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Chemokine receptors are members of the G protein-coupled receptor superfamily,

which together with chemokine ligands form chemokine networks to regulate various

cellular functions, immune and physiological processes. These receptors are closely

related to cell movement and thus play a vital role in several physiological and

pathological processes that require regulation of cell migration. CXCR4, one of the most

intensively studied chemokine receptors, is involved in many functions in addition to

immune cells recruitment and plays a pivotal role in the pathogenesis of liver disease.

Aberrant CXCR4 expression pattern is related to the migration and movement of liver

specific cells in liver disease through its cross-talk with a variety of significant cell

signaling pathways. An in-depth understanding of CXCR4-mediated signaling pathway

and its role in liver disease is critical to identifying potential therapeutic strategies.

Current therapeutic strategies for liver disease mainly focus on regulating the key

functions of specific cells in the liver, in which the CXCR4 pathway plays a crucial

role. Multiple challenges remain to be overcome in order to more effectively target

CXCR4 pathway and identify novel combination therapies with existing strategies. This

review emphasizes the role of CXCR4 and its important cell signaling pathways in

the pathogenesis of liver disease and summarizes the targeted therapeutic studies

conducted to date.
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INTRODUCTION

Liver disease is a leading cause of illness and death in the world (Wang et al., 2014; Marcellin and
Kutala, 2018). In recent years, the incidence of liver disease such as alcoholic liver disease (ALD),
non-alcoholic fatty liver disease (NAFLD), viral hepatitis, liver fibrosis and cirrhosis, hepatocellular
carcinoma (HCC) and liver failure (LF) has gradually increased (Wang et al., 2014, 2021). Because
the molecular mechanism of liver disease is very complicated, there is still no clinically effective
treatment for specific pathogenesis. The current academic opinion holds that specific cells in the
liver play a significant role in the pathophysiology of liver disease (Poisson et al., 2017; Cai B.
et al., 2020). However, how these cells play a role in liver disease, and the specific molecular
mechanisms that regulate cellular functions are still not fully elucidated. Therefore, in-depth study
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of liver disease progression mechanisms and specific cellular
functions, as well as the determination of crucial node molecules
are important scientific problems to be solved in the field of liver
disease research.

Chemokines, also known as chemotactic cytokines, are a large
family of small and secreted proteins with molecular weights
in the range of 8–12 kDa that are involved in a variety of
cellular functions, including inducing target cell chemotaxis
(migration), guiding cell movement and mediating immune
cell trafficking (Roussos et al., 2011; Kolaczkowska and Kubes,
2013; Griffith et al., 2014; Chen w. et al., 2018; Laufer et al.,
2019). Chemokines have become a large family of more than
50 members. Chemokine receptors are 7-transmembrane (7TM)
G protein-coupled receptors (GPCRs), which are subdivided
into four types (CXCR, CX3CR, XCR, and CCR) according to
the class of chemokines they bind (Bussmann and Raz, 2015).
Among them, CXC chemokine receptors, including CXCR1
to CXCR7, are one of the largest chemokine families and
play important roles in several physiological and pathological
processes (Ullah, 2019). They are mainly expressed on immune
and inflammatory cells and are also present in non-immune
cells such as resident cells within the liver (Zlotnik et al., 2011;
Choi et al., 2016). CXC chemokine receptors can be grossly
defined as inflammatory, homeostatic or dual-function receptors
based on the ligands they bind (Zlotnik and Yoshie, 2012).
The major ligands of CXC chemokine receptors are shown
in Figure 1.

C-X-C motif chemokine receptor 4 (CXCR4) is a chemokine
receptor that has been intensively studied because of its
significant role in cellular functions, immune processes, growth
and development, and liver disease (Qin L. et al., 2018; Zheng
et al., 2018; Ullah, 2019; Yang et al., 2019). Its role in liver disease
may involve the regulation of the migration and movement of
hepatocytes, hepatic stellate cells (HSCs), Kupffer cells (KCs),
fibroblasts, endothelial cells and circulating immune cells (Chen
w. et al., 2018). In the liver environment, CXCR4 is ubiquitously
expressed in most liver cells such as HSCs, KCs and liver
sinusoidal endothelial cells (LSECs), but also in malignant cells
(Hong et al., 2009; Ding et al., 2013; Wang et al., 2018, 2020).
CXCR4 can bind to C-X-C motif chemokine 12 (CXCL12),
and CXCL12, also known as stromal cell-derived factor-1 (SDF-
1), is the only specific endogenous ligand for CXCR4 (Ullah,
2019). CXCL12 (SDF-1) plays an important role in several
physiological and pathological processes by binding to CXCR4
and then participating in cell localization, chemotaxis, activation,
migration, proliferation and differentiation (Zhuo et al., 2012;
Janssens et al., 2018; Daniel et al., 2020). There is mounting
evidence that the CXCR4 and its ligand provide potential targets
for the treatment of liver disease, tumors, and cardiovascular
disease (Zhuo et al., 2012; Döring et al., 2017; Wang et al.,
2018). To date, a number of therapeutic studies have been
conducted in combination targeting CXCR4 and its ligand
(Sung et al., 2018; Zheng et al., 2019). This review aims to
provide a comprehensive overview of the role of CXCR4 and its
ligand in liver disease, including its potential as a therapeutic
target, and summarize the therapeutic studies of combined
targeting CXCR4 pathway.

BIOLOGY OF CXCR4 AND ITS LIGAND

Chemokines (chemotactic cytokines) are a family of small and
highly conserved proteins that bind to and signal through
cell surface 7TM G protein-coupled receptors, which in turn
regulate cell migration and function (Hughes and Nibbs,
2018). The four types of chemokine receptors, based on
their expression status and functions executed in healthy
and disease states, are further divided into constitutively
expressed homeostatic chemokine receptors, inducibly expressed
inflammatory chemokine receptors, and dual-type chemokine
receptors with both characteristics (Mamazhakypov et al.,
2021). In addition to the above four types (CXCR, CX3CR,
XCR, and CCR), chemokine receptors also include a group
of atypical chemokine receptors (ACKRs), which bind to
different families of chemokines, but mainly act as decoy
and scavenger receptors (Meyrath et al., 2020). Among these
chemokine receptors, CXCR1-7, as important members, have
been extensively studied in various organs and systems, both
in physiological and pathological conditions. For instance,
CXCR1 and CXCR2 are involved in the pathogenesis of
inflammation and fibrosis (Kormann et al., 2012; Mattos
et al., 2020); CXCR3 plays important roles in angiogenesis
and tumors (Quemener et al., 2016); CXCR4 regulates the
development of hematopoietic and nervous systems, and
modulates different cellular functions, including cell migration,
chemotaxis, differentiation, growth, activation, proliferation,
survival and apoptosis (Murphy and Heusinkveld, 2018); CXCR5
is closely related to immunomodulation (Zhang et al., 2017);
CXCR6 and CXCR7 are mainly involved in the regulation
of inflammation and cellular functions (Humpert et al., 2014;
Butcher et al., 2016; Chang et al., 2018). Interestingly, CXCL12
can also bind to CXCR7 (also known as atypical chemokine
receptor 3, or ACKR3), even with a greater affinity than to CXCR4
(Guo et al., 2015; Liepelt and Tacke, 2016). Notably, among
CXCR1-7, CXCR4 is the most intensively studied, and it plays
an important role in many pathophysiological processes through
different signaling pathways.

Chemokine receptors typically interact with a variety
of chemokines to signal, but CXCR4 is an exception, and
is specific for the chemokine CXCL12. Together, they
constitute CXCR4 pathway that normally play a significant
role in the development of multiple systems, but they
are also important in disease. CXCR4 signaling is mainly
mediated by proteins that interact with receptors, including
heterotrimeric G proteins, G protein receptor kinases (GRKs)
and β-arrestin adapter proteins (Wang and Knaut, 2014).
CXCL12 binding to CXCR7 usually leads to β-arrestin
mediated signaling (Daniel et al., 2020). Heterotrimeric G
proteins are composed of Gα, Gβ, and Gγ subunits. In the
inactive or basal state, the Gα subunit contains guanine
nucleotide diphosphate (GDP) (Cojoc et al., 2013). When
chemokines stimulate the activation of the receptor CXCR4
and promote interaction between the receptor and the trimeric
G-protein α, βγ. This leads to the exchange of GDP for
GTP bound to Gα subunits and the dissociation of the Gβγ

heterodimers (Mamazhakypov et al., 2021). The dissociated
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FIGURE 1 | Classification of CXC chemokine receptors. CXC chemokine receptors are classified according to the ligands they bind, followed by an R (representing

receptor) and a number corresponding to the order of discovery. These CXC chemokine ligands are also known as GRO-α (CXCL1), GRO-β (CXCL2), GRO-γ

(CXCL3), ENA78 (CXCL5), GCP-2 (CXCL6), NAP-2 (CXCL7), IL-8 (CXCL8), MIG (CXCL9), IP-10 (CXCL10), I-TAC(CXCL11), SDF-1(CXCL12), BCA-1(CXCL13), and

SR-PSOX(CXCL16).

subunits promote downstream signaling through different
pathways (Figure 2).

The different pathways of GPCRs signaling depend on the
coupled Gα subunits, which are divided into four families: Gαs,
Gαi, Gαq, and Gα12. Indeed, CXCR4 can signal by coupling to
different families of Gα subunits (Wu et al., 2012; Bar-Shavit
et al., 2016). CXCR4 coupled to Gαs stimulates adenylate cyclase
(AC), whereas CXCR4 bound to Gαi inhibits AC (Rosciglione
et al., 2014; Piovan et al., 2018). AC serves as an effector enzyme
that catalyzes the conversion of adenosine-5′-triphosphate (ATP)
into cyclic adenosinemonophosphate (cAMP), thereby activating
cAMP-dependent protein kinase (PKA), which further regulates
mitogen-activated protein kinase (MAPK) signaling pathway
(Wang et al., 2015; Teixidó et al., 2018). In addition, Gαs and
Gαi can also change the activity of Src tyrosine kinase, thereby
affecting its role in signal integration (Chiou and Zennadi,
2015). Gαq coupled to CXCR4 converts phosphatidylinositol-
4,5,-bisphosphate (PIP2) into inositol-1,4,5-trisphosphate (IP3)
and diacylglycerol (DAG) by activating phospholipase Cβ

(PLCβ). DAG activates a family of protein kinases (PKs),
including PKC, which phosphorylates a number of downstream
effectors, such as the Ras signaling pathway (Irnaten et al.,
2020); while IP3 diffuses to the endoplasmic reticulum (ER)
membrane and binds to gated calcium ion (Ca2+) channels,
triggering the release of calcium from intracellular storage
into the cytoplasm (Dessein et al., 2010). CXCR4 signaling
often requires this intracellular calcium mobilization to drive
(Engevik et al., 2019). Moreover, CXCR4 coupled to Gα12
further activates Rho-related PK (ROCK) by activating the
Ras homolog gene family member A (RhoA), which in turn
participates in different cellular functions (Zainal et al., 2018;
Figure 2). Activation of phosphoinositide-3-kinase (PI3K) by
CXCR4 is predominantly mediated by Gβγ subunits (Teicher
and Fricker, 2010). PI3K converts PIP2 to phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), triggering a signaling cascade that

leads to the activation of the serine/threonine kinase Akt (Akt)
and several of its downstream targets, including mammalian
target of rapamycin (mTOR) (Qian et al., 2009; Xu et al., 2020).
Functionally, in response to CXCR4-mediated signaling, the
PI3K/Akt pathway could regulate a variety of cellular activities,
including cell migration and survival (Qian et al., 2009; Figure 2).

In addition to signaling via G proteins, activated receptors
recruit β-arrestin, which can result in G protein-independent
activation of MAPK signaling pathway (Wang and Knaut, 2014).
Upon receptor activation, CXCR4 promotes the recruitment of
GRKs and other kinases that induce site-specific phosphorylation
of the cytoplasmic loops and C-terminus, leading to association
with β-arrestin (Pozzobon et al., 2016). β-arrestin mediates
receptor desensitization, and targets the receptor for lysosomal
degradation following protein internalization and trafficking
(Cojoc et al., 2013; Smith and Rajagopal, 2016). Furthermore, β-
arrestin also serves as scaffolds for the activation of a variety of
signaling molecules, including transcription factors and kinases,
such as extracellular signal-regulated kinases 1/2 (ERK1/2) in
complex with RAF and MEK1/2 (Figure 2; Mamazhakypov
et al., 2021). These pathways, together with the heterotrimeric
G proteins-mediated signaling, play important roles in the
pathophysiology of diseases, including liver disease (Figure 3).

THE REGULATORY ROLE OF CXCR4
AND ITS LIGAND IN HEPATITIS

Hepatitis is an inflammation of the liver that can be caused
by different types of infectious agents such as toxins or viruses
(Wang et al., 2021). If left untreated, hepatitis can lead to
serious health problems, including liver damage, liver fibrosis
and cirrhosis, liver failure, liver cancer, and even death. Although
the pathophysiology of hepatitis has not been fully elucidated,
many studies have demonstrated the role of CXCR4 and its ligand
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FIGURE 2 | The main signaling pathways and cellular functions of CXCR4. Upon CXCR4 activation, Gα and Gβγ subunits activate different downstream signaling

pathways including RhoA/ROCK, cAMP/PKA, PI3K/Akt/mTOR, JAK/STAT, Ras/RAF/ERK1/2, Src, and PLCβ. GRK phosphorylates CXCR4, enabling β-arrestin to

bind and internalize CXCR4, which can lead to receptor recycling if receptor phosphorylation is reversed by PP2A or degraded in lysosomes. β-arrestin bound to

CXCR4 can also activate MAPK pathways, such as JNK and ERK1/2. These downstream signaling pathways of CXCR4 regulate a variety of cellular functions, such

as cell migration, chemotaxis, growth, proliferation, survival and apoptosis. AC, adenylate cyclase; Akt, protein kinase B; ATP, adenosine-5′-triphosphate; cAMP,

cyclic adenosine monophosphate; DAG, diacylglycerol; ER, endoplasmic reticulum; IP3, inositol-1,4,5-trisphosphate; ERK1/2, extracellular signal-regulated kinases

1/2; GRK, G protein receptor kinases; JAK, Janus kinase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of

rapamycin; PI3K, phosphoinositide-3-kinase; PIP2, phosphatidylinositol-4,5,-bisphosphate; PIP3, phosphatidylinositol (3,4,5)-trisphosphate; PLCβ, phospholipase

Cβ; PKA, protein kinases A; PKC, protein kinases C; PP2A, protein phosphatase 2; RhoA, Ras homolog gene family member A; ROCK, Rho-related PK; STAT, signal

transducer and activator of transcription.

in hepatitis. CXCR4 normally interacts with CXCL12 to initiate
downstream signaling pathways. CXCR4 then plays a crucial role
in regulating signal transduction, maintaining the homeostasis
of inflammatory responses, and chemotaxis of inflammatory
cells. Importantly, the mechanisms of CXCR4 signaling mediated
inflammatory responses may affect the effective chemotactic
function of inflammatory cells, such as lymphocytes, neutrophils
and monocytes (Tian et al., 2019). These inflammatory cells are
chemotactic to the site of inflammation and migrate into the
tissues, which in turn participates in the inflammatory response
of the tissues (Shi and Pamer, 2011). Indeed, in inflammatory
liver disease, most liver-infiltrating lymphocytes express CXCR4,
and its intensity is more significantly up-regulated in liver-
infiltrating lymphocytes than in peripheral blood lymphocytes
(Terada et al., 2003). Here, in Concanavalin A-induced T cell
mediated hepatitis, the transmigration of CXCR4+ total CD4+

T cells are enhanced and accumulates in the inflamed liver tissue.
This hepatic recruitment of CD4+ T cells population is mainly
facilitated by LSECs providing perivascularly expressed CXCL12
through CXCR4 dependent intracellular transport mechanisms
(Lutter et al., 2015). Consistently, in hepatitis with alcoholic
liver disease, CXCR4 dependent migration of lymphocytes into
the tissue is significantly increased in response to treatment
with ethanol, resulting in recruitment of CD4+ and CD8+

lymphocytes into liver tissue (Karim et al., 2013). The homing
and migration of inflammatory cells to the liver is also critical
for the progression of non-alcoholic steatohepatitis (NASH). The
pathophysiology of NASH has not been completely elucidated,
but it is generally accepted in academia that immune cell
recruitment is a crucial factor in initiating and expanding
liver inflammation, which contributes to the progression from

simple steatosis to NASH (Yu et al., 2019). Here, CXCL12 and
CXCR4 protein levels are significantly increased, and CD4+ T
cells are hyperresponsive to CXCL12 in NASH liver (Bigorgne
et al., 2008; Li et al., 2020). Importantly, CXCL12 promotes the
recruitment of CD4+ T cells in NASH and is dependent on
CXCR4, which is attributed to the increased affinity of CXCL12
to CXCR4 (Boujedidi et al., 2014). Moreover, in NASH, Mallory-
Denk Bodies (MDB) is formed via the NFκB-CXCR4/7 (CXCR4
and CXCR7) pathway, which in turn participates in ongoing
inflammation (Liu H. et al., 2014). Notably, AMD3100, as a
CXCR4 antagonist inhibits the chemotactic effect of CXCL12 to
CD4+ T cells and reduces the number of CD4+ T cells that reach
the liver (Boujedidi et al., 2014). Thus, CXCR4 and its ligand offer
potential targets for pharmacologic therapies for NASH.

The CXCR4 signaling pathway also plays a vital role in
virus-induced hepatitis. Viral hepatitis is one of the most
common chronic liver disease, and persistent viral infection
could lead to liver fibrosis and cirrhosis, HCC and liver
failure (Ringehan et al., 2017). One of the important reasons
for the progression of viral hepatitis is immune imbalance,
which may be mediated by inflammatory cells. Notably, during
chronic hepatitis virus infection, chemokine-chemokine receptor
interactions are particularly critical for recruiting T cells to sites
of inflammation in the liver (Nishitsuji et al., 2013). Indeed, the
CXCL12/CXCR4 pathway plays a crucial role in the recruitment
and retention of T cells in the liver during chronic hepatitis
C virus (HCV) and hepatitis B virus (HBV) infection (Wald
et al., 2004). The expression of CXCR4 is significantly enhanced
in HCV and HBV-associated hepatitis tissues compared to
normal liver tissues (Hong et al., 2009; Boissonnas et al.,
2016; Zhu et al., 2016). Notably, in isolated peripheral blood
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FIGURE 3 | Regulation of liver disease by CXCR4 and its ligand. (A) In toxin-induced hepatitis, the CXCL12/CXCR4 axis promotes the migration of CD4+ and CD8+

cells to the liver and induces aggregation of inflammation. (B) CXCL12 is dependent on CXCR4 to promote the recruitment of CD4+ T cells in NASH, and the

NFκB-CXCR4/7 pathway further promotes inflammation in NASH by forming Mallory-Denk Bodies (MDB). (C) The CXCL12/CXCR4 pathway is involved in the

recruitment and homing of immune cells in the liver during viral hepatitis (HBV, HCV, and HEV) infection. In HBV, hepatitis B virus X protein (HBx) facilitates recruitment

via CXCL12 signaling, and CXCR4 is highly expressed in CD8+ T cells after PEGylated interferon-α (INF-α) treatment and inversely correlates with HBV DNA loads.

(D) The CXCL12/CXCR4 axis promotes migration and homing of mesenchymal stem cells (MSCs), bone marrow mesenchymal stromal stem cells (BMSCs),

umbilical cord-derived mesenchymal stem cells (UC-MSCs), adipose-derived stem cells (ADSCs), urine-derived stem cells (USCs) and hematopoietic stem cells to

the injured liver to ameliorate liver injury and promote liver repair, proliferation and regeneration. Activation of the PI3K/Akt signaling pathway by CXCR4 in BMSCs

could promote cell migration, resulting in better therapeutic effects for liver injury. Hypoxia preconditioning promotes the proliferation and migration of USCs by

inducing CXCR4 signaling, leading to recovery from liver injury. (E) CXCL12 activation of CXCR4 promotes hepatic stellate cells (HSCs) differentiation, proliferation,

activation and contraction via the MAPK, ERK1/2, PI3K/Akt and calcium-independent pathways, inducing collagen I production with fibrotic effects. CXCR4 HIV

promotes liver fibrosis by promoting the phosphorylation of ERK1/2 on activated HSCs and inducing reactive oxygen species (ROS) production in HSCs. The

CXCL12/CXCR4 axis induces migration of MSCs and endothelial progenitor cells (EPCs) into fibrotic liver, aggravating and inhibiting liver fibrosis, respectively. (F) The

CXCL12/CXCR4 axis promotes HCC cells growth, proliferation, metastasis and invasion, and vascular mimicry formation via activation of heterotrimeric G proteins,

MAPK/ERK and PI3K/Akt signaling pathways; and recruits Treg cells to the tumor sites to promote HCC. The CXCL12/CXCR4 axis enhances the recruitment of

endothelial cells and EPCs to HCC and promotes tumor neovascularization. CXCR4 is highly expressed on endothelial cells and can be used as a novel vascular

marker for vessel sprouting in HCC tissues.

cells from HBV patients treated with PEGylated interferon-
α (IFN-α), CXCR4 is also highly expressed in CD8+ T cells,
which is inversely correlated with HBV DNA loads (Liu et al.,
2012). Interestingly, recent studies have shown that hepatitis
B virus X protein (HBx) is a main factor in the development
of HBV-induced disease. HBx increases endoplasmic reticulum
(ER) stress-dependent CXCL12 expression and mediates HBV-
induced recruitment of immune cells into the liver via CXCL12
signaling (Cho et al., 2014). Furthermore, HBx is involved in
the occurrence and development of HBV-related HCC through
the CXCL12/CXCR4/β-catenin signaling axis (Wang C. et al.,
2017). However, the inhibitory effect of AMD3100 on CXCR4
significantly suppressed CXCL12 signaling-mediated recruitment
of immune cells in HBV liver, and significantly disrupted the
effect of CXCL12 on the self-renewal capacity of HBx-expressing
cancer stem-like cells (CSCs) in HBV-related HCC (Cho et al.,
2014; Wang C. et al., 2017). During hepatitis E virus (HEV)

infection, CXCR4 expression is increased in immune cells from
the periphery in patients. Here, the overall profile of tissue-
specific homing receptor CXCR4 expression on the surface of
effector/memory peripheral lymphocytes suggests that these cells
are targeted to homing specifically to the liver (TrehanPati et al.,
2011). Altogether, these data indicate that CXCR4 and its ligand
are essential for hepatitis and provide novel ideas for further
diagnosis and treatment.

THE PROTECTIVE EFFECT OF CXCR4
SIGNALING PATHWAY IN ACUTE LIVER
INJURY AND REGENERATION

Acute liver injury is the manifestation of sudden hepatic injury
and arises from a variety of causes, such as surgical resection,
chemical exposure or ischemia/reperfusion (I/R) events. Liver
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regeneration is critical for acute restoration of liver mass after
resection or injury (DeLeve, 2013). Liver regeneration after acute
injury is always beneficial and has been intensively studied.
Experimental models involving partial hepatectomy or chemical
injury have revealed relevant cellular signaling pathways that are
used to restore the liver to equivalent mass and function to those
prior to injury (Kitto and Henderson, 2020; Michalopoulos and
Bhushan, 2020). Notably, the CXCL12/CXCR4 axis has received
widespread attention in these signaling pathways. The study
found that CXCR4 conditional knock-out mice (i.e., CXCR4f /null

mice were crossed with MxCre mice to get MxCre-CXCR4f /null

mice; CXCR4 was conditionally deleted after induction of Cre
expression by intraperitoneal injection of poly(I)-poly(C) (pIpC)
in eight-week-old mice) are susceptible to severe liver injury,
with increased mRNA expression of several markers related to
liver injury and regeneration in the liver, suggesting that the
CXCL12/CXCR4 signaling is essential for liver regeneration and
prevention of liver disease progression (Tsuchiya et al., 2012).

Currently, mesenchymal stem cells (MSCs) from different
sources are considered to have enormous potential in the
treatment of acute liver injury (Deng et al., 2014; Xiu et al.,
2020). These cells need to migrate to the injury sites to function,
which may be regulated by the CXCL12/CXCR4 signaling axis.
Indeed, the CXCL12/CXCR4 axis promotes the migration of
MSCs to the injury sites to repair liver injury by differentiating
into and fusing with hepatocytes (Hao et al., 2015). Moreover,
targetedmigration ofMSCsmodifiedwith CXCR4 to acute failing
liver improves liver regeneration (Ma et al., 2014). Similarly,
migration and engraftment of MSCs overexpressing CXCR4
into liver grafts improves early liver regeneration of small-for-
size liver grafts (Du et al., 2013). However, down-regulation of
CXCL12 expression could suppress the directional migration of
these MSCs to the injured liver (Lü et al., 2012). The migration of
bone marrow mesenchymal stromal/stem cells (BMSCs) is also
regulated by the CXCL12/CXCR4 signaling, which is involved in
the recruitment of BMSCs to the injured liver, while AMD3100 or
anti-CXCR4 antibody can block this migration (Xiao Ling et al.,
2016). Interestingly, overexpression of CXCR4 in BMSCs can
substantially promote their migration and result in even better
therapeutic effects for acute liver injury. This may be attributed
to the activation of PI3K/Akt signaling pathway in BMSCs that is
downstream of CXCR4 (Xiu et al., 2020). The CXCL12/CXCR4
axis similarly regulates the migration of umbilical cord-derived
mesenchymal stem cells (UC-MSCs) to the injured liver. Herein,
the pretreatment of UC-MSCs by rapamycin increases CXCR4
expression, enhances the homing and migratory capacity of these
cells through the CXCL12/CXCR4 axis and ameliorates liver I/R
injury (Zheng et al., 2018). Furthermore, up-regulation of CXCR4
in UC-MSCs induced by serum from rats with acute liver failure
also promotes the migration and homing ability of stem cells
to the injured liver, which may ultimately be used to treat liver
disease (Deng et al., 2014).

The CXCR4 signaling pathway has also been proven to
promote the migration and directional distribution of other
stem cells at the injury sites (Wu et al., 2015). Urine-derived
stem cells (USCs) have strong self-renewal capacity and multi-
directional differentiation potential. Hypoxia preconditioning

promotes the proliferation, migration and cell fusion of USCs
by inducing CXCR4 signaling, leading to liver tissue recovery
following injury (Hu et al., 2021). Based on the mechanism of
the CXCL12/CXCR4 axis, the systemically transplanted adipose-
derived stem cells (ADSCs) home to the injured liver after
transplantation can stimulate liver regeneration in hepatectomy
and I/R injured model mice (Saito et al., 2014). In addition,
bone marrow (BM) and hematopoietic stem cells also participate
in liver regeneration and proliferation. CXCL12 is required for
effective hematopoietic stem cells mobilization and homing to
the liver after hepatectomy (Lehwald et al., 2014). Specifically,
hematopoietic stem cells are released from the BM into the
peripheral blood, and matrix metalloproteinase 9 (MMP9)
contributes to the mobilization of BM cells in the injured
liver by up-regulating the expression of CXCR4 on BM cells
and attracting BM cells along their CXCL12 gradient (Kawai
et al., 2012). Moreover, up-regulation of CXCL12 expression
also increases recruitment and mobilization of CXCR7+ BM
progenitors of LSECs in the liver and promotes liver regeneration
(DeLeve et al., 2016). In summary, accumulating evidence
indicates that the CXCR4 signaling pathway plays a vital
role in the pathophysiology of liver injury and regeneration,
and strategies targeting this pathway may therefore be of
therapeutic potential.

CXCR4 AND ITS LIGAND IN LIVER
FIBROSIS

Liver fibrosis is the result of a sustained wound-healing response
subsequent to chronic liver injury and aims to restore liver
integrity after injury caused by different causes (Kamdem et al.,
2018). If left untreated, advanced liver fibrosis can lead to
cirrhosis, portal hypertension, and eventually HCC and liver
failure (Marra and Tacke, 2014; Wang S. et al., 2017). Currently,
academic opinion holds that a variety of cells, mainly HSCs,
play a vital role in the pathophysiology of liver fibrosis (Higashi
et al., 2017). In recent years, with the in-depth study of the
mechanism of liver fibrosis, it has been found that CXCR4
and its ligand play a critical role in the pathogenesis of liver
fibrosis via the activation and recruitment of various cells (Chen
et al., 2014; Zhang et al., 2015). Here, the expression levels of
CXCL12 and CXCR4 are significantly elevated in liver fibrosis
and cirrhosis (Wald et al., 2004; Saiman et al., 2015; Xiang
et al., 2017; Chalin et al., 2019). In response to CXCL12, cells
(such as HSCs) expressing CXCR4 can participate in fibrosis and
cirrhosis through migration and activation. HSCs are the cellular
source of most of the extracellular matrix (ECM), and their
activation and migration are the central link of liver fibrosis (Qin
L. et al., 2018). Indeed, HSCs express CXCR4 receptor in vitro
and in vivo, CXCR4 activation by CXCL12 directly promotes
HSCs differentiation, proliferation and activation through the
MAPK, ERK1/2 and PI3K/Akt pathways, which has a fibrotic
effect (Hong et al., 2009; Chen et al., 2014). Moreover, CXCL12
acting on CXCR4 also promotes the contraction and activation of
HSCs in a calcium-independent pathway (Saiman et al., 2013).
Interestingly, studies have shown that CXCR4 expression can
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TABLE 1 | Involvement of CXCR4 and its ligand in liver disease.

Disease Cells Function References

Toxin-induced hepatitis CD4+ T cells LSECs promotes the transmigration of CXCR4+ total CD4+

T cells and accumulates in Concanavalin A-induced

hepatitis by providing perivascularly expressed CXCL12

Lutter et al., 2015

CD4+, CD8+ lymphocytes In alcohol induced hepatitis, CXCR4 dependent migration

of CD4+ and CD8+ lymphocytes into the liver increased

significantly

Karim et al., 2013

Non-alcoholic steatohepatitis CD4+ T cells In NASH liver, CXCL12 and CXCR4 protein levels are

significantly increased, and CD4+ T cells are

hyperresponsive to CXCL12

Bigorgne et al., 2008; Li et al.,

2020

CD4+ T cells CXCL12 promotes the recruitment of CD4+ T cells in NASH

and is dependent on CXCR4

Boujedidi et al., 2014

Viral hepatitis T cells The CXCL12/CXCR4 pathway is involved in recruitment and

retention of T cells in the liver during HCV and HBV infection

Wald et al., 2004

CD8+ T cells In peripheral blood cells from HBV patients treated with

PEGylated IFN-α, CXCR4 is highly expressed in CD8+ T

cells, which is inversely correlated with HBV DNA loads

Liu et al., 2012

Immune cells HBx mediates HBV induced recruitment of immune cells

into the liver via CXCL12 signaling

Cho et al., 2014

Immune cells During HEV infection, CXCR4 expression is increased in

peripheral immune cells of patients and is targeted to

homing specifically to the liver

TrehanPati et al., 2011

Liver injury and regeneration MSCs The CXCL12/CXCR4 axis promotes the migration of MSCs

to the injury sites to repair liver injury and improve liver

regeneration

Du et al., 2013; Ma et al., 2014;

Hao et al., 2015

BMSCs CXCL12/CXCR4 is involved in the recruitment of BMSCs to

the injured liver and overexpression of CXCR4 in BMSCs

can promote their migration and result in even better

therapeutic effects for acute liver injury

Xiao Ling et al., 2016; Xiu et al.,

2020

UC-MSCs Up-regulation of CXCR4 in UC-MSCs promotes the

migration and homing ability of these cells to the injured liver

Deng et al., 2014; Zheng et al.,

2018

USCs Hypoxia preconditioning promotes the proliferation and

migration of USCs by inducing CXCR4 signaling, leading to

liver tissue recovery following injury

Hu et al., 2021

ADSCs The CXCL12/CXCR4 axis regulates ADSCs transplantation

into the injured liver, stimulates liver regeneration

Saito et al., 2014

Hematopoietic stem cells CXCL12 is required for effective hematopoietic stem cells

mobilization and homing to the injured liver

Lehwald et al., 2014

Liver fibrosis HSCs CXCL12 activation of CXCR4 directly promotes HSCs

differentiation, proliferation and activation via the MAPK,

ERK1/2 and PI3K/Akt pathways with fibrotic effects

Hong et al., 2009; Chen et al.,

2014

HSCs The CXCL12/CXCR4 axis promotes the contraction and

activation of HSCs in a calcium-independent pathway, and

induces HSCs proliferation and production of collagen I

Saiman et al., 2013; Chow

et al., 2016

HSCs CXCR4 HIV promotes liver fibrosis by promoting the

phosphorylation of ERK1/2 on activated HSCs and

inducing ROS production in HSCs

Lin et al., 2011; Zheng et al.,

2012

MSCs The CXCL12/CXCR4 axis regulates the migration of MSCs

from the bone marrow to the fibrotic liver, aggravating liver

fibrosis

Chen et al., 2009; Liu Y. et al.,

2015

EPCs CXCL12 induced CXCR4-positive expanded EPCs

transplanted into rat fibrotic liver effectively suppress liver

fibrogenesis

Nakamura et al., 2012

HCC CD4+CD25+ Treg cells CXCL12 secreted in the TME recruits CD4+CD25+ Treg

cells to the tumor sites to contribute to the growth of HCC

Shen et al., 2010

Endothelial cells The secretory CXCL12 modulates CXCR4 in endothelial

cells to regulate neovascularization, which may contribute

to the distant metastasis of HCC

Tsai et al., 2020

EPCs The CXCL12/CXCR4 axis enhances the recruitment of

EPCs to HCC and promotes tumor neovascularization

Wang et al., 2016

(Continued)
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TABLE 1 | Continued

Disease Cells Function References

Endothelial cells CXCR4 is selectively highly expressed on tumor endothelial

cells and can be used as a novel vascular marker for vessel

sprouting in HCC tissues

Meng et al., 2017; Xu et al.,

2017

HCC cells The CXCL12/CXCR4 signaling forms vascular-like channels

through HCC cells and contributes to organ colonization

with blood circulating tumor cells in HCC

Yang et al., 2016; Tang et al.,

2019

HCC cells Increased CXCR4 expression on tumor cells leads to

migration, invasion and EMT of HCC cells

Gao et al., 2018

HCC cells The CXCR4/CXCL12 axis promotes HCC cells growth,

proliferation, metastasis and invasion via activation of

MAPK/ERK and PI3K/Akt signaling pathways

García-Irigoyen et al., 2015;

Yang et al., 2019

HCC cells CXCR4 stimulated by CXCL12 triggers heterotrimeric G

proteins activation, which regulate the migration and

chemotaxis of HCC cells

Li et al., 2019

ADSCs, adipose-derived stem cells; Akt, serine/threonine-protein kinase; BMSCs, bone marrow mesenchymal stromal stem cells; EMT, epithelial-mesenchymal transition;

EPCs, endothelial progenitor cells; ERK1/2, extracellular signal-regulated kinases 1/2; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HEV,

hepatitis E virus; HIV, human immunodeficiency virus; HSCs, hepatic stellate cells; IFN-α, interferon-α; LSECs, liver sinusoidal endothelial cells; MAPK, mitogen-activated

protein kinase; MSCs, mesenchymal stem cells; NASH, non-alcoholic steatohepatitis; PI3K, phosphoinositide-3-kinase; ROS, reactive oxygen species; TME, tumor

microenvironment; UC-MSCs, umbilical cord-derived mesenchymal stem cells; USCs, urine-derived stem cells.

be induced in activated HSCs during the progression of liver
fibrosis (Chow et al., 2016; Yang et al., 2019). The predominance
of CXCR4 expression shift angiocrine response of LSECs, and
reversely stimulate the proliferation of HSCs (Ding et al.,
2013). Subsequently, the binding of CXCL12 to CXCR4 also
induces HSCs proliferation and production of collagen I (Chow
et al., 2016). In addition, in human immunodeficiency virus
(HIV)/HCV co-infected livers, the HIV-1 × 4-envelope protein
gp120 promotes the phosphorylation of ERK1/2 by interacting
with CXCR4 on activated HSCs and has a pro-fibrogenic effects
(Zheng et al., 2012). CXCR4 HIV also regulates the progression
of liver fibrosis by inducing reactive oxygen species (ROS)
production in HSCs and further promoting the expression of
fibrogenesis-related genes (Lin et al., 2011). Given the critical
role of HSCs activation in the progression of liver fibrosis, these
studies suggest that specific targeting of CXCR4 and its ligand
may be beneficial in liver fibrosis.

Currently, several studies have dissected the role of
CXCR4 signaling pathway in HSCs and explored therapeutic
interventions targeting this pathway in liver fibrosis. In vitro
and in vivo studies have found that the inhibition of the
CXCL12/CXCR4 biological axis in liver fibrosis can protect
against the activation andmigration of HSCs, and thus attenuates
liver fibrosis (Liu et al., 2016; Qin L. et al., 2018; Sung et al., 2018;
Ullah et al., 2019). Therefore, specifically targeting CXCR4 for
the treatment of liver fibrosis has become a focus of research.
Here, vascular endothelial growth factor (VEGF) siRNAs and
CXCR4 antagonist AMD3100 encapsulated in nanoparticles
(NPs) targeting CXCR4 can be delivered to fibrotic liver. Upon
entry into the liver, VEGF siRNAs decrease VEGF expression,
inhibit angiogenesis and normalize the distorted vessels in
the fibrotic livers in the carbon tetrachloride (CCl4)-induced
mouse model; AMD3100, as a targeting moiety, suppresses
the progression of fibrosis by inhibiting the proliferation and
activation of HSCs (Liu et al., 2016). Similarly, combined delivery

of MEK inhibitor and sorafenib to the liver via CXCR4-targeted
NPs prevents activation of ERK in activated HSCs and also has
anti-fibrotic effects in the CCl4-induced mouse model (Sung
et al., 2018). Furthermore, co-encapsulation of AMD3100 and
pirfenidone into CXCR4-targeted combination liposomes for
CXCR4 targeting displayed aggressive apoptosis in TGFβ-
induced activated HSCs and significantly reduced α-SMA,
suggesting a propensity to fibrosis regression (Ullah et al., 2019).
But, surprisingly, in the chronic CCl4 model of liver injury,
treatment of mice with AMD3100 did not improve hepatic
fibrosis, and even aggravated liver fibrosis and inflammation
with a specific increase in intrahepatic neutrophils (Saiman et al.,
2015). The reason for this contradiction may be related to the
targeted delivery method, as well as targeting different cells.

During liver fibrosis, CXCR4 pathway appears to be
important for recruiting different cells to the injured liver,
which may partly explain contradictory results of this pathway
in the process of fibrosis and repair. In a mouse model of
CCl4-induced liver fibrosis, the CXCL12/CXCR4 pathway
is a critical chemotactic axis regulating the migration of
MSCs from the bone marrow to the fibrotic liver, and
recruited MSCs play different roles, including aggravating
liver fibrosis and attenuating liver injury (Chen et al., 2009;
Liu Y. et al., 2015). Notably, corticosterone can inhibit the
recruitment and migration of MSCs via down-regulating
CXCR4 and CXCR7 expression in MSCs (Zhang et al.,
2015). In contrast, transplanted CXCR4-positive expanded
endothelial progenitor cells (EPCs), induced by CXCL12
into the rat liver portal tracts, fibrous septa and hepatic
sinusoids, effectively promote the remodeling of damaged
tissues of liver fibrosis and suppress liver fibrogenesis
(Nakamura et al., 2012). Taken together, CXCR4 and its
ligand are functionally and mechanistically involved in
the progression of liver fibrosis. However, simply blocking
profibrotic CXCL12/CXCR4 axis is not sufficient to ameliorate
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TABLE 2 | Summary of drug studies targeting CXCR4 and its ligand in animal models of liver disease.

Disease model Drug Main effects of pharmacological drug References

NASH mice AMD3100 Inhibits the chemotactic effect of CXCL12 to CD4+ T cells and reduces the number of

CD4+ T cells that reach the liver

Boujedidi et al., 2014

HBV mice AMD3100 Inhibition of CXCR4 significantly suppresses CXCL12 signaling mediated recruitment of

immune cells in HBV liver

Cho et al., 2014

Liver injury rats AMD3100 Blocking BMSCs migration to the injured liver Xiao Ling et al., 2016

Liver fibrosis mice AMD3100 VEGF siRNA VEGF siRNAs and AMD3100 are encapsulated in NPs targeting CXCR4 and delivered to

liver fibrosis, inhibiting angiogenesis and HSCs activation to suppress the progression of

fibrosis

Liu et al., 2016

Liver fibrosis mice Sorafenib MEK inhibitor Combined delivery of MEK inhibitor and sorafenib to the liver via CXCR4-targeted NPs

prevents ERK activation in activated HSC and has anti-fibrotic effects

Sung et al., 2018

Liver fibrosis mice AMD3100 Failure to improve hepatic fibrosis and even aggravate liver inflammation and fibrosis with a

specific increase in intrahepatic neutrophils

Saiman et al., 2015

HCC mice Sorafenib AMD3100 Formulation of sorafenib in CXCR4-targeted PLGA NPs modified with AMD3100 efficiently

delivers sorafenib into HCC and endothelial cells to achieve cytotoxicity and

anti-angiogenic effect

Gao et al., 2015

HCC mice Sorafenib Metapristone CXCR4-targeted PEGylated PLGA NPs could co-deliver sorafenib and metapristone into

HCC, thereby enhancing cytotoxicity and synergistically suppressing HCC proliferation and

resistance

Zheng et al., 2019

HCC mice Sorafenib MEK inhibitor The co-delivery of CXCR4-targeted NPs with MEK inhibitor and sorafenib in HCC can

increase the feasibility of dual RAF/MEK inhibition to overcome sorafenib treatment evasion

in HCC

Chen et al., 2017

HCC mice AMD3100 VEGF siRNA Encapsulation of AMD3100 and VEGF siRNA into NPs targeting CXCR4 can effectively

deliver VEGF siRNA to HCC and induce anti-angiogenic effects

Liu J. Y. et al., 2015

AMD3100, CXCR4 antagonist; NPs, nanoparticles; PLGA, poly (lactic-coglycolic acid); VEGF, vascular endothelial growth factor.

liver fibrosis in vivo. Thus, it is necessary to adopt more cell
types, combined with targeted delivery or specific strategies to
modulate the CXCL12/CXCR4 signaling to target this pathway
in liver fibrosis.

CXCR4 SIGNALING PATHWAY IN HCC

Hepatocellular carcinoma (HCC) is the most common primary
malignant tumor of the liver with a high worldwide prevalence
and poor prognosis (Hu et al., 2020). Metastasis is the main
event leading to death in the vast majority of HCC patients
(Ye et al., 2016; Yin et al., 2019). Recent studies have shown
that the tumor microenvironment (TME) plays a crucial role
in cancer metastasis and development (Ye et al., 2016; Chen x.
et al., 2018). During the metastasis and development of HCC,
there is neovascularization and the recruitment and migration
of related cells in the TME (Shen et al., 2010; Katayama
et al., 2019). Here, CXCR4 signaling is the major pathway
involved in the above activities in the TME (Wang et al.,
2016). Indeed, many studies have found that the expressions
of CXCL12 and CXCR4 in peripheral blood of HCC patients
are significantly increased, and CXCR4 expression is positively
correlated with lymph node metastasis and poor outcome of
HCC, affecting the prognosis of HCC patients (Xiang et al.,
2009; Neve Polimeno et al., 2014; Toraih et al., 2016; Qin
L. F. et al., 2018). Moreover, high levels of CXCL12 are
also detected in malignant biopsies of HCC patients. CXCL12
plays a vital role in the recruitment of Treg cells into TME.
Increased numbers of Treg cells were shown in peripheral

blood as well as in the tumor tissue. In brief, CXCL12
secreted in the TME recruits CD4+CD25+ Treg cells to the
tumor sites to contribute to the growth and prosperity of
HCC (Shen et al., 2010). Notably, the secretory CXCL12 in
turn regulates CXCR4 in endothelial cells, reticular fibers to
modulate the TME and regulate neovascularization, which may
contribute to the distant metastasis of HCC. Furthermore,
increased CXCL12 concentration in the TME activates the
CXCL12/CXCR4 axis and enhances the recruitment of EPCs
to HCC, which also promotes tumor neovascularization (Wang
et al., 2016; Tsai et al., 2020). Neovascularization is known
to be one of the major characteristics of HCC. CXCR4 is
selectively expressed on a fraction of tumor endothelial cells
in HCC tissues, and high levels of CXCR4 tend to develop
a sinusoidal vasculature in tumors, which can be used as a
novel vascular marker for vessel sprouting in HCC tissues
(Meng et al., 2017; Xu et al., 2017). Mechanistically, up-
regulated CXCR4 expression on endothelial cells is mediated
by the ERK pathway induced by inflammatory cytokines
derived from tumor conditionedmonocytes/macrophages (Meng
et al., 2017). Activated CXCR4/ERK signaling pathway, in
turn, promotes HCC metastasis through M2 macrophage
polarization (Cai J. et al., 2020). Interestingly, CXCL12 enhances
the expression of VE-cadherin, matrix metalloproteinase 2
(MMP2) and laminin5γ2 via CXCR4 in tumor cells (rather
than endothelial cells), forming vascular-like channels that
promote vascular mimicry (VM) formation and provide blood
perfusion for HCC tissues (Yang et al., 2016). In addition,
stimulation of the CXCL12/CXCR4 signaling contributes to
organ colonization with blood circulating tumor cells in HCC
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(Tang et al., 2019). Increased CXCR4 expression on tumor cells
also leads to invasion, migration and epithelial-mesenchymal
transition (EMT) of HCC cells (Gao et al., 2018).

Therefore, the importance of CXCL12/CXCR4 signaling
in HCC tumor cells can be foreseen. Indeed, CXCR4 and
its ligand CXCL12 initiate cell migration and angiogenesis
via activation of the MAPK/ERK and PI3K/Akt signaling
pathways, thereby promoting HCC cells growth, proliferation,
metastasis and invasion (Yang et al., 2019). Similarly, CXCR7
signaling can also promote angiogenesis as well as HCC
cells growth, invasiveness and differentiation by activating
MAPK/ERK and Akt signaling pathways (Lin et al., 2014;
Xue et al., 2014; Chen et al., 2016). Interestingly, the
CXCL12/CXCR4 signaling induces the expression of matrix
metalloproteinase 10 (MMP10) in HCC cells through the
ERK1/2 pathway, which contributes to angiogenesis, growth
and dissemination of HCC, and in turn, HCC cells stably
expressing MMP10 have increased CXCR4 expression and
migration capacity. This reciprocal crosstalk between the
CXCL12/CXCR4 signaling and MMP10 contributes to
the metastasis and progression of HCC (García-Irigoyen
et al., 2015). Moreover, CXCR4 stimulated by CXCL12
also triggers activation of heterotrimeric G proteins, which
regulate the chemotaxis and migration of HCC cells.
Specifically, CXCR4-induced signaling pathways, including
Gαi, Annexin A2 and Rac, activate actin polymerization to
migrate HCC cells (Li et al., 2019). Notably, CXCR4 serves
as an important intracellular signal transducer, can relay
matrix stiffness signals through ubiquitin domain-containing
protein 1 (UBTD1)-mediated YAP signaling pathway to
drive HCC progression (Yang et al., 2020). Recent studies
have shown that CXCL12 improves cell invasion potential
of HCC cells and CXCR4 overexpression is associated
with aggressive characteristics and poor prognosis of HCC,
while inhibition of CXCR4 activity via CXCR4 knockdown,
AMD3100 or neutralizing antibody administration suppresses
tumorigenesis of hepatoma cells in vitro and in vivo (Liu
H. et al., 2015; Lu et al., 2015). Thus, the CXCL12/CXCR4
signaling has become an attractive target for the diagnosis and
treatment of HCC.

The CXCR4 signaling pathway is receiving increasing
attention because it is clear that targeting this pathway may be
beneficial for HCC. Here, targeting CXCR4 by CRISPR/Cas9
in HCC cells can inhibit invasion, proliferation and migration,
reverse EMT, increase chemosensitivity and decrease the
malignancy of HCC in vitro and in vivo (Wang X. et al., 2017).
In addition, the study found that emodin exerts anti-HCC
effects by targeting and down-regulating CXCR4, which is
related to its inhibition of CXCL12-induced invasion and
migration in HCC cell lines (Man et al., 2013). Another
study found that plumbagin restrains HCC angiogenesis, as
well as HCC cell proliferation and invasion by inhibiting
the CXCL12/CXCR4-CXCR7 axis (Zhong et al., 2019).
Notably, inhibition of CXCR7 expression by transfection
with CXCR7-short hairpin RNA (shRNA) could significantly
inhibit HCC cells and tumor endothelial cells proliferation,
invasion, migration and angiogenesis (Zheng et al., 2010;

Zhao et al., 2017; Wu et al., 2018). Currently, sorafenib
is a multitargeted tyrosine kinase inhibitor approved as a
systemic anti-angiogenic agent for advanced HCC, but its
clinical application is limited due to moderate therapeutic
efficacy and high incidence of acquired resistance resulted
from elevated levels of the CXCL12/CXCR4 signaling induced
by prolonged sorafenib treatment (Zheng et al., 2019). Thus,
targeting down-regulation of CXCR4 expression or intervention
in the CXCL12/CXCR4 signaling pathway might overcome
sorafenib evasion and resistance (Gao et al., 2015; Zheng
et al., 2019). Indeed, formulation of sorafenib in CXCR4-
targeted lipid-coated poly (lactic-coglycolic acid) (PLGA) NPs
modified with AMD3100 efficiently delivers sorafenib into
HCC and human umbilical vein endothelial cells to achieve
cytotoxicity and anti-angiogenic effect in vitro and in vivo.
This highlights the clinical potential of CXCR4-targeted
NPs for delivering sorafenib and overcoming acquired drug
resistance in HCC (Gao et al., 2015). Similarly, CXCR4-
targeted PEGylated PLGA NPs could co-deliver sorafenib
and metapristone (chemopreventive agent targeting SDF-
1/CXCR4 axis) into HCC in vitro and in vivo, thereby
enhancing cytotoxicity and synergistically suppressing
HCC proliferation and resistance (Zheng et al., 2019).
Furthermore, the co-delivery of CXCR4-targeted NPs with
MEK inhibitor and sorafenib to HCC can increase the
feasibility of dual RAF/MEK inhibition to overcome sorafenib
treatment evasion in HCC (Chen et al., 2017). Notably,
encapsulation of AMD3100 and anti-angiogenic substance
VEGF siRNA into lipid-based NPs formulations targeting
CXCR4, namely AMD-NPs, could effectively deliver VEGF
siRNAs into HCC and down-regulate VEGF expression
in vitro and in vivo. Inhibition of CXCR4 by AMD-NPs in
combination with either conventional sorafenib treatment
or VEGF siRNA induces synergistic anti-angiogenic effects
and inhibits local and distant tumor growth in HCC (Liu
J. Y. et al., 2015). Targeting CXCR4 with AMD3100 also
prevents the polarization toward an immunosuppressive
microenvironment after sorafenib treatment, suppresses
HCC tumor growth, reduces metastasis and improves
survival (Chen et al., 2015). Collectively, targeting the
CXCR4 signaling pathway in combination with sorafenib
may provide a promising approach for the safe and effective
treatment of HCC.

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

There is strong evidence that CXCR4 and its ligand play a
key role in multiple liver diseases such as hepatitis, liver injury
and regeneration, liver fibrosis and cirrhosis, as well as in
HCC. Specifically, CXCL12 finely regulates signal transduction
by activating CXCR4 depending on the internal and external
conditions of cells and the pathophysiology of the body,
and then participates in the development of liver disease. In
addition to its conventional role in mobilizing immune cells
to the site of inflammation, the CXCR4 signaling pathway
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also mediates several cellular functions specific to liver disease,
such as promoting the activation and proliferation of HSCs, and
the migration and invasion of HCC cells (Table 1). Although not
yet fully established, CXCR4 and its ligand would seem to have
both beneficial and deleterious effects, depending on the type of
cells they target. For instance, the CXCL12/CXCR4 axis induces
migration of EPCs, which effectively promotes the remodeling of
damaged tissues of liver fibrosis and suppress liver fibrogenesis;
however, this axis also produces fibrotic effects by promoting the
activation, proliferation and migration of HSCs. Thus, exploiting
the pharmacological potential of targeting CXCR4 and its ligand
in liver disease requires a better understanding of their divergent
actions. The studies outlined in this review article support the
view that modulation of CXCR4 and its ligand represents a
viable approach in treating liver disease and that combination
targeted therapymight become another safe and effective strategy
for clinical liver disease treatment (summarized in Table 2).
Importantly, although it seems very clear that CXCR4 and its
ligand play crucial roles in the pathophysiology of several liver
disease, it should be noted that the exact role of targeting
different cells needs to be further studied before targeting the
CXCL12/CXCR4 signaling to treat these diseases.
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