is currently unclear and needs to 
be further investigated.

Importantly, patients with RNF135 mutations exhibit 
dysmorphic facial features including hypertelorism, down-
slanting palpebral fissures and a broad nasal tip giving rise 
to a facial appearance similar to that observed in patients 
with NF1 microdeletions (Douglas et al. 2007). These 
findings suggest that RNF135 haploinsufficiency may be 
responsible for the dysmorphic facial features observed 
in patients with NF1 microdeletions. However, since only 
five patients with intragenic RNF135 mutations but lack-
ing NF1 microdeletions have so far been reported, more 
extended genotype/phenotype studies are necessary to 
assess whether the dysmorphic facial features are indeed 
caused by RNF135 mutations.

SUZ12 and its role in MPNST development in patients 

with NF1 microdeletions

The increased risk of MPNSTs in patients with large NF1 
microdeletions is probably associated with hemizygosity 
of the SUZ12 gene, located telomeric to NF1 within the 
NF1 microdeletion region (Fig. 1). SUZ12 is frequently 

bi-allelically inactivated in MPNSTs suggestive of a 
tumour suppressor function in this tumour type (De 
Raedt et al. 2014; Lee et al. 2014; Zhang et al. 2014). 
As a component of the Polycomb repressive complex 2 
(PRC2), the SUZ12 protein is involved in the epigenetic 
silencing of many different genes by establishing di- and 
tri-methylation of histone H3 lysine 27 (reviewed by Di 
Croce and Helin 2013). Loss of histone H3 lysine 27 tri-
methylation has been observed in 50–70% of MPNSTs. 
By contrast, H3 lysine 27 trimethylation is retained in 
benign neurofibromas and hence serves as a diagnostic 
marker for malignant transformation (Asano et al. 2017; 
Cleven et al. 2016; Prieto-Granada et al. 2016; Schaefer 
et al. 2016; Röhrich et al. 2016). The genes targeted by 
PRC2 regulate cell cycle progression, stem cell self-
renewal, cell fate decisions and cellular identity. The 
expression changes of some of these genes consequent to 
the loss of PRC2 function appear likely to contribute to 
tumorigenesis (reviewed by Conway et al. 2015; Laug-
esen et al. 2016). Thus, PRC2 loss has been shown to 
amplify Ras-driven gene expression through epigenetic 
changes (De Raedt et al. 2014). Somatic inactivating 
mutations of SUZ12 or other genes encoding PRC2 com-
ponents have been detected in MPNSTs but not in benign 
neurofibromas and atypical neurofibromas. The latter are 
considered to be premalignant tumours with high poten-
tial to transform into MPNSTs (De Raedt et al. 2014; Lee 
et al. 2014; Zhang et al. 2014; Pemov et al. 2016). Conse-
quently, loss of PRC2 function is important during malig-
nant transformation and/or progression of MPNSTs. In 
patients with germline NF1 microdeletions, one SUZ12 
allele is deleted in all cells and the probability of acquir-
ing a somatic mutation of the remaining SUZ12 allele is 
clearly going to be higher than acquiring two independent 
somatic SUZ12 mutations (as would be necessary in NF1 
patients with intragenic NF1 mutations, or in patients 
without NF1 who exhibit sporadic MPNSTs). Hence, the 
constitutional deletion of one SUZ12 allele represents a 
predisposing factor that contributes to the increased risk 
of MPNSTs in patients with NF1 microdeletions.

Other genes with known tumour suppressor function 

within the NF1 microdeletion region

In addition to the NF1 and SUZ12 genes, patients with 
NF1 microdeletions are also hemizygous for three other 
genes with putative tumour suppressor function: ATAD5 
and the microRNA genes MIR193A and MIR365B. Whilst 
the importance of SUZ12 loss in MPNST progression has 
now been well documented, rather less is known about 
the co-deleted genes ATAD5, MIR193A, MIR365B and 
their involvement in MPNST pathogenesis. However, as 
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deduced from their function, it is not unreasonable to 
suppose that haploinsufficiency of these genes could pro-
mote MPNST development in patients with NF1 micro-
deletions as discussed below.

ATAD5

Another tumour suppressor gene located within the NF1 
microdeletion region is ATAD5 (ATPase family AAA domain–
containing protein 5) (Fig. 1). The ATAD5 protein is involved 
in the stabilisation of stalled DNA replication forks by regu-
lating proliferating cell nuclear antigen (PCNA) ubiquitination 
during DNA damage bypass, thereby promoting the exchange 
of a low-fidelity translesion polymerase back to a high-fidelity 
replication polymerase (Lee et al. 2010, 2013). Mice haploin-
sufficient for Atad5 (Atad5+/m) display high levels of genomic 
instability (Bell et al. 2011). Embryonic fibroblasts from 
Atad5+/m mice exhibit molecular defects in PCNA deubiqui-
tination in response to DNA damage, as well as DNA damage 
hypersensitivity, high levels of genomic instability and ane-
uploidy. More than 90% of haploinsufficient Atad5+/m mice 
developed tumours such as sarcomas, carcinomas and adeno-
carcinomas that exhibited high levels of genomic instability 
(Bell et al. 2011). Furthermore, somatic ATAD5 mutations 
were identified in a subset of sporadic human endometrial 
tumours (Bell et al. 2011) as well as breast and ovarian tumour 
cell lines (Abaan et al. 2013). Hence, ATAD5 is regarded as a 
tumour suppressor gene (Bell et al. 2011; Kubota et al. 2013). 
Rare germline missense variants of ATAD5 with predicted 
pathogenicity have been reported to be enriched in patients 
with ovarian cancer as compared with controls (Maleva Kos-
tovska et al. 2016). Targeted knockdown of ATAD5 expres-
sion in human cell lines has been shown to confer sensitivity 
to DNA damaging agents and cause severe genomic instabil-
ity (Sikdar et al. 2009). Consequently, we may surmise that 
ATAD5 functions as an important regulator of genome insta-
bility (Gazy et al. 2015). Taken together, ATAD5 haploinsuffi-
ciency is likely to contribute to tumorigenesis in patients with 
NF1 microdeletions, in particular MPNST pathogenesis, since 
these tumours exhibit a high degree of genome instability 
including numerous copy number variants as well as chromo-
somal rearrangements (Mantripragada et al. 2009; Beert et al. 
2011 and references therein).

MicroRNA genes

MicroRNAs (miRNAs) can play a critical role during tumo-
rigenesis by directly interacting with the 3′UTRs of specific 
target mRNAs and inhibiting their translation (reviewed 
by Lovat et al. 2011). MicroRNAs have also been impli-
cated in NF1-associated tumorigenesis (Sedani et al. 2012). 
Four microRNA genes are located within the 1.4-Mb NF1 
microdeletion region, MIR193A, MIR365B, MIR4725 and 

MIR4733 (Fig. 1). One of these, MIR193A, encodes two 
mature miRNAs with well-known tumour suppressor func-
tions; miR193a-3p and miR193a-5p are generated from the 
primary transcript by means of several maturation steps. The 
expression preference of miR193a-5p and miR193a-3p is 
likely to be determined by the Ago protein (reviewed by Tsai 
et al. 2016). According to the mirbase database (http://www.
mirbase.org/), miR193a-3p is more abundantly expressed 
in human tissues than miR193a-5p. Several studies have 
indicated that miR193a-3p suppresses tumour development 
by silencing multiple target genes including SRSF2, HIC2, 

HOXC9, PSEN1, LOXL4, ING5, KIT, PLAU and MCL1 
(Tsai et al. 2016). miR193a-3p has been found to be down-
regulated by hypermethylation in oral squamous cell carci-
noma cell lines (Kozaki et al. 2008), non-small cell lung can-
cer (Heller et al. 2012; Wang et al. 2013; Liang et al. 2015; 
Ren et al. 2015), bladder cancer (Deng et al. 2014; Lv et al. 
2014; Li et al. 2015), hepatocellular carcinoma (Salvi et al. 
2013), BRAF mutation-positive malignant melanoma (Cara-
muta et al. 2010), acute myeloid leukaemia (Xing et al. 2015) 
and pleural mesothelioma (Williams et al. 2015). However, it 
is unclear whether the down-regulation of miR193a-3p is a 
cause or a consequence of tumorigenesis. Decreased expres-
sion of miR193a-3p has been found to be correlated with 
metastasis, apoptosis and proliferation in breast cancer cell 
lines (Iliopoulos et al. 2011; Tsai et al. 2016) and ovarian 
tumour tissue (Nakano et al. 2013). Moreover, miR193a-5p 
is known to possess tumour suppressor functions since it 
inhibits the growth of breast cancer cells (Tsai et al. 2016) 
and endometrioid endometrial carcinoma cells by down-
regulation of the transcription factor YY1 (Yang et al. 2013). 
Both miR193a-5p and miR193a-3p suppress lung cancer 
cell migration and invasion by co-regulating the ERBB4/
PIK3R3/mTOR/S6K2 signalling pathway (Yu et al. 2015). 
These findings indicate that miR193a-3p and miR193a-
5p play a tumour suppressor role in many different tumour 
types. In particular, the putative tumour suppressor function 
of miR193a-3p in breast cancer cell lines is noteworthy since 
breast cancer occurs at an increased frequency in patients 
with NF1 (Sharif et al. 2007; Seminog and Goldacre 2013, 
2015; Uusitalo et al. 2016). However, it is unknown whether 
the breast cancer risk is higher in patients with NF1 microde-
letions than in patients with intragenic NF1 mutations.

The MIR365B gene, located within the NF1 microdele-
tion region (Fig. 1), also encodes an miRNA with known 
tumour suppressor function, as evidenced by its ability to tar-
get specific transcription factors, such as NKX2-1 and TTF1, 
in non-small cell lung cancer (Qi et al. 2012; Kang et al. 
2013; Sun et al. 2015). miR365 is down-regulated in colon 
cancer (Nie et al. 2012), cutaneous squamous cell carcinoma 
(Zhou et al. 2014, 2015), hepatocellular carcinoma (Chen 
et al. 2015), gastric cancer (Guo et al. 2013) and malignant 
melanoma (Bai et al. 2015a, b). By contrast, putative tumour 

http://www.mirbase.org/
http://www.mirbase.org/
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suppressor functions of the other two miRNAs located 
within the NF1 microdeletion region, encoded by MIR4725 
and MIR4733, respectively, have not so far been reported.

Taken together, the loss of the MIR193A and MIR365B 
genes in patients with NF1 microdeletions may well con-
tribute to tumorigenesis in these patients. However, miR-
NAs are not only involved in tumour development; they 
also play a role as key regulators of metabolic homeosta-
sis and tissue differentiation (reviewed by Vienberg et al. 
2017). Additional studies are necessary to investigate the 
influence of the hemizygous loss of the miRNA genes on 
the clinical phenotype associated with NF1 microdeletions.

Other genes that may contribute to tumour 

development in patients with NF1 microdeletions

In addition to the deletion of SUZ12 and ATAD5, hemizy-
gosity for the genes COPRS, UTP6 and RNF135 may also 
contribute to the increased tumour risk associated with NF1 
microdeletions. Current knowledge about the function of 
these genes is summarised in the following paragraphs.

COPRS

COPRS is another gene located within the NF1 microdele-
tion interval that may well play a role in MPNST devel-
opment. COPRS encodes an adaptor protein that binds 
strongly to protein-arginine methyltransferase 5 (PRTM5) 
and to histone H4. By these means, COPRS recruits 
PRMT5 to chromatin and also modulates PRMT5 substrate 
specificity since PRMT5 bound to COPRS preferentially 
methylates histone H4 instead of histone H3 (Lacroix et al. 
2008). COPRS binding to PRMT5 is essential for myo-
genic differentiation, possibly through altered targeting 
of PRMT5 to specific gene promoters (Paul et al. 2012). 
These observations suggest that the COPRS–PRMT5 com-
plex regulates cell differentiation, a process that is fre-
quently perturbed during tumorigenesis. MPNSTs often 
exhibit regions of divergent differentiation possibly includ-
ing rhabdomyosarcomatous, chondral, glandular, neuroen-
docrine, gangliocytic and liposarcomatous components. 
These regions of divergent differentiation may be focal on 
a background of typical spindle-shaped tumour cells. For 
example, in some cases, rhabdomyosarcomatous differ-
entiation may become predominant rendering even differ-
ential diagnosis very difficult (Guo et al. 2012). Aberrant 
regulation of the COPRS–PRMT5 complex due to COPRS 
haploinsufficiency may contribute to these divergent dif-
ferentiation patterns. Increased expression of PRMT5 has 
been noted in a wide variety of cancer types (reviewed 
by Stopa et al. 2015), but further studies are necessary to 

investigate how COPRS haploinsufficiency in patients with 
NF1 microdeletions could alter PRMT5 function, thereby 
contributing to tumorigenesis.

Analysis of the expression level of COPRS in MPNST 
cell lines has yielded inconsistent results both within and 
between studies (Bartelt-Kirbach et al. 2009; Pasmant et al. 
2011). Overexpression of COPRS (five to 10-fold) was 
observed in two MPNST tissue samples from patients with 
intragenic NF1 mutations as compared with cutaneous neu-
rofibroma tissue (Bartelt-Kirbach et al. 2009). However, by 
contrast, these authors detected low expression of COPRS 
in an MPNST cell line, which was as low as the COPRS 
expression level in neurofibroma-derived fibroblast cell 
cultures. The MPNST cell line analysed by these authors 
was derived from an NF1 patient but the germline NF1 
mutation in this patient had not been determined. In similar 
vein, whilst Pasmant et al. (2011) observed high COPRS 
expression in a series of MPNST cell lines as compared 
with plexiform and cutaneous neurofibroma samples, in 
other MPNST cell lines, COPRS expression levels were as 
low as in plexiform and cutaneous neurofibromas (Pasmant 
et al. 2011). Unfortunately, these authors failed to specify 
the origin of the MPNST cell lines analysed, whether they 
were derived from NF1 patients and if so, whether they 
harboured NF1 microdeletions. The inconsistent find-
ings regarding the COPRS expression level in MPNSTs 
reported by Bartelt-Kirbach et al. (2009) and Pasmant et al. 
(2011) are difficult to interpret. It may be that MPNST cell 
lines are an inappropriate system in which to investigate 
COPRS expression, perhaps because these cell lines have 
been subject to massive in vitro selection and hence may 
not be representative of key stages of MPNST development 
in vivo. Thus, the analysis of COPRS expression should be 
performed using primary MPNST samples (with high pro-
portions of tumour cells) from patients with NF1 microde-
letions to explore the role of COPRS during MPNST devel-
opment or progression in NF1 microdeletion patients.

UTP6

Tumorigenesis in patients with NF1 microdeletions may 
also be influenced by haploinsufficiency of UTP6, located 
telomeric to NF1 within the NF1 microdeletion region 
(Fig. 1). The protein encoded by UTP6 is involved in 
apoptosome-dependent apoptosis and it has been suggested 
that UTP6 haploinsufficiency could render cells with NF1 
microdeletions less susceptible to apoptosis (Piddubnyak 
et al. 2007). UTP6 is required for ribosome synthesis (Bon-
nart et al. 2012) and is, as a component of the centrosome, 
required for centriole duplication and the establishment of 
a bipolar spindle ensuring proper chromosome segrega-
tion during mitosis (Fant et al. 2009; Ferraro et al. 2011). 
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Somatic loss of the remaining UTP6 allele in tumours of 
patients with NF1 microdeletions may contribute to malig-
nant transformation by increasing chromosome instability 
and aneuploidy.

RNF135

In addition to its influence on the childhood overgrowth 
phenotype and the dysmorphic facial features observed in 
patients with NF1 microdeletions, RNF135 haploinsuf-
ficiency may also promote tumorigenesis. The RNF135 
gene has been shown to be down-regulated in cells from 
malignant peripheral nerve sheath tumours (MPNSTs) and 
MPNST cell lines suggesting that RNF135 loss is involved 
in conferring the increased MPNST risk characteristic of 
NF1 microdeletion patients (Pasmant et al. 2011). In glio-
blastomas, however, RNF135 has been found to be upregu-
lated and promotes the proliferation of human glioblastoma 
cells in vivo and in vitro via the ERK pathway (Liu et al. 
2016). Furthermore, RNF135 would appear to promote the 
expression of PTEN and TP53 in tongue cancer SCC25 
cells and RNF135 overexpression inhibits the viability, pro-
liferation, and invasion of these cells (Jin et al. 2016). Taken 
together, these findings suggest that changes in the dosage 
of RNF135 might contribute to tumorigenesis although fur-
ther studies are necessary to clarify this postulate.

Haploinsufficiency of genes in NF1 microdeletion 

patients and intellectual disability

OMG

Hemizygosity of a gene (or several genes) located within 
the NF1 microdeletion region may contribute to the intel-
lectual disability noted in patients with large NF1 deletions 
(Venturin et al. 2006). A good candidate is the OMG gene 
which encodes the oligodendrocyte myelin glycoprotein 
(OMgp) involved in the regulation of synaptic plasticity 
(reviewed by Mironova and Giger 2013). Synaptic plastic-
ity and structural changes of the synapse have been sug-
gested to cause cognitive and functional defects observed 
in intellectual disability, autism spectrum disorders and 
schizophrenia (Bernardinelli et al. 2014).

OMgp is anchored to the myelin membrane through 
a glycosylphosphatidyl inositol lipid molecule and is 
expressed in neurons as well as oligodendrocytes (Habib 
et al. 1998; Raiker et al. 2010 and references therein). 
OMgp belongs to the group of myelin-associated inhibi-
tor proteins (MAIPs) which act as central nervous system 
(CNS) regeneration inhibitors by preventing injured axons 
from regenerating beyond the injury site. Prototypical 
MAIPs, including OMgp, are expressed in the healthy as 
well as the injured brain and bind to the Nogo-66 receptor 

(NgR1) and the paired Ig-like receptor B (PirB) which 
appear to inhibit neurite outgrowth in the adult CNS (Atwal 
et al. 2008; Akbik et al. 2012; Geoffroy and Zheng 2014; 
Baldwin and Giger 2015). However, in the adult CNS, 
OMgp and other MAIPs also regulate neuronal morphol-
ogy, dendritic spine shape and activity-driven synaptic 
plasticity by binding to their receptors as determined both 
by NgR1 and PirB knockout mouse models and human 
cell lines (McGee et al. 2005; Syken et al. 2006; Lee et al. 
2008; Raiker et al. 2010; reviewed by Mironova and Giger 
2013).

In addition to its function in the adult CNS, OMgp plays 
important roles during early stages of brain development 
before the onset of myelination, possibly by regulating neu-
rogenesis (Martin et al. 2009). During normal mouse devel-
opment, neuronal OMgp is expressed, from embryonic day 
E14 on, in growing axons during axonal tract formation 
following the maturation of cortical connexions (Gil et al. 
2010). In primary hippocampal cultures of adult normal 
mice, OMgp is present in the neuronal membrane, synap-
tosomal fractions and axonal varicosities (Gil et al. 2010). 
OMgp-null mice show impaired myelination and thalamo-
cortical projection (Gil et al. 2010) as well as hypomyelina-
tion of the spinal cord that correlates with lower propaga-
tion of ascending and descending electrical impulses (Lee 
et al. 2011). Even although OMgp-null mice may not repre-
sent a wholly appropriate model with which to ascertain the 
consequences of OMG haploinsufficiency in humans, data 
derived from this system are consistent with the view that 
OMgp plays a key role in axonal target specification and 
synaptic plasticity.

Many studies have indicated that dysfunction of syn-
apse formation, shape or density and synaptic plasticity 
cause intellectual disability and neuropsychiatric disor-
ders (reviewed by Pittenger 2013; Srivastava and Schwartz 
2014). Since MAIPs and their receptors play important 
roles in regulating synapse formation and plasticity, altered 
expression or function of these proteins may contribute to 
intellectual disability and other brain disorders (Sinibaldi 
et al. 2004; Budel et al. 2008; Tews et al. 2013; Llorens 
et al. 2011; Willi and Schwab, 2013; Petrasek et al. 2014). 
Consequently, OMgp haploinsufficiency may well con-
tribute to the intellectual disability observed in patients 
with NF1 microdeletions. The negative effects of OMgp 
haploinsufficiency on synaptic plasticity could be addi-
tive in relation to the consequences of the loss of the NF1 
gene product neurofibromin, an important regulator of 
Ras signalling in the brain. At least 50% of the patients 
with intragenic NF1 mutations suffer from intellectual 
disabilities manifesting as cognitive slowing, memory 
disturbances, difficulties in solving strategic problems, 
visuospatial impairment and deficits in motor coordina-
tion (Diggs-Andrews and Gutmann 2013; Violante et al. 
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2013). These symptoms are further aggravated in patients 
with NF1 microdeletions who exhibit a significantly lower 
mean FSIQ than patients with intragenic NF1 mutations 
(Descheemaeker et al. 2004).

Similar to the phenotype observed in patients with NF1, 
behavioural studies in Nf1-deficient mouse models indi-
cated deficits in spatial learning and motor coordination 
(Shilyansky et al. 2010a, b; van der Vaart et al. 2011). These 
mouse models also revealed that increased Ras/MAPK 
(mitogen-activated protein kinases) signalling results in 
higher GABA (gamma-aminobutyric acid) release during 
learning causing deficits in hippocampal long-term poten-
tiation (LTP) that could account for the spatial learning and 
memory deficits of these mutant mice (Costa et al. 2002; 
Cui et al. 2008). Hence, neurofibromin is an important Ras 
regulator in interneurons influencing hippocampal-depend-
ent learning. Ras signalling in dendritic spines of pyramidal 
neurons is required for many forms of synaptic plasticity, 
including LTP, spine structural plasticity, and new spine 
formation (reviewed by Oliveira and Yasuda 2014). Con-
sequently, NF1 and OMG haploinsufficiency are likely to 
exert additive negative effects that are causally associated 
with the cognitive deficit evident in many patients with 
NF1 microdeletions. Loss-of-function mutations in the 
OMG gene have not, however, been observed in patients 
with idiopathic intellectual disability (Venturin et al. 2006).

RNF135

RNF135 haploinsufficiency may also contribute to the 
reduced cognitive capabilities observed in patients with 
NF1 microdeletions. As mentioned earlier, RNF135 
encodes an E3 ubiquitin ligase; other ubiquitin ligase genes 
have already been implicated in the development of intel-
lectual disability and autism (Tenorio et al. 2014; reviewed 
by Tastet et al. 2015).

A significantly increased frequency of genotypes carrying 
the rare allele of the RNF135 missense variant rs111902263 
(p.R115 K) has been observed in patients with autism as 
compared with healthy controls (P = 0.0019, odds ratio: 
4.23, 95% confidence interval: 1.87–9.57) (Tastet et al. 2015). 
These authors also showed that the RNF135 gene is expressed 
in the cerebral cortex of humans and mice. The RNF135-
encoded protein, termed ‘Riplet’, regulates the cytosolic viral 
RNA receptors RIG-I by ubiquitination (Oshiumi et al. 2009, 
2010, 2013). RIG-I and other RIG-I-like receptors contribute 
to innate antiviral immunity by inducing antiviral responses 
such as the production of type I interferons (IFNs) and pro-
inflammatory cytokines (reviewed by Yoneyama et al. 2015). 
RIG-1 is upregulated in neurons upon viral infection and is 
an important component of the intrinsic antiviral pathways in 
the CNS (Nazmi et al. 2011). RIG-I knockdown in a mouse 
model was associated with reduced neural stem/progenitor 

cell proliferation (Mukherjee et al. 2015), suggesting that the 
RNF135 protein plays a role in neurogenesis. Further stud-
ies will be necessary to determine the role of RNF135/Riplet 
in neural stem/progenitor cells and during brain develop-
ment, roles which may yet prove to be relevant in the con-
text of RNF135 haploinsufficiency and cognitive disability in 
patients with NF1 microdeletions.

Intriguingly, the ADAP2 gene, which is also located 
within the NF1 microdeletion region, encodes another key 
regulator of RIG-I signalling. ADAP2, an ADP-ribosyla-
tion factor GTPase-activating protein (ArfGAP) with dual 
PH domains 2, plays an important role as a scaffold protein 
that couples different modules of RIG-I signalling, leading 
to the up-regulation of type-I interferon gene transcription 
in response to viral infection (Bist et al. 2016). The poten-
tial role of ADAP2 in the aetiology of cardiovascular mal-
formations is discussed below.

ADAP2 and cardiovascular malformations in patients 

with NF1 microdeletions

Hemizygosity of the ADAP2 gene may contribute to the 
cardiovascular malformations observed in patients with 
NF1 microdeletions. This conclusion is drawn from the 
observation that ADAP2 is highly expressed during early 
stages of heart development in both mouse and human 
(Venturin et al. 2005, 2014). In zebrafish, ADAP2 loss of 
function leads to circulatory deficiencies and heart shape 
defects or defective valvulogenesis (Venturin et al. 2014). 
The ADAP2-encoded protein acts as a GTPase-activating 
protein (GAP) of the ADP-ribosylation factor 6 (ARF6), a 
small GTPase involved in actin cytoskeleton remodelling. 
ADAP2 (centaurin-alpha2) is located in the cytoplasm but 
after EGF stimulation, it binds to the plasma membrane 
via phosphatidylinositols. Plasma membrane association of 
ADAP2 prevents ARF6 translocation to the plasma mem-
brane. By these means, ADAP2 negatively regulates ARF6-
mediated actin cytoskeleton reorganisation (Venkateswarlu 
et al. 2007). ADAP2 also interacts with beta-tubulin and 
stabilises microtubules (Zuccotti et al. 2012). As a micro-
tubulin-associated protein expressed during early embry-
onic development in the central nervous system and in the 
heart, ADAP2 is likely to mediate microtubule cytoskeleton 
reorganisation during cell differentiation and migration. It 
is well known that the interaction between microtubules 
and the actin cytoskeleton in association with membrane-
associated proteins regulates cell shape and cellular remod-
elling (reviewed by Basu and Chang 2007; Bezanilla et al. 
2015). Since ADAP2 interacts with the microtubule/actin 
cytoskeleton, it may function as a cytoskeleton cross-talker 
that increases microtubule stability and modulates actin 
reorganisation and hence cellular morphology (Zucotti 
et al. 2012). Disturbances of the cytoskeletal organisation 
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in myocytes during embryonal development may be 
responsible for the cardiovascular malformations observed 
in patients with NF1 microdeletions. This postulate was 
reinforced by the findings of Venturin et al. (2014) who 
showed that in zebrafish, ADAP2 is required for normal 
cardiac morphogenesis.

The protein product of the NF1 gene, neurofibromin, 
is essential for embryonic cardiac valve formation and the 
study of mouse models has indicated that neurofibromin 
loss leads to cardiovascular lethality during early embry-
onic development; Nf1 regulation of Ras in the developing 
endothelium is required for regular development of endo-
cardial cushions and the ventricular myocardium (Gitler 
et al. 2003; Ismat et al. 2006; Xu et al. 2009; Bajaj et al. 
2012; Yzaguirre et al. 2015). Haploinsufficiency for both 
NF1 and ADAP2 may contribute either cooperatively or 
additively to the increased frequency of heart defects in 
patients with NF1 microdeletions. Further, SUZ12 and 
UTP6 are highly expressed during the development of the 
human heart; it follows that their haploinsufficiency may 
also contribute to the increased prevalence of congenital 
heart defects in patients with NF1 microdeletions (Venturin 
et al. 2005).

Clinical phenotype in patients with NF1 

microdeletions: influence of mosaicism 

and deletion size

The presence of normal cells not harbouring an NF1 micro-
deletion exerts a major influence on disease severity in 
patients with mosaic large NF1 deletions. Depending upon 
the proportion of cells harbouring the deletion, the clini-
cal phenotype can be very mild or may affect only certain 
body segments (Tinschert et al. 2000; Maertens et al. 2007). 
The frequency of somatic mosaicism is strongly associ-
ated with the type of NF1 microdeletion. Type-2 NF1 dele-
tions, caused by NAHR between SUZ12 and SUZ12P1, are 
frequently of postzygotic origin. Patients with postzygotic 
type-2 NF1 deletions exhibit somatic mosaicism of cells 
with the deletion and normal cells not harbouring the dele-
tion (Kehrer-Sawatzki et al. 2004; Steinmann et al. 2007; 
Vogt et al. 2012). It has been estimated that at least 63% 
of all type-2 NF1 deletions are associated with somatic 
mosaicism (Vogt et al. 2012). Atypical NF1 deletions are 
also frequently mosaic; among the 17 atypical NF1 dele-
tion patients investigated by Vogt et al. (2014), 10 patients 
(59%) exhibited somatic mosaicism with normal cells. By 
contrast, only a very low proportion (2–4%) of type-1 NF1 
microdeletions is associated with somatic mosaicism (Mes-
siaen et al. 2011). Remarkably, patients with type-2 dele-
tions exhibit tissue-specific differences in the proportion 
of cells with the deletion (termed del(+/−) cells), whereas 

the proportion of del(+/−) cells is very high (94–99%) in 
the blood of these patients, and much lower proportions of 
del(+/−) cells are evident in urine samples (24–82%) (Roehl 
et al. 2012). Since mosaic type-2 NF1 microdeletions occur 
in most instances during early embryonic development, the 
tissue-specific differences in the proportion of del(+/−) cells 
should result from cell type-specific selection.

Genotype–phenotype correlations in patients with mosaic 
NF1 microdeletions are difficult to perform because the vari-
able proportion of normal cells in different tissues is likely 
to influence the expression of clinical symptoms. The pro-
portion of normal cells is difficult to assess and may vary 
from tissue to tissue and from patient to patient. Unfortu-
nately, only a small number of patients with mosaic NF1 
deletions have been analysed in any detail. None of the eight 
patients with mosaic type-2 NF1 microdeletions exhibited 
facial dysmorphism, nor was there any evidence of delayed 
cognitive development and/or learning disabilities, cogni-
tive impairment, congenital heart disease, hyperflexibility 
of joints, large hands and feet, muscular hypotonia or bone 
cysts, all of which are frequently observed in patients with 
germline type-1 NF1 microdeletions (Table 1). Furthermore, 
externally visible and internal plexiform neurofibromas were 
significantly less prevalent in patients with mosaic type-2 
NF1 microdeletions as compared with patients carrying con-
stitutional (germline) type-1 NF1 microdeletions (Kehrer-
Sawatzki et al. 2012). These differences in clinical phenotype 
are unlikely to be caused by the differing extent of type-1 and 
type-2 deletions. Even although only two patients with non-
mosaic type-2 NF1 microdeletions have so far been analysed 
in terms of their clinical phenotype (Vogt et al. 2011), it may 
be concluded that patients with non-mosaic type-2 deletions 
exhibit most of the clinical features that have been reported 
in individuals with germline type-1 NF1 deletions. Thus, a 
severe disease manifestation is not confined to patients with 
type-1 NF1 deletions but may also occur in individuals with 
non-mosaic type-2 NF1 deletions. The loss of the LRRC37B 
gene, associated with type-1 microdeletions but not with 
type-2 microdeletions, is unlikely to exert a major influence 
on the clinical phenotype. We conclude that the less severe 
clinical phenotype observed in patients with mosaic type-2 
NF1 microdeletions is unrelated to the extent of the deletion 
but is instead associated with the presence of normal cells 
that lack the microdeletion. Nevertheless, an increased risk 
of MPNSTs may also exist for patients with mosaic type-2 
NF1 microdeletions and plexiform neurofibromas, since 
most MPNSTs develop from pre-existing plexiform neurofi-
bromas (Tucker et al. 2005) and the concomitant loss of NF1 
and SUZ12 in plexiform neurofibroma cells harbouring the 
type-2 NF1 microdeletion increases the likelihood of malig-
nant transformation.

The extent of the deletion may nevertheless be impor-
tant in the context of genotype-phenotype relationships 
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in patients with NF1 microdeletions. It has been noted 
that patients with very large atypical NF1 deletions that 
encompass several Mb, much larger than the classi-
cal 1.4-Mb spanning type-1 NF1 deletions, exhibit very 
severe disease manifestations associated with many 
additional clinical features that are not generally found 
to be associated with type-1 NF1 deletions (Upadhyaya 
et al. 1996; Cnossen et al. 1997; Dorschner et al. 2000; 
Kehrer-Sawatzki et al. 2003; Pasmant et al. 2008). How-
ever, these deletions were very heterogeneous in size and 
hence genotype–phenotype analyses are scarcely feasi-
ble. More interesting in this regard are shorter deletions 
with recurrent breakpoints such as type-3 NF1 microde-
letions. These deletions encompass only 1-Mb and do not 
include the five functional genes (CRLF3, ATAD5, TEFM, 

ADAP2 and RNF135) located centromeric to NF1-REPb 
(Fig. 1). However, only eight type-3 NF1 deletions have 
so far been identified by means of high-resolution break-
point analysis (Bengesser et al. 2010; Pasmant et al. 
2010; Messiaen et al. 2011). Unfortunately, the clinical 
data from these eight patients are far from comprehen-
sive or completely unavailable. Intellectual disability or 
cognitive impairment was observed in four of these eight 
patients with type-3 NF1 microdeletions. Consequently, 
a gene (or genes) influencing the cognitive capabilities in 
these patients is located either within the NF1 gene itself 
(e.g. OMG) or located telomeric to NF1; OMG is prob-
ably the best candidate for such an influence, by virtue 
of its function. Remarkably, dysmorphic facial features 
were observed in six patients from whom clinical pheno-
typic data were available (Bengesser et al. 2010; Pasmant 
et al. 2010). Since the RNF135 gene was not deleted in 
these patients, it would appear that RNF135 haploinsuf-
ficiency cannot be held responsible for the dysmorphic 
facial features in these individuals. The RNF135 gene is 
located 46-kb upstream of the centromeric breakpoint of 
type-3 NF1 deletions. However, it cannot be unequivo-
cally excluded that a regulatory element which influ-
ences RNF135 expression has been deleted in patients 
with type-3 NF1 deletions. The deletion of such a regu-
latory element could have impaired RNF135 expression 
in those patients with type-3 deletions, a postulate which 
remains to be investigated. Unfortunately, since it is 
not yet known if patients with type-3 NF1 deletions are 
affected by childhood overgrowth or tall stature as adults, 
no further conclusions can be drawn concerning RN135 
haploinsufficieny and its role in height determination in 
patients with NF1 deletions. Detailed clinical character-
isation of a larger number of patients with type-3 NF1 
deletions would be necessary to assess the contribution 
of the genes listed in Table 1 to the clinical phenotype 
associated with large NF1 deletions.

The clinical phenotype in NF1 microdeletion vs. 

NF1 microduplication patients

For many disease-associated microdeletions encompass-
ing several hundred kb, the reciprocal microduplications 
have been identified. In most instances, microdeletions 
and the reciprocal microduplications differ in terms of the 
associated clinical phenotype (reviewed by Vissers and 
Stankiewicz 2012; Weise et al. 2012). Microduplications 
reciprocal to NF1 microdeletions are not associated with 
a classical NF1 phenotype but instead with developmen-
tal delay and learning disabilities as the major clinical 
features. So far, 29 NF1 microduplication carriers have 
been reported, 18 of them were unrelated cases (Lu et al. 
2007; Grisart et al. 2008; Moles et al. 2012; Coe et al. 
2014; Kehrer-Sawatzki et al. 2014). None of the individu-
als with an NF1 microduplication so far reported exhib-
ited neurofibromas or other NF1-associated tumours. 
Only two of the 29 NF1 microduplication carriers had 
CALS. However, these CALS were atypical, with irregu-
lar borders and nonhomogeneous pigmentation which is 
not generally characteristic of those CALS typically seen 
in patients with NF1 (Kehrer-Sawatzki et al. 2014). One 
of the two NF1 microduplication patients with CALS 
fulfilled the diagnostic criteria for NF1 because he not 
only had ten CALS but also Lisch nodules. Since only 
blood cells from this patients were available for investi-
gation, it could not be excluded that the NF1 microdu-
plication observed in this patient was of postzygotic ori-
gin and that the patient might also harbour cells in his 
body that contained the reciprocal NF1 microdeletion 
(rather than the NF1 microduplication). The potential co-
occurrence of cells with the reciprocal NF1 microdele-
tion could have been responsible for the CALS and Lisch 
nodules observed in this patient. Furthermore, it could 
not be excluded that somatically acquired NF1 muta-
tions in melanocyte progenitor cells contributed to the 
occurrence of CALS and Lisch nodules in this individual. 
Since melanocytes from CALS of this patient could not 
be investigated, his clinical manifestations are difficult to 
interpret with regard to the underlying mutation (Kehrer-
Sawatzki et al. 2014). Nevertheless, the analysis of the 
other 28 NF1 microduplication carriers reported to date 
implies that these duplications do not cause a classical 
NF1 phenotype.

Importantly, the clinical phenotype associated with 
NF1 microdeletions is fully penetrant; clinically unaf-
fected individuals with germline NF1 microdeletions 
have not been reported. By contrast, three carriers of 
familial NF1 microduplications have been observed 
who, according to the authors, do not exhibit any obvi-
ous clinical signs (Grisart et al. 2008; Moles et al. 2012). 
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However, NF1 microduplications are very unlikely to be 
frequent neutral copy number variants since they have 
not been observed in a total of 30,134 control individu-
als (Shaikh et al. 2009; Cooper et al. 2011; Moles et al. 
2012; Coe et al. 2014). In a disease context, NF1 micro-
duplications have been observed in 14 unrelated individu-
als identified from among a total of 77,902 patients who 
were investigated by array CGH due to developmental 
delay (Moles et al. 2012; Coe et al. 2014).

NF1 microdeletions are estimated to occur with a fre-
quency of approximately 1 in 60,000 individuals, calcu-
lated on the basis that large NF1 deletions are observed 
in ~5% of all patients with NF1 which occurs with an 
incidence of ~1 in 3000. NF1 microduplications were 
not observed in 30,134 control individuals analysed by 
array CGH (Shaikh et al. 2009; Cooper et al. 2011; Moles 
et al. 2012; Coe et al. 2014), but this number of indi-
viduals is still too low to estimate the frequency of NF1 
microduplications in the general population or to assess 
whether NF1 microdeletions are more frequent than NF1 
microduplications.

Conclusions

NF1 microdeletions are often associated with a severe clini-
cal phenotype characterised by features not observed at all 
(or at significantly lower frequency) in patients with intra-
genic NF1 mutations. Although many published studies have 
described the NF1 microdeletion-associated phenotype, what 
is lacking are large studies comparing NF1 patients with and 
without NF1 microdeletions according to standardised evalu-
ation criteria to ensure that the same analytical methods are 
identically applied in the investigation of both patient groups. 
Ideally, such studies should be performed by comparing 
patients with NF1 microdeletions and patients with intra-
genic loss-of-function NF1 mutations to minimise the effects 
of mutation severity. Further, these studies should include 
sufficiently high numbers of patients to perform meaning-
ful statistical analysis whilst the age of the patients should be 
matched since many NF1-associated features are age-related. 
This would be best performed as a multicenter collaborative 
study to collect large numbers of patients with different NF1 
microdeletion types to analyse the different deletion types 
separately. Comprehensive comparative analyses of this kind 
could help to answer several open questions that have not 
so far been systematically addressed, e.g., whether an early 
(pre-pubertal) onset of growth of multiple cutaneous neu-
rofibromas is significantly more prevalent in children with 
NF1 microdeletions as compared to children with intragenic 
NF1 mutations. In addition, a comparative analysis includ-
ing a large number of age-matched adult patients is urgently 
required to ascertain whether high numbers of cutaneous 

neurofibromas (N > 1000) occur significantly more often in 
patients with NF1 microdeletions than in patients with intra-
genic mutations. Clearly, these and other analyses of the gen-
otype–phenotype relationship should be performed so as to 
include patients with non-mosaic NF1 microdeletions with 
well characterised deletion breakpoints to assess the number 
and identity of the co-deleted genes. The most frequently 
occurring type-1 NF1 deletions are important with regard 
to extended genotype-phenotype correlations since they are 
the easiest group in which to discern such correlations; how-
ever, the less frequent but recurrent type-3 NF1 deletions are 
also of interest. Analyses of a larger number of patients with 
type-3 NF1 microdeletions would be necessary to determine 
the influence of genes such as RNF135 on the overgrowth 
and dysmorphic facial features, or the influence on the 
deletion-associated phenotype of other genes not rendered 
hemizygous by the type-3 NF1 deletions (Fig. 1). Although 
the deletion of SUZ12 may well predispose patients with 
NF1 microdeletions to malignancy, in particular to the devel-
opment of MPNSTs, the reasons for the disproportionately 
higher frequency of benign plexiform, subcutaneous and spi-
nal neurofibromas in patients with NF1 microdeletions is still 
unclear. It is possible that deleted genes other than NF1 may 
also promote tumorigenesis and such additive effects could 
be investigated by the targeted knockout of individual genes 
located within the NF1 microdeletion interval using the 
CRISPR/Cas9 system in human cells. Similar experiments 
might also be performed with mouse cells but it should be 
appreciated that the genomic region on mouse chromosome 
11 orthologous to the NF1 microdeletion region exhibits dif-
ferences in both the number and arrangement of genes as 
compared with the human genomic region at 17q11.2 (Jenne 
et al. 2003).

Although NF1 microdeletion patients as a group exhibit 
a more severe clinical phenotype than that generally exhib-
ited by patients with NF1 intragenic lesions, a certain 
degree of variability in terms of the expression of clinical 
symptoms is observed when individual patients with NF1 
microdeletions are compared, even in cases where their 
germline deletions are identical. In patients with intra-
genic NF1 mutations, the level of expression of the wild-
type NF1 allele has been suggested to impact upon the 
clinical phenotype since skewed allele-specific expression 
of the NF1 gene has been observed in healthy individu-
als (Hoffmeyer et al. 1995; Cowley et al. 1998; Jentarra 
et al. 2012). It would be important to investigate whether 
the phenotypic variability observed between patients with 
NF1 microdeletions might also be caused by differences 
in expression of the wild-type alleles of the genes that are 
present in only one copy owing to the large NF1 deletion. 
Such analyses, as well as an extended comparative analysis 
of the clinical phenotype of NF1 patients with and with-
out NF1 microdeletions, would be necessary to improve 
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our understanding of the mechanisms involved as well as 
to characterise the deletion-associated phenotype in a more 
systematic and comprehensive manner.
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