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Abstract—As the convenience and cost benefits of Natural User

Interface (NUI) technologies are hastening their wide adoption, computing

devices equipped with such interfaces are becoming ubiquitous. Used for

a broad range of applications, from accessing email and bank accounts

to home automation and interacting with a healthcare provider, such

devices require, more than ever before, a secure yet convenient user

authentication mechanism. This paper introduces a new taxonomy

and presents a survey of “point-of-entry” user-device authentication

mechanisms that employ a natural user interaction. The taxonomy allows

a grouping of the surveyed techniques based on the sensor type used

to capture user input, the actuator a user applies during interaction,

and the credential type used for authentication. A set of security and

usability evaluation criteria are then proposed based on the Bonneau,

Herley, Van Oorschot and Stajano framework. An analysis of a selection

of techniques and, more importantly, the broader taxonomy elements

they belong to, based on these evaluation criteria, are provided. This

analysis and taxonomy provide a framework for the comparison of

different authentication alternatives given an application and a targeted

threat model. Similarly, the taxonomy and analysis also offer insights

into possibly unexplored, yet potentially rewarding, research avenues for

NUI-based user authentication that could be explored.

Index Terms—Authentication, Emerging interfaces, Natural User Inter-

action, Security and usability.

1 INTRODUCTION

The landscape of user interfaces has dramatically changed in

the last two decades and transformed the way we interact with

computing devices. We have become accustomed to interaction

involving touch, gesture or speech, and use them daily on

smartphones, laptops, smart speakers, wearables, augmented-

reality sets, and even some Internet-of-Things (IoT) devices

(Fig. 1). The interfaces that leverage these natural, intuitive,

everyday user behaviors are known as Natural User Interfaces

(NUIs). In addition to touch, speech and gesture, future NUIs

are also expected to utilize eye gaze and thought as well.

The emergence of NUIs has enabled novel functionalities.

For example, information on the internet can now be accessed

via smart windows and refrigerators. Multi-finger gestures on a

touchscreen or touchpad have simplified scrolling and zooming

of electronic documents (two-finger swipe and pinch). Voice

recognition has become common in homes and cars, facilitating
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home automation and hands-free operation of a smartphone or

a GPS unit while driving. NUIs are also expected to play an

important role in the future in situations where conventional

interfaces, such as the keyboard or mouse, may be inconvenient

or inappropriate (e.g., in a wet lab).

As the use of such NUI-enabled devices becomes more

convenient and prevalent, the risk of sensitive information

being exposed increases. NUI-enabled devices can be used to

authorize sensitive transactions. For example, a smartwatch [1]

can now be used as a digital wallet to enable an e-payment

transaction. Smart speakers now facilitate e-commerce trans-

actions, and more devices with such features are being added

regularly. A convenient and robust authentication mechanism

is needed to protect sensitive information and to prevent such

devices from being used by unauthorized individuals.

Most early computing devices had a keyboard as the input

interface. Consequently, alphanumeric passwords became the

de facto authentication standard. The security and usability

problems associated with passwords have since been extensively

studied [2], [3]. However, new security and usability issues

arise if one attempts to mimic keyboard-based password entry

on NUI-equipped devices. For example, touch interfaces are

not designed for typing-oriented applications. Research has

shown that creating and entering a text password on a virtual

keyboard on a touchscreen is much more difficult and, therefore,

slower [4], [5] due to “fat finger” errors [6], user distraction [7],

and limited touch precision [8], [9]. Therefore, it comes as no

surprise that most users prefer unlocking mechanisms that are

not based on an alphanumeric password on their multi-touch

devices [10].

Authentication techniques based on NUIs can leverage the

unique capabilities of a device interface, such as the ability

to record higher-dimensional data. In traditional interfaces

only a sequence of keystrokes, mouse pointer movements and

mouse-click events are typically captured. In contrast, a modern

touch surface can capture multiple touch locations as well as

touch area, touch pressure, and touch shape. A microphone

can capture a voice signal at a very high sampling rate. A

camera can record images of user interaction, using the whole

body or a part thereof, such as the hand. Furthermore, in

addition to extracting a user’s knowledge (“what you know”),

NUIs can also capture biometric information (“what you are”)

thereby facilitating a variety of multi-factor approaches to

authentication. The captured information can be used not only
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Fig. 1: Examples of devices equipped with natural user interfaces

on a local device but potentially over the Internet, thanks to

the effort to standardize web authentication protocols under

the FIDO alliance [11].

To date, numerous studies have been performed to assess

the benefits of natural interactions in authentication. However,

many of the proposed authentication schemes were developed

for devices whose usage pattern has changed over time and the

possible threats and vulnerabilities were not fully understood at

the time of original publication. In response to new adversarial

threats, some authors have re-evaluated the merits of their

original schemes and, consequently, several variants have been

published over time. In order to sort out this wealth of methods,

a number of surveys have been published to date. These surveys

are typically limited to either a specific mode of access, or a

specific type of authentication input. For example, Bonneau

et al. [12] published a comparative study of authentication

schemes for web or remote access. The schemes considered

were primarily limited to textual or graphical passwords. Biddle

et al. [13] and Suo et al. [14] surveyed a number of graphical

password approaches. Similarly, Bhattacharyya et al. [15] and

Unar et al. [16] reviewed a number of popular and trending

biometrics used for authentication.

The purpose of this paper is to review point-of-entry

user-device authentication on NUI interfaces. This review

complements previous work in two ways. First, it proposes a

taxonomy of authentication methods along three axes:

• sensor type used to capture user input,

• actuator type (body trait) a user applies during interaction,

• credential type used for authentication.

Second, it provides a survey of fixed “point-of-entry” authen-

tication methods1 on NUI devices while clustering them into

distinct categories in the sensor-actuator-credential coordinates.

Then, for each category, we briefly describe methodologies

typically used, and discuss security (performance, threats, etc.)

and usability (convenience, use in public spaces, etc.). We also

point out avenues for future research within each category with

the goal of identifying and highlighting areas where further

studies are needed. Another potentially-useful byproduct of

this survey is the compilation of information about public

datasets collected for user authentication research, that we

have published on-line2 [18].

1. Many of the methods we review are also applicable to continuous
authentication, where a user is continuously monitored and authenticated
throughout the duration of a session. We refer the interested reader to a recent
survey by Patel et al. specifically focused on continuous authentication for
mobile devices [17].

2. http://isis.poly.edu/∼benapa/authen dataset index.html.

This survey does have its limitations. First, not every method

surveyed is exhaustively evaluated against every criterion

discussed. This is mainly due to the non-availability of such

results in the surveyed literature. However, this points to future

research opportunities which could “fill-in” missing pieces.

Second, this survey leans more on being descriptive than

prescriptive. The aim is to systematize the study by grouping

different systems using the proposed taxonomy. Thus, no

attempt is made to establish a gold-standard benchmark against

which all emerging NUI-based authentication methods can be

evaluated. Candidates for such a benchmark could be fingerprint

and face recognition systems or PIN- and pattern-lock systems.

However, they may not be viable for a specific NUI under

consideration. For example, face recognition would not be an

option when considering an authentication mechanism for a

smart speaker. Furthermore, these systems, are widely used,

and their strengths and vulnerabilities have been extensively

studied [19], [20]. Hence, comparisons against them can be

made by a system designer when choosing a scheme. This

survey focuses on the emerging NUI-based authentication

systems that have not been as well studied yet.

The remainder of this paper is organized as follows. We

begin by describing the proposed taxonomy in Section 2. Next,

in Section 3, we discuss a common evaluation framework,

focusing primarily on how security, usability, and performance

pertain to authentication mechanisms. Then, from Section 4 to

Section 8 we review authentication methods with each section

focusing on one sensor type: touch surface, camera, motion

sensor, microphone, and brain computer interface (BCI). In

each section, we group the methods by actuator and credential

type, and discuss methodology used, security and usability

strengths and weaknesses, as well as future research directions.

Finally, in Section 9, we summarize our survey in two tables,

one focused on functionality and one focused on performance,

and discuss viable research directions for the near future.

2 A TAXONOMY FOR NUI-BASED USER AU-
THENTICATION

NUI-based user authentication can be viewed as a process

where a user’s identity is verified using a credential input

gleaned from an actuator action that is captured and recorded

by an NUI sensor. Hence, in this survey, NUI-based user

authentication systems are classified based on three distinct

components: sensor, actuator, and credential, as shown in Fig. 2.
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Fig. 2: A taxonomy of user authentication approaches – actuator versus sensor versus credential

2.1 Sensor

We consider five types of NUI sensors: touch surface, cam-

era, motion sensor, microphone and brain-computer interface.

Below, we briefly describe each sensor type.

• Touch surface (T): Most touchscreen surfaces have an

overlaid array of sensors, usually capacitive or resistive.

They are used to capture a touch gesture, e.g., a fingertip

and hand motion on a 2-dimensional surface. The recorded

signal is a time series of touch-point attributes, such as

x−y coordinates, time stamps, and sometimes (depending

on the surface) pressure information. They are commonly

used today in smartphones, tablets, smartwatches [21],

large interactive displays [22], and more recently in multi-

touch coffee table surfaces [23] and augmented-reality

headsets [24].

• Camera (C): Color cameras are widely available in com-

modity devices such as smartphones, tablets, smartwatches,

laptops, and headsets (e.g., Google Glass). A camera can

serve as a sensor to capture either an image or a video

representing a variety of input credentials from different

actuators. Hand gestures recorded by a camera have been

used as an interface to execute various tasks as well as for

authentication [25]–[28]. A depth or 3-D sensing camera

can capture precise volumetric information from gestural

interaction [29]. Depth cameras are widely used as a 3-D

control interface. For example, the Kinect depth sensor

allows tracking of human body parts, while the Leap

Motion sensor allows tracking of one’s fingers.

A camera can also be used as a gaze- or eye-tracking

interface; to control a device, a user needs to merely

change gaze direction, which is a hands-free operation.

Such hands-free interfaces are expected to become more

common in consumer electronic devices and smart vehi-

cles [30], [31]. In general, there are two types of hardware

for eye trackers: wearables and stationary (fixed) ones [32].

To accurately capture a user’s eye movement, the sensor

hardware usually includes a near-infrared emitting diode

and optical imaging sensors.

Finally, a camera can be used to capture a user biometric,

such as face, iris or fingerprint.

• Motion sensor (MS): In addition to cameras, accelerom-

eters and gyroscopes have also been used to capture

hand and body gestural information [33]. These two

sensor types are frequently embedded into various portable

devices ranging from smartphones, tablets, smartwatches,

instrumented gloves and augmented-reality headsets to

wireless game controllers, such as those used in the

Nintendo Wii, Microsoft Xbox and Sony PlayStation.

While an accelerometer detects linear acceleration of the

device, a gyroscope detects its rotation around a fixed

axis. Together, these sensors can be used to determine the

orientation, movement, and position of a device in 3-D

space [34], [35].

• Microphone (M): A microphone captures voice and thus

allows hands-free interaction with a device. It has been

used as one of the main communication channels between

users and devices in several wearable-device categories

including smartwatches (e.g., Samsung Galaxy Gear, Sony

SmartWatch), augmented-reality headsets with a heads-up

display (e.g., Google Glass, Vuzix m100) and many IoT

devices. In addition, the interface has been embedded

into many portable devices (e.g., mobile phones, GPS

units, tablets, laptops) and smart-home units (e.g., Amazon

Alexa, thermostats [36]).

• Brain-computer interface (BCI): Brain-computer in-

terface is a communication channel between a user

and a machine [37] that does not require any physical

movement. Currently, electroencephalography (EEG) is

used to measure an electrical signal of the brain’s activity.

The EEG signal is a multi-dimensional waveform captured

by a set of electrodes operating at a sampling frequency

of several hundred Hertz. This technology forms the

basis of low-cost commercial-grade BCI products such as

Neurosky’s MindWave [38]. Intel is also preparing to offer

a BCI product in the near future [39]. In addition, tiny and

unobtrusive earbuds can also be used to record EEG data

which, in turn, can be sent wirelessly to a smartphone

and used for interaction [40].
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2.2 Actuator

In a user authentication system, different parts of the human

body may be used as an actuator to interact with a NUI sensor

to present an authentication credential. We consider seven

types of authentication actuators currently in use or under

consideration, namely a finger, hand, head, body, eye, vocal

fold (voice), and brain (thought). We discuss them below.

• Finger (F): A gesture executed by a finger is a non-verbal

interaction mechanism that can be realized via a touch

surface, camera, or motion sensor [41], [42]. On a touch

surface, fingertips’ positions and, sometimes, pressure

information are detected via an array of sensors, usually

capacitive or resistive. When interacting with a camera,

fingertips’ positions are extracted from a series of image

frames of a hand silhouette (if a 3-D camera is used, depth

information for each pixel is also retrieved).

• Hand (Ha): A hand gesture is also a non-verbal interac-

tion mechanism that can be captured by a touch surface,

camera, or motion sensor. Typically, there are two types

of hand gestures: stationary hand pose and hand motion.

They are usually captured by a color (RGB) or color-and-

depth (RGBD) camera, but can also be registered by a

touch surface or a motion sensor [43], [44].

• Head (He): Head movement is another non-verbal inter-

action that can be registered indirectly by a camera or

directly by motion sensors [45]. While a motion sensor

attached to the head can directly measure head orientation

and velocity, they can only be indirectly estimated

from the video stream captured by a camera by using

appropriate algorithms, e.g., optical flow for velocity and

detection of facial landmarks for orientation.

• Body (Bo): Body gesture, a movement of the torso,

head and body limbs, is yet another type of interaction

typically captured indirectly by a color or color-and-depth

camera [46], or directly by a motion sensor [47]. Again,

since such movements are not directly measurable by

a camera, algorithmic solutions are needed to recover

motion parameters from the recorded video stream , e.g.,

by detecting and tracking joints or “interest-points” using

random forests as in the Kinect sensor.

• Eye (E): In addition to being a source for a physiological

biometric, such as an iris pattern, eye’s movements and

gaze can be tracked using a special camera. This can

provide a fast and convenient way for users to interact

with the system [48]. The idea of using gaze movement

as an authentication factor has been around for several

years [49], [50]. The most common information extracted

from both low-cost and expensive camera eye-tracking

systems is a time series of x−y coordinates of the centers

of the left and right pupils. Other information may be

extracted as well, including pupil diameters.

• Vocal fold (V): Voice produced by vocal folds (cords) is a

natural interaction mechanism that we use on a daily basis.

Advances in speech recognition technology have made it

possible to use voice as a human-computer interface and

also as a speaker recognition mechanism [51].

• Brain (Br): Neural activity in the brain, that is loosely

referred to as thought, can be directly recorded using

EEG [52]. Both unintentional “background” thought

processes, with their user-specific characteristics, as well

as intentional thoughts can be used to authenticate users.

2.3 Credential

Typically, the credentials provided by a user can be broadly

classified into one of three types: “something you know”,

“something you are”, or “something you have”. The last one is

considered inconvenient as it requires users to carry an object

(e.g., swipe card, proximity card) and present it to the system

to gain access. This is further complicated by the fact that this

object can be misplaced or lost. Authentication credentials that

do not require a user to carry anything can be classified into

one of the following categories: secrets, behavioral biometrics,

physiological biometrics, and any combination thereof. Each

type is discussed below.

• Secret (S): Secret, or user-specific knowledge, could be

used as an authentication credential. One of the most

common forms of this credential in use today is a text

password entered via a physical or virtual keyboard.

However, with NUI-enabled devices, secret credentials

can also be input by other mechanisms such as a touch

pattern, gaze or thought.

• Behavioral biometrics (B): The emergence of NUIs has

enabled new types of user interaction. Many studies have

indicated that the characteristics of these interactions

(e.g., swipes, gestures, signatures, speech) are significantly

distinct among individuals and can serve as a behavioral

biometric. Therefore, these patterns have been proposed

for use as an authentication factor.

• Physiological biometrics (P): There are several authenti-

cation approaches that do not rely on behavior but instead

use physiological biometric information (e.g., fingerprint,

iris, face) captured through the interfaces described in

Section 2.1.

• Combination (X): Various combinations of a secret,

behavioral biometric and physiological biometric can also

be used to form a multi-factor authentication system.

3 EVALUATION CRITERIA IN AUTHENTICATION

SYSTEMS

The ultimate goal of user authentication on a device is to

prevent unauthorized access. This requires the authentication

mechanism to be secure against relevant threat models. How-

ever, no matter how secure the system is, it will not be effective

if it is difficult to use and hence not adopted by users. Thus,

it is widely accepted that both the security and the usability

of an authentication system need to be investigated. However,

authentication is not limited to the scenario where a user is

sitting in front of a desktop computer. For mobile or wearable

devices, the context of use (or operational characteristics) and

environmental constraints at the time of authentication are

additional important factors to consider when evaluating a

mechanism. That is, a particular scheme may be very effective

when the user is stationary but may not be as effective when
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performing a physical activity, such as jogging. Similarly,

schemes may or may not be effective in the presence of loud

noise, poor lighting conditions, etc.

One recent framework for evaluating authentication schemes

was proposed by Bonneau et al. [12], with a focus on evaluating

web-based authentication. In their framework, a number of

security, usability, and deployability metrics were identified.

These metrics can be divided into two groups: metrics that

correspond to the authentication mechanism and metrics that

relate to aspects of device-server communication. In this

survey, since we are focussed on point-of-entry user-device

authentication, we use the metrics that are directly associated

with the authentication mechanism and ignore those associated

with device-server communication. Furthermore, in terms of

usability evaluation, we align metrics from Bonneau et al.’s

framework with ISO definitions of usability. We propose four

context-of-use characteristics that affect usability, with a focus

on user attention and environmental requirements which are not

included in their framework. Note that, there are other criteria

that need to be considered when selecting an authentication

mechanism, e.g., frequency of use and deployment constraints.

However, these are application-dependent and are not specific

to the mechanism. Therefore, they are not included in the

evaluation criteria here.

3.1 Security

The security of an authentication system refers to its ability

to thwart unauthorized access. Below, we consider three

threats derived from Bonneau et al.’s work. To make the

correspondences clear, we label the elements of the threat

model considered by Bonneau et al. as S1 to S9 following the

nomenclature used in their paper.

• Random guessing: In this scenario, an attacker does

not have access to information about the authentication

credentials and attempts to guess the appropriate input

credential to gain access to the system. Guessing could

be random or based on a dictionary. Guessing is one of

the more common, and simpler, threats to an authenti-

cation system. This is consistent with S3 (Resilient-to-

Throttled-Guessing). We do not consider S4 (Resilient-

to-Unthrottled-Guessing) as throttling is very easy on a

NUI-equipped device and is almost always implemented.

• Targeted impersonation: Here an attacker attempts to

impersonate a victim by exploiting knowledge about

the victim’s personal information. This type of attack is

applicable to authentication systems that use information

from the “what you know” and “what you are” categories.

Knowledge-based approaches (“what you know”) are

vulnerable if users pick weak passwords that are easy to

guess. For example, many people use their date of birth as

their personal identification number (PIN) [53]. Similarly,

authentication using physiological biometrics, like a

fingerprint or face (“what you are”), are also vulnerable to

targeted impersonation which is commonly known in the

biometrics community as a spoofing attack [54]. This issue

occurs because many physical biometrics are available

either as public information (face), or can be inadvertently

left behind (such as fingerprint on a surface). This is

consistent with S2 (Resilient-to-Targeted-Impersonation)

• Physical Observation: Here an attacker learns an authenti-

cation credential by observing (at the moment of entry or

later) the credential that is entered into the authentication

system, with or without the aid of a digital recording

equipment. In the context of mobile devices, this is called

the “shoulder-surfing attack”. Another example of an

observation attack, that is often part of the threat model

for biometric authentication, is the so-called “presentation

attack” [55]. In this scenario, an attacker has an exact copy

(sometimes a digital one) of an authentication credential

or interaction that can be re-used (“played back”) to gain

access to the system. A common instance of this type of

attack is to present facial image or video of a person or

a fake silicone or gelatin fingerprint to gain illegitimate

access to a system. This is consistent with S1 (Resilient-

to-Physical-Observation)

As for S10 (Requiring-Explicit-Consent), most authentication

schemes listed in this survey do provide this security benefit

as users are required to consciously interact with the interface.

Exceptions are schemes in which an authentication factor can

be captured involuntarily, for example in token-based schemes

(which we do not consider in this paper) as well as some of

the schemes that use physiological biometrics like traditional

face and fingerprint based authentication.

Note that, S5 (Resilient-to-Internal-Observation) refers to the

threat where an attacker impersonates a user by intercepting

the user’s input from inside of the user’s device. Examples

include acquiring authentication credentials from sensors at

the authentication moment or stored information (by installing

keylogging malware, gaining root access, etc.) or by decoding

authentication credentials from a signal captured from different

sensors (side channel attacks). In this paper, a discussion

of this threat is omitted as it is more related to security

and functionality of the operating system in-use and the

implementation of authentication schemes, rather than the

design of an authentication scheme itself.

Also, some security criteria listed in Bonneau et al.’s

framework are not considered here since they are not directly

related to user-device authentication. In particular, S6 (Resilient-

to-Leaks-from-Other-Verifiers), S7 (Resilient-to-Phishing), S9

(No-Trusted-Third-Party), and S11 (Unlinkable) are not con-

sidered since they are more related to web authentication. We

also omit S8 (Resilient-to-Theft) as it is related to token-based

authentication.

3.2 Usability

Usability is an important property as it relates to how easily

users can adapt to the system. The usability traits we cover be-

low are in agreement with the three dimensions of ISO’s broad

definition of usability: effectiveness (accuracy and completeness

with which users achieve specified goals), efficiency (resources

expended in relation to the accuracy and completeness with

which users achieve those goals) and satisfaction (freedom

from discomfort, and a positive attitude toward using the

product), and context of use (users, tasks, equipment, e.g.,

hardware, software and materials, and the physical and social
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environments in which a product is used) [56]. Most of these

properties (except for the context of use) are consistent with

Bonneau et al.’s framework that includes additional properties

that do not apply to this survey.

• Effectiveness: In user-device authentication context, effec-

tiveness refers to how easily an authorized user can gain

access to the device and whether the system can renew

a compromised authentication credential. Criteria from

Bonneau et al.’s framework that fall into this ISO metric

are the following:

– U1 (Memorywise-Effortless), or Memorability, refers

to the cognitive burden imposed on users in order

to use an authentication mechanism. This burden

can be compounded when a user needs to remember

credentials across multiple systems and devices.

Memorability is important to consider whenever an

authentication mechanism requires a shared secret

between the user and device. In this work, this

occurs for interactions that require a “what you know”

(knowledge-based) mechanism. For interactions that

are purely “what you are”, there is little cognitive

burden. Memorability can be measured by computing

a recall rate by conducting a multi-session experiment

where users first create a credential and then recall

the same in subsequent sessions on different days.

– U7 (Infrequent-Errors), or True acceptance rate,

refers to how often a system grants access when an

authorized user performs a correct interaction. This

is a particularly important property for interactions

that rely on biometric information. In biometrics, a

captured biometric trait is never exactly the same as

the one enrolled in the system. As a consequence, a

trait that is not equal to any of the enrolled traits, but is

sufficiently close to one of them (within a threshold)

needs to be accepted. This discrepancy results in

two types of possible errors: false acceptance and

false rejection. While the first relates to security

(unauthorized access), the latter relates to convenience

and usability as a user may have to provide the input

credential multiple times and may even be completely

rejected and locked out if the number of attempts

exceeds the permitted number due to throttling.

– U8 (Easy-Recovery-from-Loss) or Changeability

refers to how easily an authentication credential

can be changed or renewed once compromised. In

authentication mechanisms that rely on physiologi-

cal biometric information, e.g., face or fingerprint

recognition systems, changeability is an important

usability concern that also affects security. Typically,

one of two types of biometric information can be com-

promised: the original biometric trait or a biometric

template (the encoding of the original biometric trait)

[57]. For example, in fingerprint recognition systems

either the original fingerprint image or a fingerprint

template can be compromised. Authentication systems

that utilize changeable components, e.g., signature or

custom gesture, can be renewed in the event of a data

breach by enrolling new samples of the credential.

• Efficiency and satisfaction: Since there is an implicit

economic cost involved in deciding whether or not to

use a security mechanism [58], efficiency and satisfaction

are important properties to evaluate for any authentication

system. Criteria from Bonneau et al.’s framework that fall

into this ISO metric are the following:

– U4 (Physically-Effortless) refers to the amount of

effort a user spends in order to provide an input

credential to the authentication system.

– U5 (Easy-to-Learn) refers to the amount of time and

effort a user spends in order to figure out how to

enroll a sample and to provide an input credential to

the authentication system.

– U6 (Efficient-to-Use) refers to the amount of time a

user spends in order to provide an input credential

to the authentication system.

The measurements that have been used to quantify

effectiveness, efficiency and satisfaction can be divided

into two categories: 1) user perception, e.g., the perceived

ease of performing an authentication interaction, and

the perceived time for successful authentication, and

2) statistical metrics, e.g., the actual time required for

successful authentication, and the Failure-To-Enroll rate

(FTE). In this regard, the reliability and validity of any

usability study are important to consider, particularly when

incorporating user perception to evaluate this usability

factor [59].

• Context of use: Authentication systems that require special

user attention or particular environmental conditions would

have limited utility if the usage scenario differs from the

one it was designed for. Therefore, the context of use is

an important criterion to evaluate authentication systems.

Below, we identify four context-of-use constraints that

may affect the usability of an authentication system.

– Eyes-free use: Authentication systems that require a

user to examine information presented on a display

obviously violate this constraint. Such authentication

systems could potentially pose a limit to the user’s

freedom of movement [60] or attention to another task

being performed while authenticating. For example,

recognition-based graphical password systems require

attention focused on the image(s) being presented on

the screen and hence cannot be performed in an eyes-

free mode. Examples of input credentials that can

be used for eyes-free authentication are voice, hand

gestures, and brain signals.

– Hands-free use: During some activities, such as driv-

ing or exercising, users cannot use hands to perform

an action needed for authentication. Examples of

input credentials that can be used for authentication

without the use of hands are eye-gaze, voice, and

brain signals.

– User state and environmental constraints: In practice,

users may want to authenticate while performing

different activities and in different contexts. For

example a user may be driving a car or may be
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in a loud bar. Therefore, user state, such as user

movement when performing actions required by a

given authentication scheme, is an important criterion

to determine the usability or applicability of an authen-

tication mechanism. An authentication mechanism

that requires a user to be stationary cannot be used

while running.

In addition, various environmental factors can neg-

atively affect the quality of a signal used in au-

thentication, thus increasing errors. In voice bio-

metrics, the level of background noise captured by

a microphone is one such factor. In image- and

video-based biometrics, lighting conditions may have

an adverse impact, while in biometrics that require

capacitive sensors, like fingerprints, humidity can

adversely affect the captured signal. Also, voice-based

authentication often needs a quiet location that can

also tolerate auditory disturbances. For example, a

library is quiet but not tolerant of disturbance caused

by voice authentication. However, a park can be quiet

and also tolerant of such disturbance.

Since many emerging devices are designed to be used

in uncontrolled environments, scenarios and contexts, it

is important to consider the above context-of-use factors

when evaluating an authentication mechanism.

Note that U2 (Scalable-for-Users) and U3 (Nothing-to-Carry)

of Bonneau et al.’s framework are not covered here as U2 is

more related to memory interference between authentication

credentials and not intrinsically related to any authentication

system, while U3 is more related to token-based authentication,

which is not covered in this paper.

Apart from the security and usability criteria laid out

above, there can also be privacy concerns raised when an

authentication technique uses physiological biometrics and

perhaps even behavioral biometrics. Several issues related to

privacy have been raised in the literature for physiological

biometric authentication as this information could be viewed

as privacy-invasive. For instance, it could be used to match a

user record from one application with the record from another

application that uses the same biometric modality [61], [62].

Furthermore, it has been shown that biometric samples can

possibly reveal other personal information of a user, e.g., gender,

age, or even user’s genetic or health conditions [61]. Several

techniques to address such concerns have been proposed in the

literature [63], [64]. In this survey, we do not look at privacy

aspects as the solutions that have been proposed do not affect

the usability properties and the threat models that we consider.

In the next five sections, we review a multitude of authentica-

tion systems organized according to the taxonomy presented in

Section 2. Each section focuses on authentication systems

that leverage one sensor type, i.e., touch surface, camera,

motion sensor, microphone or brain-computer interface. Within

each section, methods are grouped by the actuator type (body

part used to perform interaction) and input provided to the

system (secret, behavioral biometric, physiological biometric

or combination thereof). For each sub-group of methods we

discuss security considerations and usability constraints; and

Fig. 3: Android Pattern Lock authentication

for each group we discuss avenues for future research.

4 T-∗-∗ SCHEMES: TOUCH SURFACE BASED

AUTHENTICATION

A touch interaction produces one or more time series of touch-

point coordinates and, for some surfaces, pressure information.

Approaches to authentication using either the raw signal or

extracted features have been developed.

A wide variety of interactions are possible on a touch surface,

e.g., typing on a virtual keyboard, tapping, drawing a shape,

or dragging one or more fingers across the surface. On larger

surfaces, more sophisticated multi-touch interactions are also

possible – surfaces can detect multiple fingers at a time using

one-hand or two-hand gestures. There has been some recent

work that has also demonstrated the use of pressing body parts,

such as an ear, against a touch surface to capture, albeit weak,

physiological biometrics.

As far as the credential input is concerned, a secret pattern

could be entered, behavioral biometrics corresponding to the

traits that influence the input can be captured, and physiological

characteristics of a body part pressed against a touch surface

(e.g., ear shape) can be recorded. Of course, some combination

of these inputs can be also used for authentication. Hence

with respect to the proposed NUI authentication taxonomy, the

categories T-F-∗, T-H-∗, and T-Bo-P are viable.

The rest of the section describes a few representative schemes

in each of these taxonomy classes and discusses their strengths

and weaknesses.

4.1 T-F-S Schemes: Finger-Touch Techniques Based
on a Secret

Perhaps the most widely explored techniques for user authenti-

cation on a touch surface involve using one or two fingers. The

simplest example of such interaction is when a text password

or a PIN is typed on a virtual keyboard [65]. This would be an

instance of a T-F-S scheme as the input is a secret. However,

studies have shown that typing on a virtual keyboard is slower

and harder than on a physical keyboard [5] due to the fat-

finger problem [6], user distraction [7], and limited touch-input

precision [8], [9]. The Android Pattern Lock is another example

of a T-F-S scheme. It is a special case of a broader class of

“Draw-A-Secret” schemes proposed by Jermyn et al. [66] in

1999 for use with a mouse interface, but it is now widely
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Fig. 4: Microsoft Picture Password authentication

adopted in touch interfaces. In this scheme, a user is asked

to create and memorize an exact dot-connected pattern on a

3× 3 grid, as shown in Fig. 3.

A T-F-S scheme based not only on text, digits, or patterns,

but also on points selected on an underlying picture, called

Passpoints, was first presented in [67]. The basic motivation for

such an approach was that humans are better at remembering

visual information as opposed to recalling alphanumeric secrets

or even patterns drawn on a grid [68]. The underlying picture

serves as a cue for a user to recall the points that represent

the password.

There have been many improvements and variations of

Passpoints proposed in the literature. Most of them can be

characterized as T-F-S schemes. Perhaps the most widely used

one is Microsoft’s Picture Password introduced in Windows

8 (Fig. 4). In this case, a user is asked to perform an ordered

sequence of at least three gestures, each being either a tap, a

line, or a circle, on a background image chosen by the user.

A tap gesture is verified if and only if the distance between

the enrolled point and the one captured during authentication

is less than a predefined threshold. The starting and ending

points of a line gesture and the center point of a circle gesture

are verified in a similar manner.

T-F-S schemes can also be implemented when a touch-

surface area is either very small or not overlaid on a display.

For example, gesture-combination lock on Google Glass

authenticates employs very simple touch gestures. A user is

required to perform an ordered sequence of four touch gestures

on a tiny touch surface located on the right of the device. There

are eight gestures from which a user can select: swipe forward,

two-finger swipe forward, swipe back, two-finger swipe back,

hook swipe (swipe forward then back in the same motion

or vice versa), two-finger swipe, tap, and two-finger tap [69].

T-F-S schemes on other small devices, e.g., smart watches,

can employ a similar approach as used on phones, e.g., PIN

or pattern lock. A good survey of authentication schemes on

smart watches is provided in [70].

Security: T-F-S schemes have some major drawbacks from

the security point of view. Perhaps the most notable one is

the weakness of the secret used for authentication, leading

to susceptibility to random guessing. A study by Bonneau et

al. [53] showed that some PINs are much more popular than

others, e.g., “1234”. While blacklisting the most obvious PINs

has shown some promise in blocking random-guessing attacks,

it is barely effective in preventing targeted attacks where date

of birth is chosen. An alternative is to assign the password or

PIN randomly, but random PINs are difficult to memorize and

recall.

Similarly, with respect to “Draw-A-Pattern” schemes, such

as the Android Pattern Lock, a study by Uellenbeck et al. [71]

has shown that the 3x3 lock screen used in Android devices is

weaker than a three-digit randomly-assigned PIN. For example,

most users choose the upper left point as the starting point of

their unlock pattern. Furthermore, unlock patterns themselves

are very predictable and conform to a small set of familiar

shapes. To address this problem, they propose a modification

to the grid layout to diversify lock pattern choice. However,

the usability of such a technique has not been tested. Siadati et

al. [72] proposed two other persuasive approaches: using a

pattern-strength meter, similar to that of a password-strength

meter, and blinking a dot to suggest a starting point during

enrollment that would make the first location more uniformly

distributed.

However, the entropy of graphical passwords gets affected

by the very predictable choice users make given a picture.

Effectively, this entropy is much smaller than the theoretical

limit due to salient parts of an image that users are more likely

to select (hot spots) [73]–[75].

In addition, some T-F-S schemes are vulnerable to targeted

attacks. For example, it is known that users often choose

their date of birth as their PIN. Furthermore, Zhao et al. [76]

found that users frequently choose family photos, and then,

predictably, proceed to perform gestures on their faces. At-

tackers can mimic this behavior and increase the likelihood of

unauthorized access.

Another major drawback of T-F-S schemes is their vulnera-

bility to physical observation (or shoulder surfing). PINs, pass-

words, pattern locks, graphical passwords can all be observed

by an attacker. This is especially true for mobile devices that

are often used in public. In addition to observing from close

proximity, an attacker may also observe someone remotely

by using recorded material that was collected intentionally

or even unintentionally. For example, unintentional recording

could result from a surveillance camera that captured the

authentication event. In the case of a smartphone, it has been

demonstrated that a PIN entry can be automatically recovered

from a video recording made using a Google Glass, hand-held

recording devices, or a public surveillance camera [77], [78].

One defense against physical observation is to place the

attacker at a cognitive disadvantage [79]. For example, when

entering a graphical password, the image could be blurred so

that an attacker, who has no prior knowledge of the context, is

unable to make sense of the image content, but the owner, who

has prior knowledge, can potentially recall it and relate it to the

secret. Similarly, one proposed solution for PIN entry is to use

a randomized keyboard layout as opposed to a fixed one. This

could be used in conjunction with IllusionPIN where a user

and an attacker looking at the screen from different distances

see different layouts [80]. This, however, almost doubles the

time that a user has to spend typing when compared to a fixed

keyboard [77], [78].

Another type of defense suitable for a knowledge-based

authentication mechanism is to use a challenge-response

approach where a user only presents partial information about
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a shared secret during authentication [81]. This again results

in a significant increase in authentication time and hence much

reduced usability.

A security weakness of Android Pattern Lock resulting from

physical observation, in addition to shoulder surfing, is its

vulnerability to a “smudge attack”. A 2013 study by Andriotis

et al. [82] has shown that physical markings on a device, e.g.,

oily residues or smudges left on the touch screen, along with

the knowledge of pattern distributions, can be used to recover

54.54% of lock patterns.

Usability: T-F-S schemes have been widely adopted due to

their effectiveness, efficiency and satisfaction. T-F-S systems

achieve high true-positive rates and yet have high simplicity.

They are memory-wise and physically effortless, easy to learn,

changeable and take little time to perform. One study [10]

indicated significant user preference for the Android pattern

lock mechanism as opposed to alphanumeric passwords with

78% preferring the former. This was supported by, another

study that investigated the relation between user’s handedness

as well as his/her native written language, and user’s perception

in terms of usability and effectiveness of a pattern [83]. User

studies performed for Passpoints by Weidenbeck et al. [67]

with a small group of users gave positive results but they were

completed before the advent of touch surfaces.

However, T-F-S schemes, except possibly gesture-

combination lock (on Google Glass), have limitations in terms

of context of use. They cannot be used in an eyes-free mode

or hands-free mode. They also may be difficult to perform

while moving at moderate to fast speeds. However, typically

they would not be sensitive to ambient conditions such as light

and noise. Finally, the usability of each of these touch-surface

based authentication techniques may depend on the surface

size being used.

4.2 T-F-X Schemes: Finger-Touch Techniques
Based on Behavioral Biometrics and a Secret

As mentioned above, the biggest drawbacks of T-F-S techniques

are the weakness of the secret and the vulnerability to physical

observation. The most widely-used approach to address these

issues is to capture behavioral biometric traits along with the

input. When the input is not a secret, this results in a T-F-B

technique. When it is a secret, we get a combination (X) of a

secret and a behavioral biometric, resulting in a T-F-X scheme.

A simple example of a T-F-X scheme is when information

from a user’s touch-typing style, while entering a password

on a virtual keyboard, is used for authentication. In particular,

Ben et al. [84] have shown that typing characteristics, such as

the specific location pressed on a virtual key, the drift from

finger press to release, the force and pressure of the touch,

and the surface area of the touch, can be used as features

to differentiate users. Similarly, another study conducted on

16 subjects demonstrated that typing styles of text messages

are unique to individuals and are consistent over time [85].

However, when a password is only a few characters long the

authentication error of the system is very high: 32.3% false

acceptance rate (FAR) at 4.6% false rejection rate (FRR) for

five key presses [84].

To protect Android Pattern Lock against physical observation,

Luca et al. [86] studied if a user’s drawing behavior could also

be used as an authentication credential. Specifically, the drawing

pattern, represented by a time series of x− y coordinates, was

compared against an enrolled pattern using a signal-based

approach, namely via Dynamic Time Warping (DTW). They

achieved 77% accuracy with 19% FRR and 21% FAR in a

31-participant study.

One way to incorporate user traits into the ubiquitous PIN-

based methods on touch surfaces is to ask the user to draw

the PIN instead of typing it. The resulting method checks the

correctness of the PIN using a digit recognizer, as well as

the drawing style of the digits to authenticate specific users,

resulting in a T-F-X technique [87], [88].

Security: The security of T-F-X systems is stronger than

that of secret-based authentication as now a biometrics factor

provides an additional layer of protection against random

guessing as well as targeted impersonation. Clearly, it is also

harder to imitate the behavior of a user learnt from physical

observation. For example, the Draw-A-PIN system was tested

against an attacker who wrote the same PIN as the user. A

4.84% EER was reported on a private dataset comprising 20

genuine users and 25 attackers, where the content of a user’s

PIN was known to the attackers but not the drawing [88]. An

evaluation was also performed where an attacker was provided

a recording of user’s PIN drawing and asked to mimic the

drawing behavior. In this setting, a 14.11% EER was reported

on the same dateset [88].

Usability: T-F-X techniques inherit much of the effectiveness

(in terms of memorability and changeability) as well as

efficiency and satisfaction benefits from their original T-F-

S counterparts that use only the secret to authenticate users.

The second factor, which is the behavioral biometric, is

captured without adding a burden as it is derived from the

interaction used to enter the secret. But the effectiveness of

this type of system in terms of True Acceptance Rate could

also be negatively impacted due to recognition errors. The

authors of [87] argued that PIN drawing could prove to be

acceptable and usable by leveraging user familiarity with PIN

authentication. However, the drop in authentication performance

could also affect usability if the system favors false rejections

over false acceptances (security over convenience). Another

factor that makes them less usable than T-F-S techniques is

that they may not be easy to understand. The user may not

have a proper understanding of the “behavior” that is being

captured and recorded and may change it (for example, draw

a pattern or press a key slower than usual) and be surprised

by the negative authentication that results.

Regarding context of use, similarly to T-F-S schemes, T-

F-X techniques cannot be used in eyes-free or hands-free

environments. The ability to authenticate while performing

another activity such as walking is further constrained as

compared to T-F-S schemes due to the possibility of increased

recognition errors. The schemes, however, remain insensitive

to ambient conditions such as light and noise.
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4.3 T-F-B Schemes: Finger-Touch Techniques
Based on Behavioral Biometrics

Behavioral biometrics, with no underlying secret, can also be

used in authentication based on finger touch. One example of

a T-F-B technique is drawing a signature on a touch-sensitive

display using a fingertip. Since the signature itself is not a

secret, authentication is performed purely based on the manner

in which the signature is drawn, known as on-line signature

recognition. (This scheme can be also viewed as T-F-X if

the signature is a secret.) This approach has been a well-

established authentication technique for decades although in

different contexts.

On-line signatures can be verified using both signal-based

and feature-based approaches. Examples of well-known signal-

based approaches include DTW [89]–[91] and Hidden Markov

Models (HMMs) [92]. The major difficulty for a feature-based

approach is identifying a good set of descriptive features that

can verify an on-line signature effectively and efficiently. These

features include, but are not limited to, the total duration

of signature, number of pen-up movements, sign changes of

derivatives dx/dt and dy/dt, HMM model parameters [93],

and histogram features [93]–[97].

Security: With random guessing, where user signatures are

not known to the attacker, the authentication performance of a

finger-drawn signature on the NYU dataset achieved an average

of 3.27% EER when the user template was generated from

enrolled samples across two sessions [97]. With a targeted

impersonation attack where a user signature is known to the

attacker, the performance reported on the MCYT dataset was

2.72% EER. Note that, in some work (e.g., [89]), samples

of imitated signatures from physical observation have been

used, where not only the shape of the signature but also timing

information is available to attackers. To further enhance security,

a more recent study by Buriro et al. [98] argued that, when

signing on a mobile device, additional features from sensors

like accelerometer and magnetometer, that indicate how users

hold their devices in three-dimensional space, could help in

verifying identity (further strengthening the multi-factor nature

of the approach). In their study, a recognition rate of 5.2%

FRR at 3.1% FAR was achieved.

Usability: T-F-S techniques inherit most of the usability

characteristics of T-F-X techniques. It may be argued that T-

F-B techniques are perhaps more effective to use in terms of

memorability than T-F-S or T-F-X (S+B) techniques in the

sense that the need for remembering a secret is eliminated.

However, having no secret, security considerations demand low

false positives and this leads to higher false negatives, thus

negatively impacting effectiveness of the system in terms of

True Positive Rate. They also take more time to learn and

perform and can be considered to have slightly less efficiency

and satisfaction than T-F-X techniques. T-F-B schemes are

also similar to T-F-X techniques with respect to context of

use. They can be used potentially under eyes-free constraints,

in poor illumination, and in noisy environments. However,

false negatives would increase if authentication is attempted

while performing an activity, such as walking. Overall, T-F-B

techniques provide less usability than T-F-S techniques but do

increase the security.

4.4 T-Ha-X Techniques: Multi-Touch Gesture Tech-
niques

On touch surfaces that are larger than what is available on

smartphones and wearable devices, touch gestures using the

entire palm of one’s hand and multiple fingers can be employed.

This leads to the category of T-Ha-X techniques. One of

the earliest authentication mechanisms using multiple fingers

was proposed by Sae-Bae et al. [43], [99]. In this approach,

a user is authenticated by performing a sequence of multi-

touch gestures. This approach uses the gesture pattern and

hand geometry information, as well as the gesture style to

authenticate users. In particular, a multi-dimensional time

series is derived from the time series of 5 touch points,

where each touch point is described by x − y coordinates

and other touch properties (pressure, size, etc.). Then, a

distance between a pair of multi-touch gesture samples is

computed using a signal-based approach such as DTW. Another

study by Shahzad and Liu [100] has shown that gestures

performed by 1-3 fingers, rather than all 5, can also be used for

authentication. In yet another study by Yunpeng et al. [101], a

user is authenticated by swiping multiple fingers in different

directions on a touch display. Since multi-touch gesture-based

authentication leverages behavioral biometrics and the touch

gesture can be a secret, it can be classified as a T-Ha-X (S+B+P)

technique.

Security: For a random guessing attack, the recognition

performance of 5-finger multi-touch gestures was reported

at 8.86% EER for an inter-session study (3 sessions) using

customized gestures on a private dataset comprising 41 genuine

users using a separate threshold for each user [102]. With

physical observation, the performance reported was 17.17-

19.23% EER for 21 types of generic gestures. The system

developed by Yunpeng et al. [101] achieves EER of 5.84%

with 5 training samples for random guessing, but improves

to 3.02% with 30 training samples. However, EER increases

to 3.67% with targeted impersonation, where attackers are

allowed to watch an animation showing the movements of the

targets’s fingers on the screen as well as the multi-touch traces

left on the screen. EER increases to 4.69% when gestures are

performed by a (Lego) robotic hand driven by finger movement

patterns constructed from the mean feature vector of genuine

samples of all users.

Usability: Initial studies seem to indicate that multi-touch

gestures have high efficiency and satisfaction [43], [99]. They

are easy to learn and understand, and require little memory or

physical effort. The same studies also showed that the ease of

use, excitement, pleasure and willingness to use correlate well

with the authentication performance. This is an encouraging

result. Furthermore, users reported a strong level of excitement

when they performed their own (”user-defined”) gesture. and

had the ability to customize the background they drew on,

which had the additional benefit of potentially boosting the

authentication performance. However, effectiveness, in terms of

false negatives, and the memorability of the secret, especially

when the user has multiple accounts, has not been well studied.



2637-6407 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2019.2893297, IEEE

Transactions on Biometrics, Behavior, and Identity Science

EMERGING NUI-BASED METHODS FOR USER AUTHENTICATION 11

T-Ha-X techniques provide a broad context of use. They can

be used in an eyes-free mode and potentially in any ambient

conditions with respect to illumination and sound. However,

they are likely unusable while performing an activity due to

the possibility of increased recognition errors. They may also

require a moderately-complicated enrollment process and hence

will be potentially harder to understand than T-F-S techniques.

4.5 T-Bo-P Techniques: Body-Print Techniques

In addition to fingers and hand, the now-ubiquitous touch

surface has also been proposed to be used with other body

parts in order to acquire biometric information. One example

of such a technique utilizes the touch surface to capture a

user’s ear shape [103]. In this specific scheme, the authors

capture the set of touch points acquired from a multi-touch

surface when a user places his or her phone on the ear while

answering a phone call.

Security: An FAR of 0.5% at 7.8% FRR was reported in

[103] against a random guessing attack. However, the study

was conducted on just 12 subjects with each subject providing

12 ear-print samples. More extensive studies are needed to

confirm the security of this approach. We note that targeted

impersonation and physical observation attacks are not easy to

carry out since the attacker would need (either real or artificial)

3-D models of body parts to spoof the system.

Usability: Although usability studies of body-print tech-

niques have not been performed yet, it seems they would be

effective and have high efficiency and satisfaction. They are

simple, quick and memory-wise and physically effortless. They

are potentially easy to understand as the enrollment process

would be simple. However, they are not changeable. Their

effectiveness would also be lower than that of T-F-S and T-

F-X techniques, as solely relying on a touch pattern match

could lead to a decrease in True Positive Rate. They would

score very high marks for context of use, as the approach

would apply in many operational conditions, such as under an

eyes-free constraint, in low illumination, under loud noise, and

potentially, depending on the body part being used, applicable

while performing an activity.

4.6 Avenues for Research

The ubiquity of the touch interface and the attractive simplicity

of early T-F-S techniques have led researchers in search

of improved security while preserving usability. This has

resulted in a variety of techniques clustered around two

directions: by considering additional actuators, such as hand

and alternate body parts, and by adding physiological and

behavioral biometric components. The results have been mixed

and clearly a lot more work needs to be done. Admittedly,

most of the techniques developed to date alleviate physical

observation threats to some extent. However, the resulting

increase in false negatives, thus negatively affecting usability

in terms of effectiveness, has been difficult to avoid.

One possible area for future work is to develop classification

techniques and training strategies across sessions that improve

authentication accuracy thereby enhancing the scheme’s usabil-

ity in terms of effectiveness as well as security. For example, a

multi-session training strategy can be helpful since many studies

(including EEG [104], voice biometric [105], and face [106])

have shown it can be used to model within-user variation more

effectively. A long-term study on the consistency of a user’s

interaction pattern should be considered since the performance

may automatically improve over time once a user stabilizes

his/her behavior. Another direction for future work is to improve

recognition performance by leveraging user interface (UI)

elements, such as the background displayed on the screen or

visual feedback, to enhance user consistency and memorability.

Also, most techniques that have been presented require more

extensive security studies against motivated forgery under more

severe attack models.

In terms of security for multi-touch techniques, the entropy of

gestures in particular, and the distinguishability of behavioral

biometrics or the question of how many additional bits of

security behavioral biometrics provide in general, have not

been studied as well. Also, in relation to random guessing, the

question of how resistant are techniques to dictionary attacks

of the type proposed in the recent MasterPrints work are left

unanswered [19]. Yet another direction would be to quantify

the quality of enrolled samples during the enrollment process,

similar to a password-strength meter. The system could then

prompt users with low-quality samples (which are easy to

imitate) to enter new ones [107], [108].

Most T-*-* techniques utilize information from only the

touch sensor for the purpose of authentication. However, a lot

more information is available in many instances from other

sensors such as accelerometer, gyroscope and camera which

could be useful for enhancing authentication performance of

the system. In body-print for example the hand movement that

carries the device to the ear and back could be of value. In

multi-touch gestures, taking into account accelerometer and

gyroscope data could improve authentication performance when

the user is active.

5 C-*-* SCHEMES: CAMERA-BASED AUTHEN-
TICATION

In this section, we review authentication schemes that use

information from interactions captured by a camera (C). These

schemes require either static physiological (P) information

or dynamic behavioral (B) information to verify identity. We

explore four human-body actuators: finger (F), hand (Ha), head

(He), and the whole body (Bo).

5.1 C-F-P Schemes: Fingerprint Techniques

While fingerprints are typically captured by capacitive sensors,

these devices are specialized and are not designed to be used

for general-purpose natural interaction with a device other than

authenticating users. Fingerprints can be also acquired by a

camera and their image used as a physiological authentication

factor [109], [110]. Typically, such approaches rely on minutiae-

based features, texture-based features, or a combination of both

[111].

Security: Fingerprints have long demonstrated high authenti-

cation accuracy. One limitation of a camera-based system is that

the quality of a fingerprint image is typically lower than that

obtained by capacitive sensor due to such factors as variations
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of lighting conditions, camera mis-focus, lens distortions, as

well as the distance to the camera and pose variations of a

user’s finger during acquisition. A combination of these factors

may significantly reduce authentication performance. In relation

to random guessing, the performance of fingerprint recognition

using a mobile phone camera has been reported at 4.5%

EER [109] as compared to around 2% EER when fingerprint

impressions are captured by a specialized sensor [112]. C-

F-P schemes are immune to attacks that involve physical

observation, but they are typically not robust to replay attack

as biometric traits are static.

Usability: In terms of effectiveness, C-F-P techniques

are memorywise-effortless as there is nothing to remember.

However, true acceptance rate could be lower than its original

scheme (e.g., TouchID) due to the lower quality of fingerprint

samples. As far as efficiency and satisfaction is concerned,

user familiarity is one advantage as fingerprints are a well-

known biometric trait. However, we are not aware of usability

studies to date that address user effort, both perceived and

actual, in terms of time and physical action, while performing

the task of authentication using camera-based fingerprints.

Regarding the context of use, there exist disadvantages as the

scheme is neither hands-free nor eyes-free. First, at least one

hand of the user must be free during authentication to provide

fingerprint and another one might be needed to hold a camera,

if it is not mounted somewhere. In addition, a user needs to

coordinate finger placement so that the fingerprints are captured

correctly by the camera. Therefore, this scheme cannot be used

when the user’s vision is occupied by another task. Another

environmental constraint is its sensitivity to lighting conditions.

5.2 C-F-X Schemes: Finger-Motion Techniques

Whereas C-F-P schemes capture physiological information,

C-F-X schemes combine (X) behavioral and secret information.

One such scheme is the Leap Password. Using the Leap Motion

sensor [41], Chahar et al. [113] proposed to authenticate a

user from six in-air one-finger taps performed in front of the

device. A set of features are extracted from each of the samples,

including the dimensions of the palms and fingers of a user’s

hand, the timing of the tap sequence, and the motion. Naı̈ve

Bayes, artificial neural networks, and random decision forests

were used as classifiers, as well as fusion of their results. Since

the approach uses a tapping rhythm, finger motion as well

as hand geometry information to authenticate users, it can be

viewed as an S+B+P multi-factor authentication method (secret

S, behavioral B, and physiological P biometric credentials).

Another scheme, Kinwrite, proposed by Tian et al. [42]

authenticates based on “passwords” written with a finger in the

air. The system uses the Kinect, a depth camera, to track finger

tip motion. 3-D written content as well as writing style are used

to authenticate users by calculating the distance between two

samples using a DTW algorithm. The scheme is an instance

of S+B multi-factor authentication as it leverages both a secret

(S) and a behavioral biometric (B).

Security: In terms of the security against random guessing,

Leap Password achieves, at best, 18.83% FRR at 1% FAR on a

dataset of tap gestures recorded by 75 users in a single session.

Regarding physical observation, C-F-X schemes are robust

to shoulder surfing attack as they include a biometric factor.

They are also moderately robust to replay attacks as it would

be hard to replay the finger gestures in three dimensional

space. Kinwrite, on the other hand, achieves authentication

performance of 0% FAR with an average of 1% FRR on a

dataset with 35 signatures in total from 18 subjects collected

over a period of five months. Each user’s signature classifier

is trained using only four samples selected randomly from

all the samples of that user. This performance is significantly

degraded when attackers know the content of user’s signature

and can observe victims four times. That is, in the experiments

performed on four selected signatures – FRR of each user

at 0% FAR increases from 0-20% to 10-40%, leading to an

average of 25% EER.

Usability: The effectiveness of C-F-X schemes in terms

of memorability and permanence across a period of time

(multiple sessions) has not yet been studied. It is expected

that True Positive Rate would be lower when enrolled samples

and authenticating samples are collected in different sessions.

Memorability of C-F-X schemes would be similar to their

touch-based counterparts (T-F-B and T-F-X). However, it would

be interesting to investigate how movement along the third

dimension affects user cognitive load, recognition performance,

and efficiency and satisfaction of the scheme. Regarding the

context of use, similarly to C-F-P schemes, C-F-X schemes

cannot be performed when hands are engaged in performing

another task. In addition, they require the user to coordinate

finger movements to ensure good-quality capture by a camera.

Therefore, they cannot be performed in an eyes-free mode.

Also, as with other camera-based authentication schemes, they

cannot be used in poor lighting conditions.

5.3 C-Ha-* Schemes: Hand-Based Techniques

Camera-based hand authentication can also use physiological

features of the hand for authentication. SignWave Unlock [114]

is a commercial C-Ha-P app using Leap Motion that authenti-

cates users based on hand geometry information captured by

stereo cameras and infrared LEDs. In this application, a user

simply holds one hand in front of a Leap Motion device. The

application then relies on a set of geometric features derived

from a user’s hand to verify the user. The application has

been well-received by users as it has been downloaded more

than a million times. Since this approach uses only geometric

information from one hand, it is a single-factor authentication

method.

In a more intricate approach, not just a hand shape but also

hand gesture (hand-pose password) can be captured. In such

schemes, authentication credentials comprise a secret (S) and

a biometric that could be a combination of physiological (P)

and behavioral (B) information resulting in S+P+B multi-factor

authentication. One example of such a scheme is the use of the

American Sign Language (Fig. 5) to authenticate users. Fong et

al. proposed using static sign language as a mechanism to enter

textual passwords in front of a camera [115]. The proposed

method uses a sequence of static images to verify both the

user’s identity and signalled content. The features used are the
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Fig. 5: American Sign Language alphabet

that can be used for textual password entry

(http://www.iidc.indiana.edu/cedir/kidsweb/amachart.html)

intensity profile, color histogram, as well as hand’s dimension

and direction extracted from hand-pose images.

Airauth, proposed by Aumi and Kratz [116], is another

example of a C-Ha-X (S+B) method using in-air hand gestures

captured by a Creative Senz3D depth sensor to verify a secret (3-

D hand gesture) and a behavioral biometric (gesture movement

pattern). The approach could be viewed as a C-Ha-B method

if the gesture is not considered a secret. The system processes

each depth frame of a hand gesture to extract 3-D location of

all visible fingertips and the hand center. Given a time series of

these locations, DTW is used to compute the distance of this

series from a template derived from a set of enrolled samples.

Wu et al. [117] extended this approach by adding physiological

attributes (S+P+B). Their method performs gesture matching,

between a query and enrolled samples, by comparing covariance

matrices of hand’s silhouette and depth over a group frames.

Note that, apart from fingerprint and hand recognition, there

exist other schemes that make use of body-part physiology to

authenticate a user via camera, including hand contour [118]

and finger knuckles [119], [120].

Security: In terms of security against a random guessing

attack, it was reported that SignWave Unlock can be easily

circumvented [121]. Some of the factors that contribute to this

are: the accuracy and precision of raw information captured

by Leap Motion, effectiveness of the authentication algorithm,

and sensitivity of the device to changes in lighting and other

environmental conditions. However, none of the studies have

reported a performance number so far for the SignWave

Unlock system. Another study of hand-pose passwords using

sign language on a four-user dataset reported a recognition

performance of 5.6% and 5.0% FAR at 6.2% FRR when

verifying signer and signed content, respectively [115].

As for Airauth, the system was tested on user-defined

gestures as well as generic gestures. Two user-defined gestures

(one’s own signature and a custom gesture) and 15 simple

generic gestures from 15 participants were used. All gestures

were performed with one or multiple (the number based on

user’s choice) fingers. Each user performed each gesture 10

times with a single finger and 10 times with multiple fingers.

For user-defined gestures, 0% EER was obtained in both cases

(single and multiple fingers). In relation to physical observation,

a performance of 2–6% EER was reported for one-finger

generic gestures and 1–5% EER for multiple-finger generic

gestures. Finally, hand-gesture authentication combining behav-

ioral and physiological attributes [117] resulted in 1.92% EER

for 4 generic gestures recorded by 21 individuals in a single

session. One advantage of C-Ha-* schemes is their resilience

to physical observation if biometric information is used. In

addition, schemes that use 3-D camera as an interface are more

resilient to replay attacks since it is difficult to replay 3-D

movement without using very specialized devices.

Usability: In terms of effectiveness, the ability to change

a gesture in C-Ha-X schemes is a significant advantage

over physiological biometrics which cannot be changed if

compromised. This is called changeability and was discussed

in Section 3. In addition, C-Ha-* schemes could be viewed as

providing more efficiency and satisfaction in terms of physical

effort and could be easier to learn than C-F-* techniques

as it is more natural to use a hand rather than fingers in

front of a camera. In an Airauth study it was observed

that pleasantness and excitement, which are related to user

satisfaction, are well-correlated with the authentication accuracy.

However, documented studies of SignWave Unlock have not

been performed to the best of our knowledge, although this

particular instance of C-Ha-P techniques is popular. Regarding

the context of use, as with C-F-* schemes, a user cannot

authenticate using a C-Ha-* technique if hands are not available

or one is occupied by other tasks requiring visual attention (the

user needs to coordinate hand movement in front of the camera).

In terms of constraints on the surroundings and hardware

calibration, this would depend on the interface technology.

For example, the Leap Motion would require good ambient

illumination and hardware re-calibration in case of tracking

issues. An additional benefit of C-Ha-* schemes is a touch-free

operation. This could be potentially useful in certain situations,

e.g., in medical applications.

5.4 C-He-* Schemes: Traditional Face Recognition
Techniques

Face recognition is one of the best-known and widely-used

authentication mechanisms with a camera interface. Face

authentication is provided as an unlocking mechanism on

devices supporting Microsoft Windows, Ubuntu, Android and

iOS. Face recognition can be based on either a single image,

or a video [122]. In addition, advanced face recognition

systems have been developed based on a 3-D face model

that is reconstructed from 2D images or captured by a 3-D

depth sensing camera (e.g., iPhoneX [123]). Fig. 6 depicts

3-D face recognition system used in FaceID, an iOS face-

based unlocking application on iPhone X. More details on face

recognition can be found in [122]. Typically, there are three

steps involved in identifying or verifying a person’s face: face

detection (finding the facial region), feature extraction, and
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classification. Classification methods can be grouped into three

types: holistic approaches, feature-based approaches, and hybrid

approaches. Face recognition is a single-factor authentication

method based on a physiological biometric (P).

Security: Face recognition has been thoroughly studied in

the literature, and its authentication performance has been re-

ported in various contexts. In relation to random guessing, 11%

and 13% FRR were reported at 0.1% FAR on the Notre Dame

and Sandia datasets, respectively in the 2006 Face Recognition

Vendor Test (FVRT) [124], for a single facial image under

uncontrolled illumination. However, when the system is applied

in the context of mobile devices, authentication performance

drops, achieving 10.9% Half Total Error Rate (HTER) [125]

due to factors such as occlusions, pose, facial expression, and

lighting conditions. This performance drop was also observed

in the Android Face Unlock mechanism where a study reported

that many users fail to log-in or register [126]. Employing the

system in an uncontrolled usage scenarios has an adverse impact

on FAR and FRR, and consequently the security and usability

of the system. A recently-proposed deep convolutional network

algorithm, DeepFace, reported far more accurate results on

unconstrained datasets [127]. However, this algorithm requires

a large number of samples to train a classifier. This could imply

that, if face authentication system is used, the performance

could be improved over time as the training dataset gets bigger.

In addition to performance issues, the system is vulnerable to

several security threats. For example, an attacker may fool the

system by presenting a picture or video of the authorized user

gathered from targeted impersonation or physical observation

(spoof attack). To counter such attacks, liveness detection

mechanisms involving user effort or machine intelligence

have been proposed. In terms of user effort, the system may

challenge a user to perform some task in order to verify liveness,

such as blinking an eye [128], looking at and following a

secret icon [129], or moving the handheld device and head

simultaneously [130]. In this case, the interaction may be a

shared secret (“what-you-know”) that can be used as a second

factor in the authentication [129]. As for machine intelligence,

contextual information from images or video, e.g., texture [131],

facial micro-expressions [132], and subtle color variations [133],

are utilized to detect spoof attempts. Alternatively, Apple’s

FaceID utilizes facial structures captured by a 3-D depth sensing

camera as an anti-spoofing technique [123].

Usability: Regarding effectiveness, while preventive mecha-

nisms against replay attacks can be based on either additional

user effort or machine intelligence, this could result in higher

FRR (diminished usability) as additional false rejections can

be an unintended consequence of liveness detection. In terms

of efficiency and satisfaction, the scheme is easy to learn and

costs little physical and time effort as taking a self-photo

is a common activity. With respect to context of use, C-He-

* techniques can be performed in hands-free mode if the

camera is externally mounted. However, in a mobile-device

scenario, users are required to hold the device and therefore

authentication cannot be performed hands-free. In addition,

camera-based authentication needs to be performed in a well-

lit environment unless an infrared camera is used (as in Apple’s

FaceID) to overcome the issue. Furthermore, users are typically

Fig. 6: 3-D facial recognition system)

(https://www.counterpointresearch.com/one-billion-

smartphones-feature-face-recognition-2020)

required to look directly at the camera so authentication cannot

be performed in an eyes-free mode.

5.5 C-Bo-X Schemes: Body-Gesture Based Tech-
niques

One’s whole body can also be captured with a camera for

authentication. Originally proposed by Lai et al. [46], a user

can be authenticated by performing a predefined whole-body

gesture in front of a Kinect depth sensor. Information from

only the depth sensor is then processed by extracting either

skeletal- or silhouette-based features from the video sequence.

These features are then used to compute a matching distance

for authentication using DTW (skeletal features) or covariance-

matrix distance (silhouette features). Further, a variation of

the idea of using gesture-dependent user recognition to learn

gesture styles was proposed in [134], [135]. This approach

considers both whole-body and hand gestures for authentication

using deep convolutional networks. The method uses 3-D body

movement pattern, skeletal parameters as well as movement

style to authenticate users, and can be considered as a S+P+B

multi-factor authentication method.

Security: For a random guessing attack, Wu et al. [136]

reported a performance of 1.24% - 2.78% EER across three

predefined datasets. With respect to a physical observation

threat, similarly to C-Ha-* schemes, the general security

advantage of C-Bo-* schemes is their resilience to shoulder

surfing as biometric information is used as an authentication

credential. In addition, the schemes that use 3-D camera as an

interface are resilient to replay attacks as it would be difficult

to accurately reproduce three dimensional movement without

specialized devices. In terms of spoof attacks, Wu et al. [136],

performed a study where each user was asked to play the role

of an attacker and mimic another user’s gesture after briefly

practicing with a video recording of the target victim’s gesture.

The victim for each attacker was selected to be the closest

matching user, which is a pessimistic scenario. They found that

the performance impact of an impostor imitating a gesture was

extremely minimal. In fact, the biometric portion of the gesture

seemed resilient to spoof attacks. Specifically, the verification

performance only increased to 4.22% - 10.28% EER when

dynamic information was available to the attacker.
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Usability: As for effectiveness, the impact of users wearing

coats and carrying bags, while performing a gesture, on True

Positive Rate and False Negative Rate were studied in [137].

This was in addition to studying the memorability of gestures,

where they observed how well users were able to recall and

replicate their gestures after a week had passed. Under normal

conditions in the study, a 1% and 5% EER were reported for

two gestures, one selected by the user, and one predefined in

a dataset of 40 users, respectively. Wearing coats and carrying

bags were found to have a minimal effect on authentication

performance causing only a 0.5% and 2.5% increase in EER,

while the effect of time caused a more significant degradation

increasing EER by 2% and 6.5%, respectively for the above

two gestures. Concerning efficiency and satisfaction, it would

take a comparably longer time and more physical effort to

authenticate as compared to C-F-X and C-He-* techniques.

However, to date no acceptability studies of C-Bo-X techniques

have been carried out, especially when used in public. With

respect to the context of use, C-Bo-X schemes can be performed

in an eyes-free mode but not in a hands-free mode as hands

could be used as part of the interaction. In addition, a large and

well-lit space is required while users are performing gestures.

5.6 C-E-∗ Schemes: Eye-Gaze Based Techniques

Authentication using eye-gaze interaction can be performed

via a regular mobile phone camera or an eye-gaze interface.

The authentication factor could be a secret, a physiological

biometric or behavioral biometric depending how users interact

with the device (e.g., natural gaze or a specifically chosen

gaze-gesture).

Iris is rapidly becoming a widely employed physiological

biometric to verify the identity of individuals. Although this is

mostly done at border crossings and highly-secure locations,

there is an increasing effort to use it on mobile devices and

other eye-based NUI systems. One such C-E-P scheme is when

a user’s iris is captured by a mobile-phone camera [138]. In this

scheme, iris recognition is performed by applying Adaboost

classification to features extracted using a customized version

of the Gabor filter in order to cope with users wearing glasses.

In another authentication approach, based on a secret factor

(C-E-S), a user is tasked with a specific gaze-gesture, for

example serving as a password, and is authenticated based on

the correctness of the entered credential. This interaction is

typically captured by an eye-gaze interface. One example of this

approach is the use of gaze entry in PIN-based authentication

proposed by Luca et al. [49]. In their work, three approaches for

PIN-based authentication were proposed: 1) dwell time – each

digit is entered by staring at a specific area for some time, e.g.,

staring at a particular digit for 800ms, 2) look-and-shoot – each

digit is entered by looking at a specific area and simultaneously

hitting a button, and 3) gaze-gesture interaction – each digit is

entered by performing a specific eye movement pattern, similar

to drawing digits with gaze. Another approach to eye-gaze

authentication based on a secret factor uses gaze entry to “enter

click points” in a cued-recall graphical approach [139]. The

user inputs a sequence of locations in the image by simply

staring at the secret “click point” locations for a fixed period

of time. This sequence is then used to authenticate the user.

Bulling et al. [140] have demonstrated that the security against

random guessing attacks in this approach can be enhanced

by using saliency masks to disable the selection of hotspot

points. However, the usability trade-offs for this more complex

approach have not been studied yet.

In schemes based on a behavioral biometric (C-E-B), there

is no specific task for users to accomplish. That is, an

arbitrary task can be assigned to users during enrollment and

authentication. This approach was first proposed and tested

in [50] where two watching tasks were assigned to users

in order to capture training and test samples: watching a

static text annotation displayed on the screen and watching

a comedy video. This approach uses eye movement behavior

to authenticate users, and, therefore, can be viewed as single-

factor authentication with a behavioral biometric credential. In

another scheme, proposed by Sluganovic et al. [141], a user is

authenticated in a very short period of time by looking at visual

stimuli sequences appearing on the screen at random locations.

The system then verifies a user’s response in terms of gaze

pattern as well as the correctness of eye focus to authenticate.

Security: In relation to random guessing, the performance

in iris authentication on a mobile phone was reported at 0.05%

EER for 400 face images captured from 100 persons [138].

For gaze-entry PIN-based authentication, studies have reported

a much higher false rejection rate (20.6% - 23.8%) than using

gaze-gesture interaction (9.5%) [49]. In gaze-based graphical

authentication systems, the authors reported false rejection rates

of 27% and 46% when the eye-gaze tolerance area around a

“click” point is set to 51x51 and 31x31 pixels, respectively [139].

In [50], eye-gaze interaction using a behavioral biometric was

evaluated using a Gaussian mixture model (GMM) applied to

histogram features generated from the trajectories of left and

right eyes. The reported performance ranged from 28.7% to

47.1% EER depending on the length of training, which ranged

from 10 seconds to 9 minutes, and test data, which ranged from

10 seconds to 4 minutes. The best result was obtained when

the training lasted 9 minutes and the testing lasted 10 seconds.

In the visual stimuli approach [141], the system derives a set

of features from the saccade and fixation of gaze response,

including the duration, speed, latency, and area. The EER for

this approach was reported at 6.2% where samples of the same

attackers are also used to train the classification model. The

system achieves 7.3% EER when evaluating with five-fold

cross-validation for 15 stimuli with median authentication time

of 5 seconds.

General security advantages of gaze-based interaction tech-

niques include resilience against physical observation (shoulder-

surfing and replay attacks) since this type of interaction is hard

to observe or record. However, no experiment was performed

to assess whether a replay attack can be effective in the case

of iris verification. With respect to targeted impersonation, the

attacker could leverage user information to learn the secret

part of authentication factors, e.g., a PIN number. Nevertheless,

eye movement can be used as a behavioral biometric [142],

[143] to provide a secondary layer of security. Moreover, other

biometric traits that could be monitored non-intrusively, like

face or iris, could also be used as authentication factors to

further strengthen the security and authentication performance
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of the system.

Usability: Regarding effectiveness, a big disadvantage of

secret-based approaches, as compared to the behavioral-based

ones, is memorability. Another general usability concern in

terms of efficiency and satisfaction for C-E-* schemes is the

time needed for authentication, which is known to be very

important to users. With respect to context of use, all C-E-*

schemes can be performed in a hands-free mode but, obviously,

not in an eyes-free mode. Additionally, they require good

lighting conditions and stable position of the user. Another

disadvantage of gaze-entry PIN-based authentication using

dwell time and look-and-shoot is the need for calibration to

align the high-resolution eye-tracking system and the space

on a display where interaction objects are presented. This is

typically performed by the end user.

5.7 Avenues for Research

Future research in camera-based authentication should further

investigate usability and security. Usability in terms of efficiency

and satisfaction can be broadly investigated across-the-board

through studying user satisfaction, authentication time and

failure-to-acquire rate. In relation to effectiveness, robustness

to various environmental factors should be investigated. This

can be done by evaluating how sensitive a scheme is to

environmental setup and adversary factors, e.g., user’s distance

to a camera, sensitivity to occlusions, lighting, shoulder surfing,

etc.

In terms of security against physical observation, the

vulnerability to replay attacks requires more exploration.

Another research direction could involve validation of

effectiveness and security against random guessing on larger

datasets collected over a longer period of time (weeks to

months). In many cases, studies to date have been performed

over a short period of time (days), so the memorability and

reproducibility of a scheme over time are not well understood.

Camera-based schemes can benefit by combining physiologi-

cal, behavioral, and secret information captured from the same

user interaction. For example, it is possible to develop eye-gaze

based authentication such that the system would simultaneously

derive iris, gaze pattern [144], and secret information from

user interaction for authentication purposes. Another possibility

for camera-based authentication is to explore the use of other

contextual information, e.g., eye, face and generic body skeleton

model, which could be observed simultaneously by the same

camera. One example is SAFE (Secure Authentication with

Face and Eyes) where the authentication factors used are a

combination of a gaze secret and face biometric [129]. In

this system, an authentication phase consists two steps: face

verification followed by gaze-secret verification once a user’s

face is verified. In addition, with the increasing prevalence of 3-

D cameras, it is possible to acquire precise depth measurements

of the entire body, and utilize it to estimate body-part poses

(e.g., hand, head, arm) which may be used as additional

information for authentication.

In hand-based authentication, additional physiological infor-

mation like a hand’s texture and appearance can be used as

an additional authentication factor to improve authentication

accuracy. The effectiveness of sign language with regards to

memorability for those unfamiliar with it has yet to be explored.

While face authentication is a well-studied scheme, advanced

spoofing techniques should be explored in order to develop

robust countermeasures against physical observation. In terms

of body gestures, reproducibility can be studied by considering

intra-user variations across multiple sessions, as this has proven

successful in other biometric modalities, e.g., ECG [145] and

speaker authentication [146].

One usability research direction in eye-gaze authentication

is to address: context of use challenges related to sensor

calibration, effectiveness in relation to sensitivity or the problem

of proper detection of intentional and unintentional gaze,

and efficiency and satisfaction of this type of authentication

interaction in terms of user familiarity with gaze-entry [49],

[139].

6 MS-*-X SCHEMES: MOTION-SENSOR

BASED AUTHENTICATION

In this family of authentication systems, a user’s conscious and

intentional movements, e.g., of hands (Ha) or head (He), are

directly measured by an accelerometer-equipped device such as

a Wii remote, a smartphone, or Google Glass, and are matched

against enrolled examples of those movements. Although the

visual appearance of movements can be indirectly recorded by a

camera (see Section 5.3), here we focus on gesture interactions

measured directly by motion sensors.

6.1 MS-Ha-∗ Schemes: Hand-Based Techniques

Examples of authentication systems based on hand movements

in 3-D space include uWave [44] where a user sketches a

custom line-drawing (which serves as the password) holding a

Wii remote and in-air signature [147] where a user “writes”

his/her signature in 3-D space while holding a smartphone

(each device serves as a “pen”) [147]. In both examples, the

distances between the time series of accelerometer signals

along x, y, and z axes for test and enrolled samples are

compared using the well-known DTW algorithm. The system

accepts a user if the movement is close enough to the enrolled

samples, and rejects otherwise. Both the user-defined hand-

movement pattern (secret) as well as the user’s hand-movement

“style” (behavior/biometric) contribute to the authentication

process. Thus, these schemes belong to the family of S+B

multi-factor authentication methods that combine both a secret

and a behavioral biometric credential. If a task is pre-defined,

then a user is not required to memorize any secret and the

scheme belongs to the MS-Ha-B category. A study of this

approach has also been conducted in uWave.

Security: In uWave, user-defined gesture samples were

collected from 25 users split into 5 equal-sized groups over

5 sessions spread apart in time. In the first session, each user

created two custom gestures and performed them once. In the

four subsequent sessions, each user performed 5 repetitions of

the two gestures. Each user was then attacked at least 20 times

by 4 users within the same group. The system achieved a 3%

EER on average when the attackers have no visual disclosure

(video) of the gesture password, that is, in relation to security

against random guessing. The EER increased to 10% with
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visual disclosure of the gesture password, (physical observation

attack). Similarly, in-air signature achieved a 2.5% EER on a

single-session dataset of 34 users, where each user contributed

7 samples. In evaluation, 3 samples were chosen at random

to construct the template and the remaining 4 samples were

used as positive test samples for that user. Negative samples

for each user were selected from 3 other users assigned to

attack the user. Each attacker studied the in-air signatures by

watching a video and attempted to forge those signatures 7

times.

Note that, Ms-Ha-B and Ms-Ha-X schemes provide some

security benefits against physical observation as they are

generally resilient to shoulder surfing since a behavioral

biometric is used. In addition, they are reasonably resilient to

replay attacks as it is difficult (without a robot) to record the

movement and replay it in 3-D space.

Usability: In terms of effectiveness, a study of the difficulty

of memorizing a uWave gesture compared to a text password

found statistically significant results indicating that a user-

defined gesture is less difficult to memorize than a text

password. The findings of the in-air signature efficiency and

satisfaction study are consistent with those of uWave. Users

do not have much difficulty in creating and performing an in-

air signature and, overall, they rate the scheme’s acceptability

as high. With respect to context of use, Ms-Ha-X schemes

can be performed in an eyes-free mode. Obviously, Ms-Ha-X

schemes require hand operation. If users are not stationary or

stable while performing authentication, signals from motion

sensors might be noisy resulting in false negatives and low

usability. Lastly, since uWave uses a Wii remote as an interface,

device calibration may be needed in order to realign the cursor

position if it is inaccurately aligned with the pointing direction.

6.2 MS-He-X Schemes: Head-Based Techniques

This is a fairly recent sub-family of authentication systems

which is based on music-induced head movements in 3-D

space. The prototypical example is Headbanger proposed by

Sugang et al. in 2016 [45]. Here, a user moves his/her head

(following a pre-designed movement pattern) in synchrony with

beats in a musical cue. Head movements are captured by a

system embedded in a head-worn device, e.g., Google Glass.

At an algorithmic level, authentication is similar to MS-Ha-

X schemes: the distance between two time series of filtered

acceleration data from test and enrolled samples is evaluated

using DTW. A sufficiently small distance leads to acceptance

or, otherwise, rejection. Similarly to MS-Ha-X schemes, both

the head-movement pattern (secret) as well as head-movement

style (behavior) contribute to authentication. Thus, this too

is an S+B multi-factor authentication system that combines a

secret and a behavioral biometric credential.

We would like to point out that many active authentication

systems using gait biometrics have been proposed [148], [149],

where the authentication system validates a user without his/her

consent. Such systems are not included in this survey as we

focus on point-of-entry user authentication, where an explicit

authentication interaction is performed by a user. In other words,

the activation of authentication system requires an explicit

consent from users.

Security: In relation to physical observation, similarly to Ms-

Ha-X schemes, Ms-He-X approaches provide some resilience

to shoulder surfing attacks as a behavioral biometric is used.

In addition, they are resilient to replay attacks as it is difficult

(without a robot) to record the movement and replay it in 3-D

space. In terms of a random guessing attack on data collected

from 30 users with 40 trials per user (15 users finished all

trials in one session and the rest finished in 3 days on average),

Headbanger attained an EER of 4.43%, 6.14%, and 6.65% for

music durations of 10, 6, and 5 seconds, respectively. As for

robustness against physical observation, where the attacker has

access to the video of victims shaking their heads, Headbanger

attained an FAR of 6.94% on average when 37 users attempted

to attack 3 users.

Usability: Regarding the context of use, Ms-He-X schemes

can be performed in both eyes-free and hands-free modes.

However, similarly to Ms-Ha-X methods, if users are not in a

stable position the signal from motion sensors might be noisy

in Ms-He-X schemes. In terms of other usability properties,

we are not aware of any studies completed to date for the

MS-Ha-X class of authentication schemes.

6.3 Avenues for Research

No factors that may affect usability of the proposed MS-He-X

schemes in terms of efficiency and satisfaction, e.g., space

requirements and time needed to perform movements, have

been explored to date. Also, in current MS-He-X schemes, the

music cue and its duration are chosen by the system and a

head movement pattern is pre-selected by the user as a secret.

What if the music cue is also pre-selected by the user as part of

the secret or if the head movement pattern is not pre-selected

and is a natural response of a user to the chosen music cue?

Further, negative impact on effectiveness caused by various

impediments such as bulky clothing, backpacks, etc., need

to be investigated. Another related research direction would

be robustness studies, e.g., robustness against body posture

(standing, sitting) and body dynamics (feet movement coupled

with head movement).

Regarding security, quantifying the relative value of the

movement pattern (secret), anatomy (biometric), and any

implicit biases in posture (similar in spirit to the studies

conducted in [136] for body gestures) may provide greater

insight into which components of MS-*-X schemes have the

greatest impact on authentication performance. Finally, one

could also consider new systems that simultaneously measure

movements of multiple body parts, e.g., hands, feet, head, torso,

to improve security against random guessing and physical

observation attacks.

7 M-*-* SCHEMES: MICROPHONE-BASED AU-
THENTICATION

In this interaction, a user is typically authenticated by speaking

into a microphone embedded in a device. Voice authentication,

also known as speaker recognition, is broadly classified into

two types: text-independent and text-dependent [51]. Whisper

authentication is a variation of text-independent speaker recog-

nition that aims to enhance acceptability and usability of the
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system [150]. Yet another possibility while using a microphone

for user authentication is to analyze the characteristics of the

frequency response created by user’s breathing pattern [151]

or by skull [152]. In such schemes, users are not required to

speak but sound is captured by a microphone in the device

held by a user or embedded in a headset.

7.1 M-V-B Schemes: Text-Independent Speaker Au-
thentication

M-V-B schemes perform authentication based on arbitrary

spoken content, thus relying on behavioral characteristics of

the speaker. They are commonly referred to as text-independent

speaker authentication. Recognition techniques used in this

context can be broadly divided into statistical models and

discrimination-based learning methods [153]. Among common

statistical models are the likelihood ratio test and GMM, while

examples of learning methods are the Support Vector Machine

(SVM) and Artificial Neural Network (ANN). Features often

used in these systems include frequency parameters, e.g., Mel

Frequency Cepstrum Coefficients (MFCC), and their derivatives,

computed at the output of a filter bank or a Linear Predictive

Coder (LPC).

A derivative of text-independent authentication, that is less

intrusive for users, is whisper-based authentication. One study

using a text-independent whispering voice was conducted by Jin

et al. [150] (single-factor authentication based on a behavioral

biometric credential). Based on an algorithm which uses MFCC

features in conjunction with a GMM model, they found that

whispered speech is less discriminative than normal speech and

noise has a large negative impact on recognition performance.

In order to improve performance, techniques from regular

voice authentication methods are often modified to account

for the intrinsic differences between the signal spectra of

whispered and normal speech [154]. In particular, Xiaohong

and Heming [155] have demonstrated that adaptive fractional

Fourier transform cepstral coefficients are a more effective

and robust feature set than MFCC coefficients in identifying a

speaker from whisper signal when training and test channels

are not matched.

Security: A wide range of authentication performance num-

bers in relation to random guessing have been reported for M-V-

B schemes due to the variation in devices, environmental factors,

and authentication techniques. The best system reports an EER

of 3.11% [156] on the I4U’s telephone-quality development

dataset [157]. In this system, users are prompted to speak a

randomly-generated phrase in their normal voice. The system

then authenticates users based on voice pitch. This is a single-

factor authentication scheme that is resilient to shoulder surfing

attack for it uses a behavioral biometric credential. Also, the

verification of the content of the spoken phrase can serve as a

form of security against replay attacks, as older phrases cannot

be reused. Another variation of this scheme is to challenge the

users with various questions and use voice responses to extract

both context information and voice print to enhance system’s

performance and increase security against replay attacks [158].

An interesting attack vector for M-V-B schemes is computerized

imitation [156] (either by targeted impersonation or physical

observation).

A recognition rate of 32-98% was reported for whisper-

based authentication using 6-second tests with 60 speakers

(performance variations depended on algorithms and test

channels) [155]. However, to the best of our knowledge, no

study of whisper-based authentication on devices with an NUI

interface has been conducted to date.

Usability: In M-V-B schemes, users are not required to

memorize any phrase thus enhancing their effectiveness. How-

ever, voice-based authentication on personal devices has mixed

score on efficiency and satisfaction as it takes little time

and physical effort to perform tasks and it is easy to learn,

but it is considered, in general, insecure and inconvenient

[159]. Regarding the context of use, all voice-based techniques

can be performed without hands and without visual attention.

Other issues may impact the security and usability of this

scheme and they should be taken into consideration prior to

deployment, for example: human factors (e.g., the Lombard

effect when a speaker increases vocal effort to compensate for

signal-to-noise ratio in noisy conditions [160], emotions, vocal

organ illness, aging, and level of attention [156]), device and

environmental factors (e.g., level of background noise [161],

acoustic disturbances like echo, and microphone frequency

response). In terms of whisper-based authentication, we are

not aware of any usability studies completed to date.

7.2 M-V-X Schemes: Text-Dependent Speaker Au-
thentication

Unlike in the previous case, M-V-X schemes require that the

spoken content of authentication samples be the same as that

of the enrolled ones, thus also relying on a secret. Recognition

techniques for text-dependent speaker authentication can be

broadly divided into dynamic programming approaches, statis-

tical models, and discrimination-based learning methods using

frequency parameters at a filter-bank output [162].

Since M-V-X schemes use both spoken content and voice

pitch to authenticate users, they belong to S+B multi-factor

authentication methods combining a secret and a behavioral

biometric credential.

Security: In terms of security against random guessing

attack, Ram et al. [160] have reported text-dependent authenti-

cation performance at 7-11% EER on a dataset collected from

48 enrolled users and 40 impostors using a mobile device. This

range of EER is due to varying experimental environments,

and impostor attacks (speaking the same content). Each of the

samples in this experiment was a set of spoken ice-cream flavor

phrases. Regarding physical observation, a shoulder-surfing

attack can compromise the secret text in an M-V-X scheme,

but the biometric component provides some resilience. Since

the spoken content is static for a particular user, while it is

different between users, the authentication performance of text-

dependent speaker authentication is usually higher than that of

text-independent authentication [163]. However, replay attacks

are more feasible in text-dependent authentication as the spoken

content is static and the audio can be simply recorded and

replayed [164], [165].

Usability: Since the secret phrase needs to be loudly

spoken, the context of use limits the use of text-dependent
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speaker authentication to conditions where a user would not be

overheard. Also, similarly to M-V-B schemes, M-V-X schemes

can be performed without hands and without visual attention.

In terms of effectiveness, M-V-X schemes, in comparison to

M-V-B schemes, have the drawback of memorability for some

text needs to be memorized. However, they have the advantage

of changeability. Finally, their efficiency and satisfaction are

similar to those of M-V-B schemes.

7.3 M-He-* Schemes: Non-Vocal Techniques

In authentication via bone conduction, users are verified based

on an audio signal (e.g., white Gaussian noise), generated in

close proximity of the head, that travels through the skull bone

to the user’s inner ear and is intercepted by a microphone (all

components are integrated in a headset) [152]. Essentially, the

system authenticates users by analyzing characteristics of the

frequency response created by the user’s skull. Specifically,

MFCC data are extracted from the received audio signal and

used for a computationally light-weight 1-NN classifier. This

can be considered an M-He-P scheme since the credential is the

user’s skull structure. BreathPrint [151] is another acoustics-

based user authentication scheme utilizing a microphone that,

instead of user’s voice, captures user’s breathing sound for

authentication. In this scheme, the system authenticates users by

performing frequency analysis using Gamma-tone Frequency

Cepstral Coefficients (GFCC) as a feature set and applying a

GMM-based classifier. This can be considered as an M-He-B3

scheme where the authentication credential is the breathing

pattern.

Security: Regarding physical observation, both schemes are

secure against shoulder surfing as there is no secret to be

revealed. They are also secure against replay attacks, unless

specialized, directional, high-quality microphones are used for

targeted impersonation, since the level of received signal is

too low to be captured from a distance. However, the current

systems are not very resilient to random guessing. Specifically,

in the bone-conduction authentication scheme, although the

experiment was performed in the best scenario (a controlled

setting without any background noise with only 10 participants

and one session), the system achieved 6.9% EER, considered

too high to be used in practice. Similarly, in BreathPrint, the

performance of 7-18% FAR at 2% FRR was reported when

users performed the same type of breathing (sniff, normal,

or deep) and the number of GMM components was 5. This

experiment was also conducted in a controlled setting without

any background noise with only 10 participants and 3 sessions.

Usability: As this is a pure biometrics-based authentication,

there is nothing for users to memorize. These are great usability

advantages in terms of effectiveness. However, the current

bone conduction system with 6.9% EER performance rejects

genuine users too often thus reducing its effectiveness in

practice. Another downside of the bone-conduction scheme with

respect to efficiency and satisfaction is that users take longer

to authenticate (23 seconds) than using BreathPrint (0.55-4.8

3. Although breathing characteristics also depend on lung and trachea size,
BreathPrint measures the sound only at the nose so we consider head (He) to
be the actuator.

seconds on average depending on the type of breathing). In

addition, if the level of an audio signal being generated in

the bone-conduction scheme is too high, it could make users

uncomfortable. Clearly, there exists room for improvements

to these schemes in terms of usability. Regarding the context

of use, both schemes involve eyes-free interaction. The bone-

conduction scheme is also hands-free since a headset is worn

by the user. However, in BreathPrint the user may need one

hand to hold a microphone in close proximity of the nose. In

terms of ambient sound, in bone conduction the audio signal

is bypassing the air and traveling directly to user’s inner ear

thereby reducing the chance of being corrupted by ambient

conditions. However, BreathPrint experiments show an FRR

increase from 0% to 4-37% when ambient noise increases

from 50 to 54dB. Both schemes can also be performed in any

lighting conditions.

7.4 Avenues for Research

Apart from resolving security and usability issues that exist

in both text-independent and text-dependent approaches, one

interesting direction for future work is to use a hybrid of

these two approaches in order to simultaneously: 1) improve

the authentication performance of text-independent systems

when only a limited number of training samples from a

user are available, thereby enhancing security and usability

of the system in terms of effectiveness, and 2) enhance the

security against replay attacks (physical observation) in relation

to replay attacks of text-dependent systems. This concept

was introduced in a system called “text-constrained” speaker

recognition [166]. Another example of this is to use a challenge-

response based authentication protocol where the model is

created based on a limited number of short-phrases [158]. In

whisper authentication, one important question to address is

its usability: is it convenient and non-intrusive to use? Also, as

many acoustic properties of whisper signals can vary drastically

from one’s normal voice [167], it would be interesting to

develop an effective recognition algorithm that can verify

whisper signals using enrolled normal speaking signals. Such

an algorithm would allow users to authenticate in the situation

when speaking in a normal voice is not appropriate. In addition,

as demonstrated by ear-bone conduction authentication, it

is possible for a microphone to be used as a sensor to

acquire other physiological biometrics, e.g., body fluid and

skeleton properties, when embedded in wearable devices that

are attached to other parts of the body.

8 BCI-BR-* SCHEMES: BRAIN-COMPUTER

INTERFACE BASED AUTHENTICATION

Motivated by the advancement of brain-computer interface

(BCI) technology, Thorpe et al. proposed pass-thoughts, an

authentication method resistant to physical observation [52].

The method uses a secret thought and the user’s brain signal,

that is unique among users, to verify identity. Therefore, it is

an S+B multi-factor authentication scheme (BCI-Br-X). It can

also be considered as BCI-Br-B, if a cognitive task is assigned

to a user.
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A BCI-Br-* scheme using a laboratory-grade electrode cap

that records brain-wave signals (EEG) was proposed by Marcel

and Millán [104]. Another scheme was recently investigated

by Chuang et al. [168] that used a consumer-grade EEG

headset as opposed to a clinical-grade one. Both groups studied

performance, usability, and recall of user authentication using

brain-wave signals.

Security: In relation to random guessing, Marcel and Millán

evaluated their system’s biometric performance by asking 9

users to perform three brain tasks: imagining repetitive self-

paced left-hand movements, imagining right-hand movements,

and mentally generating words beginning with the same random

letter. For each user, the experiment ran for three days, four

sessions per day with 5- to 10-minute breaks between sessions.

The method achieved 35.5% HTER when training and testing

samples were drawn from different days. While performance

degrades over time, it improves to 12.9% HTER when training

samples are drawn from two days instead of one.

Chuang et al. designed 7 different brain tasks, some

consisting of imagining generic activities like breathing, moving

fingers, and listening to an audio tone, while others involving

the creation and recall of personalized imagined activities like

sports, colored-object counting, song or passage recitation, and

customized mental thought. Then, a two-session experiment on

15 subjects was performed. In the first session, each user was

asked to select four of the seven personalized brain tasks as a

secret, and in the second session the user was asked to recall

them. In addition, in both sessions, users were asked to perform

those seven tasks and answer a series of usability questions.

The results demonstrated the feasibility of the scheme using

consumer-grade hardware by achieving a good recognition

performance on a larger population (1.1-28% HTER depending

on the type of brain task, where the recognition threshold is

adjusted specifically for each user).

An intrinsic security trait of BCI-Br-X schemes is their

resilience to physical observation as the interaction signal

is not observable [168]. In addition, the scheme is resilient

to replay attacks as a brain signal is not recordable from a

distance. However, as shown by Chuang et al., the performance

of BCI-Br-X schemes is sensitive to the selection of secret

tasks.

Usability: In terms of effectiveness, studies have been

performed to investigate the difficulty in recalling a thought

password and user preferences. It was concluded that users have

no difficulty recalling thought passwords. Also, the schemes

score high marks for efficiency and satisfaction as performing

brain activity obviously requires no physical effort by the

user and takes very little time. Studies show that users have

different preferences for mental activity tasks based on the

perceived difficulty and enjoyability of the tasks. With respect

to the context of use, brain tasks can be performed without

any physical activity and visual attention. However, a noisy

environment could prevent users from concentrating on their

thought tasks resulting in a noisy brain signal. In addition,

the need for hardware calibration in most of the current

BCI systems is a significant usability issue in BCI-based

authentication [169].

8.1 Avenues for Research

One direction of research on BCI-based user authentication

could be the design of generic brain tasks that are both usable

and secure. Also, while an initial investigation of robustness of

this scheme against physical observation has been conducted

[170], the study was limited only to a set of three attackers.

Furthermore, the thought processes of the attackers might differ

from those of the users due to differences between their native

languages and social environments by which they have been

surrounded. Future work is needed to address this issue, where

the secret is known to attackers.

It may be also possible to use brain activity during another

authentication interaction, such as entering a PIN. This would

result in one-step multi-factor authentication combining a secret

(PIN) with multiple behavioral traits, e.g., keystroke timing,

keystroke pressure, brain activity. This would also apply to

other authentication interactions, such as voice or 3-D gesture,

instead of thought-specific tasks.

Lastly, BCI-based authentication independent of the brain

task would go a long way towards natural and effortless

interaction with an authentication system as users would not

need to memorize a secret. This would be analogous to text-

independent speaker authentication (Section 7.1) [153] or

learning body-gesture style regardless of the performed action

(Section 5.5) [134], [135].

9 ANALYSIS AND CONCLUSIONS

As is clear from this survey, there exists a rich variety of user

authentication techniques proposed for different NUIs. The

taxonomy we developed allows their grouping into categories

for comparison and analysis. It also reveals modalities for

which no authentication techniques have been developed yet.

For example, Fig. 2 shows the category MS-Bo-B as blank.

That is, there is no technique reported in the literature that uses

a behavioral biometric captured using motion sensors attached

to the body as input credential. Clearly, one could conceive a

technique that involves performing a gesture which is public but

yet has enough complexity to provide the ability to discriminate

between different users and provide an acceptable false positive

rate. However, the usability of such a technique could be an

issue depending on the complexity of the gesture. Similarly,

other avenues for user authentication could be explored based

on the proposed taxonomy elements.

In some cases a missing technique in a given category could

stem from the fact that, inherently, it may not provide an

attractive authentication mechanism. For example, there is

no technique that captures a secret input credential from the

entire hand on a touch surface. Although one could conceive

such a technique, not capturing a physiological or biological

biometric while the input is being recorded would be a waste of

the sensor’s capabilities. In other cases, the lack of a technique

in a particular category could also be a result of the inherent

nature of the sensor. A touch sensor cannot be utilized to sense

a voice credential and hence the entire corresponding cell in

Fig. 2 is blank.

In addition to providing insights on unexplored research

avenues, the taxonomy also allows one to select and compare
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a set of candidate techniques for a given application. Tables 1

and 2 provide a summary of the different interfaces we have

considered and the different types of authentication techniques

that have been proposed for them. Thus, given an application,

one could identify viable techniques from those tables. For

example, in the context of Table 1, consider an application

where a user has to be authenticated while driving a car. Also,

assume that the two sensors already available in the car are a

microphone and a camera. The set of techniques listed under M-

*-* and C-*-* become potential candidates. However, the best

approach depends not only on the available sensors but also

on the environmental conditions under which authentication

will be performed. If authentication needs to be performed

while driving, then only eyes-free techniques may be plausible.

A hands-free method may or may not be critical depending

whether one hand or two hands are needed and if a country’s

laws mandate it. Resiliency to motion, while authentication

is being performed, may be another desirable characteristic.

Armed with these constraints one can narrow down the set of

candidates further.

In terms of user state and environmental requirements, one

can observe that there is a strong inter-dependence between the

user interface and the constraints. Most camera-based schemes

would be sensitive to lighting conditions and some would

also be sensitive to background appearance. Most voice-based

schemes would be sensitive to noise and only be used in

locations that have acceptable disturbance level. However, there

could be interesting exceptions. For example, skull conduction

could be used in a noisy environment as the signal travels

inside the user’s head and is sent directly to the user’s ear

bone.

The selection of a technique does not depend only on

available sensors and context, but also on the threat model. If

shoulder surfing or replay attacks are plausible, then approaches

involving only a secret credential become undesirable. For

example, text-dependent speaker authentication based on a

secret phrase captured by the microphone would not be a

candidate for an in-car system, as passengers would be able

to hear the phrase. At the same time, if the environment is

noisy, a text-independent speaker authentication could lead to

difficulties judging by the attainable FAR and FRR rates of

state-of-the-art approaches.

Table 2 provides a performance comparison of different

approaches. It should be noted that the table should be viewed

as a way to compare different approaches as opposed to directly

comparing specific techniques. This is due to the fact that

the set of techniques presented is not exhaustive but rather

representative. More importantly, however, specific techniques

have been evaluated independently in the literature with quite

different experimental protocols and parameters. While one

technique may have been evaluated with 20 users over multiple

sessions, another one could have been tested with a few hundred

users but over a single session. In one study, the training

samples may have been selected randomly and in another case

they may have been pre-assigned. Similarly, the thresholds

used in various classifiers may have been selected individually

for each user or globally. Clearly, these performance measures

should be taken only as an indicator of a potential rather than

an upper or lower bound.

Tables 1 and 2 together demonstrate the emergence of a

variety of user authentication mechanisms using new user in-

terfaces with interaction capabilities. This has created a unique

opportunity to redesign old and develop new mechanisms with

the goal of providing intrinsic usability and security to the user.

However, the tables and the taxonomy also make it clear that

despite a variety of possibilities, there is no silver bullet and

the choice of a user authentication technique involves making

multiple trade-offs. They demonstrate that the selection and

design of an authentication mechanism is multidisciplinary in

nature and requires experts from different domains to work

closely together in order to arrive at a solution with potential

for a real-world impact.

As new computing devices equipped with multiple interfaces

enter the consumer market, one can envisage new, multi-

factor authentication schemes that simultaneously use multiple

interfaces to capture several authentication factors [171], not

captured in our study. For example, with gaze or eye movement

as an authentication interaction, the geometry and appearance

of a user’s face could be easily captured using embedded 2-

D and 3-D cameras as additional authentication factors. This

would make it much harder to circumvent the system.

Another interesting direction for future work is to design

a mechanism that allows users to enter the same secret in

multiple ways depending on the availability of sensors in a

device, surrounding environments, and potential threats of the

moment. For example, Google Glass users have multiple ways

to communicate with the device, including voice control, hand

gestures, and tab sliding. The appropriateness of each interface

depends on the situation. Having a mechanism that allows a

user to operate in multiple ways depending on the surroundings

would increase not only the usability but also the security of

the system [172]. Another possible framework to enhance the

overall accessibility of authentication mechanisms is to move

away from one-size-fits-all approaches towards supporting a

diverse ecosystem of authentication schemes [173]. In other

words, the system could let users select or could assign to

them such authentication mechanisms that suit their needs and

security level required by a particular application.
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TABLE 1: Summary of approaches to authentication interaction and their characteristics at the authentication moment (†

indicates possible taxonomy that is not yet explored in the research literature)
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T-*-* SCHEMES - TOUCH SURFACE BASED AUTHENTICATION

III.A Microsoft picture [76]
Large touch T-F-S

No No
Relatively

-
4.33

display T-F-X (S+B)† smooth (3 tabs)

III.A Gesture combination lock [69]
Tiny touch T-F-S

Yes No
Relatively

- -
surface T-F-X (S+P)† smooth

III.A-B Touch typing [65], [84]
Medium-size T-F-S

No No Smooth -
1.96

touch display T-F-X (S+B) (4-digit)

III.A-B Android pattern lock [65], [86]
Medium-size T-F-S

No No
Relatively

- 0.91
touch display T-F-X (S+B) smooth

III.B PIN drawing [87]
Medium-size T-F-S†

Yes No
Relatively

-
3.7

touch display T-F-X (S+B) smooth (4-digit)

III.C Online signature [97]
Medium-size T-F-B

Yes No
Relatively

- 2.84
touch display T-F-X (S+B) smooth

III.D Multi-touch gestures [102]
Large T-Ha-X (B+P)

Yes No
Relatively

-
1-2

touch display T-Ha-X (S+B+P) smooth (per gesture)

III.D Multi-touch swipe [101]
Medium-size T-Ha-X (B+P)

Yes No
Relatively

- 0.75
touch display T-Ha-X (S+B+P)† smooth

III.E Bodyprint [103]
Medium-size T-Bo-P

No No Smooth -
touch surface T-Bo-X (S+P)†

-
C-*-* SCHEMES - CAMERA BASED AUTHENTICATION

IV.A Fingerprint recognition [109] 2-D camera C-F-P No No No movement Good light -

IV.B Leap Password [113] Leap Motion C-F-X (S+P+B) No No Smooth Good light

IV.B KinWrite [42]
3-D camera

C-F-X (S+B) Yes No
Relatively large

2-12
(Kinect) interactive space

IV.C SignWave Unlock [114] Leap Motion C-Ha-P No No Smooth Good light -

IV.C Hand pose authentication [115] 2-D camera
C-Ha-S

No No
Good light, no clutter

-
C-Ha-X (S+B) in background

IV.C Airauth [116]
Creative Senz3D C-Ha-B

No No Smooth Good light -
controller C-Ha-X (S+B)

IV.C Hand gesture [117]
3-D camera C-Ha-X (P+B)

No No Smooth Good light -
(Kinect v2) C-Ha-X (S+P+B)

IV.D Face recognition [125] 2-D camera C-He-P No Yes Smooth Good light 7.5

IV.E Body gesture [46], [136]
3-D camera C-Bo-X (B+P)

Yes No
Large interactive

(Kinect) C-Bo-X (S+P+B) space

IV.F Iris [138] 2-D Camera C-E-P No Yes Smooth Good light -

IV.F Gaze-based PIN entry [49] Eye tracker
C-E-S

No Yes Smooth Good light 12-54
C-E-X (S+B)†

IV.F Gaze-based graphical password [139] Eye tracker
C-E-S

No Yes
Smooth 36.7-53.5

C-E-X (S+B)† Good light (5-gaze-point)

IV.F Gaze-based task independent [50] Eye tracker C-E-B No Yes Smooth Good light 10

IV.F
Visual stimuli [141] Eye tracker C-E-B No Yes Smooth Good light 5

MS-*-* SCHEMES - MOTION SENSOR BASED AUTHENTICATION

V.A uWave [44]
Wii remote Ms-Ha-B

Yes No Smooth - -
controller Ms-Ha-X (S+B)

V.A In-air signature [147]
Accelerometer

Ms-Ha-X (S+B) Yes No Smooth - -
on mobile device

V.B Headbanger [45]
Accelerometer

Ms-He-X (S+B) Yes No Smooth - 10
on Google Glass

M-*-* SCHEMES MICROPHONE BASED AUTHENTICATION

VI.A Text-independent [156] Microphone M-V-B Yes Yes - Quiet

VI.A Whisper [150], [154], [155] Microphone
M-V-B

Yes Yes - Quiet 1-20
M-V-X (S+B)†

VI.B Text-dependent [160] Microphone M-V-X (S+B) Yes Yes - Quiet -

VI.C Bone conduction [152] Microphone M-He-P Yes Yes - - 1-10

VI.C BreathPrint [151] Microphone M-He-B Yes No - Quiet 0.55-4.8

BCI-*-* SCHEMES BRAIN-COMPUTER INTERFACE BASED AUTHENTICATION

VII Brainwave [52], [104], [168], [170] BCI Headset
BCI-Br-B

Yes Yes -
Relatively

5-10
BCI-Br-X (S+B) quiet
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TABLE 2: Recognition performance and experimental setup of authentication approaches (resilience SS refers to shoulder

surfing and resilience PA refers to presentation attack). ‡ indicates datasets that are publicly available (for details see [18]).

Approach
Authentication factors Resilience Experimental setup

Authentication performance
Secret (S) Biometric (P/B) SS PA ♯ users Duration Remarks

T-*-* SCHEMES - TOUCH SURFACE BASED AUTHENTICATION

Microsoft picture 3 gestures of tap,
- No Yes

Not reported
[76] line or circle

Gesture 4 gestures from,
- No Yes

On Google Glass
combination lock [69] 8 predefined Not reported

Touch typing Password or PIN - No Yes 32 30 days 4-digit-PIN 3.1% FRR [65]
[65], [84] - Touch stroke (B) Yes Yes 13 1 sessions 5 keypresses 32.3% FAR at 4.6% FRR [84]

Android pattern Swipe password - No Yes 35 30 days 4-9 strokes 11.5% FRR [65]
lock [65], [86] - Swipe behavior (B) Yes Yes 26 21 days 5 strokes 19% FRR at 21% FAR [86]

PIN drawing - Drawing pattern (B) Yes No 20 10 sessions PIN attack 4.84% EER
[88] - Drawing pattern (B) Yes No 20 10 sessions Imitation attack 14.11% EER

User’s signature Signing pattern (B) Yes No 180
6 sessions

- 3.27% EER
Online signature (different days)

[97] -
Signing pattern (B) Yes No 100

5 sessions MCYT-100‡
2.72% EER

(same day) dataset

Multi-touch User’s gesture Gesture pattern (P&B)
Yes No 41 3 sessions

1 gestures 8.86% EER
gesture [102] - Gesture pattern (P&B) 1 gestures 17.17-19.23% EER

Multi-touch
- Gesture pattern (B) Yes No 161 6 sessions

Random guessing 3.02% EER
swipes [101] Statistical attack 4.69% EER

Bodyprint [103] - Ear shape (P) Yes No 12 1 session 12 samples/user 7.8% FRR at 0.5% FAR

C-*-* SCHEMES - CAMERA BASED AUTHENTICATION

Fingerprint [109] - Fingerprint (P) Yes No 22 1 session - 4.5% EER

Leap Password [113]
5 one-finger Hand geometry/ timing

Yes Yes 75 1 session - 18.83% FRR at 1% FAR
tap gestures of tap sequence (P&B)

KinWrite [42]
3-D signature Signing pattern (B)

18
5 months

Local threshold,
99% FRR at 0% FAR

/random training/35
signatures

- Signing pattern (B) 5 months 4 signatures 25% FRR at 25%FAR

SignWave [114] - Hand geometry (P) Yes Yes Not reported

Hand pose
Hand sign

content
- Yes No 4 1 session - 5.0% FAR at 6.2% FRR

authentication [115] - Hand pose (P&B) Yes No 4 1 session - 5.6% FAR at 6.2% FRR

Airauth [116]
3-D gesture Gesture pattern (B) Yes Yes 15 1 session

Customized
gestures

0 % EER

- Gesture pattern (B) Yes Yes 15 1 session Generic gesture 2-6 % EER

Hand gesture [117] 3-D gesture
Hand geometry /

Yes Yes 21 1 session 4 generic gestures 1.92% EER
Gesture pattern (P&B)

Face recognition [125] - Face (P) Yes No 160 6 sessions MOBIO database‡ 10.9% HTER

Body gesture [136]
Body gesture

Body build/posture /
Yes Yes 40 2 sessions Imitation attack 1.24-2.78% EER

movement pattern (P&B)

Body gesture Body build/posture (P) Yes Yes 40 2 sessions Imitation attack 4.22-10.28% EER

Iris [138] - Iris (P) Yes No 100 1 session 4 samples/user 0.05% EER

Gaze-based
4-digit PIN - Yes Yes 21 1 session

dwell time 23.8% FRR
PIN entry [49] look&shoot 20.6% FRR

gaze gesture 9.5% FRR

Gaze-based graphical
password [139]

Graphical
password

- Yes Yes 45 1 session - 27%-46% FRR

Gaze-based
- Gaze movement (B) Yes Yes 17 1 session - 28.7-47.1% EER

task independent [50]

Visual stimuli [141] - Gaze movement (B) Yes Yes 30 1 session - 6.2-7.3% EER

MS-*-* SCHEMES - MOTION SENSOR BASED AUTHENTICATION

uWave [44]
3-D gesture Gesture pattern (B) Yes No 25 7 sessions - 3% EER

- Gesture pattern (B) Yes No 25 7 sessions - 10% EER

In-air signature [147] 3-D signature Signing pattern (B) Yes Yes 34 1 session 3 attackers 2.5% EER

Headbanger [45] Rhythm cue Head nodding pattern (B) Yes Yes 30 3 days 10 secs movement 4.43% EER
M-*-* SCHEMES - MICROPHONE BASED AUTHENTICATION

Text-independent [156] - Acoustic features (B) Yes Yes - - NIST 2008‡ 3.11% EER

Whisper [155] - Whisper pattern (B) Yes Yes 60 1 session Identification 32-98% Accuracy

Text-dependent [160] Speaking content Voice print (B) Yes No 48 2 sessions MIT Corpus‡ 7-11% EER

Bone conduction [152] - Skull structure (P) Yes Yes 10 1 session
No background

noise
6.9% EER

BreathPrint [151] - Breath pattern (B) Yes Yes 10 3 session
No background

noise
7-18% FAR at 2% FRR

BCI-*-* SCHEMES - BRAIN-COMPUTER INTERFACE BASED AUTHENTICATION

Brainwave [104], [168]
Brain task Brain print (B)

Yes Yes
15 2 sessions Local threshold 1.1-28.0% HTER [168]

- Brain print (B) 9 3 days
Day 1 train, days

2-3 test
35.5% HTER [104]
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[71] S. Uellenbeck, M. Dürmuth, C. Wolf, and T. Holz, “Quantifying the
security of graphical passwords: The case of android unlock patterns,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, pp. 161–172, ACM, 2013.

[72] H. Siadati, P. Gupta, S. Smith, N. Memon, and M. Ahamad, “Fortifying
android patterns using persuasive security framework,” UBICOMM

2015, p. 81, 2015.

[73] Z. Min, B. Ryan, and S. Atkinson, “The factors affect user behaviour
in a picture-based user authentication system: Pixelpin,” in Computer

Science and Convergence, pp. 31–42, Springer, 2012.

[74] Z. Zhao, G.-J. Ahn, and H. Hu, “Picture gesture authentication:
Empirical analysis, automated attacks, and scheme evaluation,” ACM

Trans. on Info. and System Security (TISSEC), vol. 17, no. 4, p. 14,
2015.

[75] A. E. Dirik, N. Memon, and J.-C. Birget, “Modeling user choice in
the passpoints graphical password scheme,” in Proceedings of the 3rd

symposium on Usable privacy and security, pp. 20–28, ACM, 2007.

[76] Z. Zhao, G.-J. Ahn, J.-J. Seo, and H. Hu, “On the security of picture
gesture authentication,” in Proceedings of the 22nd USENIX conference

on Security, pp. 383–398, USENIX Association, 2013.

[77] D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your
hands reveal your secrets,” in Proceedings of the 2014 ACM SIGSAC

conference on Computer & communications security, ACM, 2014.

[78] Q. Yue, Z. Ling, X. Fu, B. Liu, W. Yu, and W. Zhao, “My google glass
sees your passwords!,”

[79] N. H. Zakaria, D. Griffiths, S. Brostoff, and J. Yan, “Shoulder surfing
defence for recall-based graphical passwords,” in Proceedings of the

Seventh Symposium on Usable Privacy and Security, p. 6, ACM, 2011.

[80] A. Papadopoulos, T. Nguyen, E. Durmus, and N. Memon, “Illusionpin:
Shoulder-surfing resistant authentication using hybrid images,” IEEE

Transactions on Information Forensics and Security, 2017.

[81] D. Weinshall, “Cognitive authentication schemes safe against spyware,”
in Security and Privacy, 2006 IEEE Symp. on, pp. 6–pp, IEEE, 2006.

[82] P. Andriotis, T. Tryfonas, G. Oikonomou, and C. Yildiz, “A pilot study
on the security of pattern screen-lock methods and soft side channel
attacks,” in Proceedings of the sixth ACM conference on Security and

privacy in wireless and mobile networks, pp. 1–6, ACM, 2013.

[83] P. Andriotis, G. Oikonomou, A. Mylonas, and T. Tryfonas, “A study
on usability and security features of the android pattern lock screen,”
Information & Computer Security, vol. 24, no. 1, pp. 53–72, 2016.

[84] B. Draffin, J. Zhu, and J. Zhang, “Keysens: Passive user authentication
through micro-behavior modeling of soft keyboard interaction,” in
Mobile Computing, Applications, and Services, pp. 184–201, Springer,
2014.

[85] U. Burgbacher and K. Hinrichs, “An implicit author verification system
for text messages based on gesture typing biometrics,” in Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’14, (New York, NY, USA), pp. 2951–2954, ACM, 2014.

[86] A. De Luca, A. Hang, F. Brudy, C. Lindner, and H. Hussmann, “Touch
me once and i know it’s you!: implicit authentication based on touch
screen patterns,” in Proceedings of the 2012 ACM annual conference

on Human Factors in Computing Systems, pp. 987–996, ACM, 2012.

[87] T. Van Nguyen, N. Sae-Bae, and N. Memon, “Finger-drawn pin
authentication on touch devices,” 2014.

[88] T. V. Nguyen, N. Sae-Bae, and N. Memon, “Draw-a-pin,” Computers

and Security, vol. 66, no. C, pp. 115–128, 2017.

[89] A. Kholmatov and B. Yanikoglu, “SUSIG: an on-line signature database,
associated protocols and benchmark results,” Pattern Analysis &

Applications, 2008.

[90] M. Faundez-Zanuy, “On-line signature recognition based on vq-dtw,”
Pattern Recognition, vol. 40, no. 3, pp. 981 – 992, 2007.

[91] H. Feng and C. C. Wah, “Online signature verification using a new
extreme points warping technique,” Pattern Recognition Letters, vol. 24,
no. 16, pp. 2943 – 2951, 2003.

[92] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez-
Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho,
D. Escudero, and Q.-I. Moro, “Mcyt baseline corpus: a bimodal biomet-
ric database,” Vision, Image and Signal Processing, IEE Proceedings -,
vol. 150, pp. 395 – 401, dec. 2003.

[93] E. Argones Rua, E. Maiorana, J. Alba Castro, and P. Campisi,
“Biometric template protection using universal background models: An
application to online signature,” Information Forensics and Security,

IEEE Transactions on, vol. 7, pp. 269 –282, feb. 2012.

[94] J. Fierrez-Aguilar, L. Nanni, J. Lopez-Pealba, J. Ortega-Garcia, and
D. Maltoni, “An on-line signature verification system based on fusion
of local and global information,” in Audio- and Video-Based Biometric

Person Authentication, vol. 3546 of Lecture Notes in Computer Science,
pp. 627–656, Springer Berlin / Heidelberg, 2005.

[95] D. Guru and H. Prakash, “Online signature verification and recognition:
An approach based on symbolic representation,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 31, pp. 1059 –1073,
june 2009.



2637-6407 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2019.2893297, IEEE

Transactions on Biometrics, Behavior, and Identity Science

EMERGING NUI-BASED METHODS FOR USER AUTHENTICATION 26

[96] N. Sae-Bae and N. Memon, “A simple and effective method for online
signature verification,” in Biometrics Special Interest Group (BIOSIG),

2013 International Conference of the, pp. 1–12, IEEE, 2013.

[97] N. Sae-Bae and N. Memon, “Online signature verification on mobile
devices,” Information Forensics and Security, IEEE Transactions on,
vol. 9, pp. 933–947, June 2014.

[98] A. Buriro, B. Crispo, F. DelFrari, and K. Wrona, “Hold & sign: A
novel behavioral biometrics for smartphone user authentication,”

[99] N. Sae-Bae, N. Memon, and K. Isbister, “Investigating multi-touch
gestures as a novel biometric modality,” in Biometrics: Theory, Appli-

cations and Systems (BTAS), 2012 IEEE Fifth International Conference

on, pp. 156–161, IEEE, 2012.

[100] M. Shahzad, A. X. Liu, and A. Samuel, “Secure unlocking of mobile
touch screen devices by simple gestures: You can see it but you can
not do it,” in Proceedings of the 19th Annual International Conference

on Mobile Computing &#38; Networking, MobiCom ’13, (New York,
NY, USA), pp. 39–50, ACM, 2013.

[101] Y. Song, Z. Cai, and Z.-L. Zhang, “Multi-touch authentication using
hand geometry and behavioral information,” in Security and Privacy

(SP), 2017 IEEE Symposium on, pp. 357–372, IEEE, 2017.

[102] N. Sae-Bae, N. Memon, K. Isbister, and K. Ahmed, “Multitouch gesture-
based authentication.,” IEEE Transactions on Information Forensics

and Security, vol. 9, no. 4, pp. 568–582, 2014.

[103] C. Holz, S. Buthpitiya, and M. Knaust, “Bodyprint: Biometric user
identification on mobile devices using the capacitive touchscreen to
scan body parts,” in Proceedings of the 33rd Annual ACM Conference

on Human Factors in Computing Systems, pp. 3011–3014, ACM, 2015.

[104] S. Marcel and J. d. R. Millán, “Person authentication using brainwaves
(eeg) and maximum a posteriori model adaptation,” Pattern Analysis and

Machine Intelligence, IEEE Transactions on, vol. 29, no. 4, pp. 743–752,
2007.

[105] P. Kenny, G. Boulianne, P. Ouellet, and P. Dumouchel, “Speaker and
session variability in gmm-based speaker verification,” Audio, Speech,

and Language Processing, IEEE Transactions on, vol. 15, no. 4,
pp. 1448–1460, 2007.

[106] R. Wallace, M. McLaren, C. McCool, and S. Marcel, “Inter-session
variability modelling and joint factor analysis for face authentication,”
in Biometrics (IJCB), 2011 Inter’l Joint Conf. on, pp. 1–8, IEEE, 2011.

[107] N. Sae-Bae and N. Memon, “Quality of online signature templates,” in
Identity, Security and Behavior Analysis (ISBA), 2015 IEEE Interna-

tional Conference on, pp. 1–8, IEEE, 2015.

[108] N. Sae-Bae, N. Memon, and P. Sooraksa, “Distinctiveness, complexity,
and repeatability of online signature templates,” Pattern Recognition,
vol. 84, pp. 332–344, 2018.

[109] M. O. Derawi, B. Yang, and C. Busch, “Fingerprint recognition with
embedded cameras on mobile phones,” in Security and Privacy in Mobile

Information and Communication Systems, pp. 136–147, Springer, 2012.

[110] B. Y. Hiew, A. B. J. Teoh, and O. S. Yin, “A secure digital camera
based fingerprint verification system,” Journal of Visual Communication

and Image Representation, vol. 21, no. 3, pp. 219–231, 2010.

[111] U. Park, S. Pankanti, and A. Jain, “Fingerprint verification using sift
features,” in SPIE Defense and Security Symposium, pp. 69440K–
69440K, International Society for Optics and Photonics, 2008.

[112] D. Gafurov, P. Bours, B. Yang, and C. Busch, “Guc100 multi-
scanner fingerprint database for in-house (semi-public) performance
and interoperability evaluation,” in Computational Science and Its

Applications (ICCSA), 2010 Int’l Conf. on, pp. 303–306, IEEE, 2010.

[113] A. Chahar, S. Yadav, I. Nigam, R. Singh, and M. Vatsa, “A leap
password based verification system,” in Biometrics Theory, Applications

and Systems (BTAS), 2015 IEEE 7th International Conference on, pp. 1–
6, IEEE, 2015.

[114] “Battelle SignWaveTM Unlock App for Leap Motion Lets You Wave
Goodbye to Passwords.” http://www.marketwired.com/press-release/,
2013. [Online; accessed 09-Sep-2013].

[115] S. Fong, Y. Zhuang, and I. Fister, “A biometric authentication model
using hand gesture images,” Biomedical engineering online, vol. 12,
no. 1, p. 111, 2013.

[116] M. T. I. Aumi and S. Kratz, “Airauth: evaluating in-air hand gestures for
authentication,” in Proceedings of the 16th international conference on

Human-computer interaction with mobile devices & services, pp. 309–
318, ACM, 2014.

[117] J. Wu, J. Christianson, J. Konrad, and P. Ishwar, “Leveraging shape
and depth in user authentication from in-air hand gestures,” in Proc.

IEEE Int. Conf. Image Proc. (ICIP), pp. 3195–3199, Sept. 2015.

[118] D. Schmidt, M. K. Chong, and H. Gellersen, “Handsdown: hand-contour-
based user identification for interactive surfaces,” in Proceedings of

the 6th Nordic Conference on Human-Computer Interaction: Extending

Boundaries, pp. 432–441, ACM, 2010.

[119] K. Cheng and A. Kumar, “Contactless finger knuckle identification
using smartphones,” in Biometrics Special Interest Group (BIOSIG),

2012 BIOSIG - Proc. of the Int’l Conf. of the, pp. 1–6, 2012.

[120] L. Zhang, L. Zhang, D. Zhang, and H. Zhu, “Online finger-knuckle-print
verification for personal authentication,” Pattern Recognition, vol. 43,
no. 7, pp. 2560–2571, 2010.

[121] “Hacking Leap Motion apps: Security researchers spoof biometric
auto-login system.” http://venturebeat.com/2013/08/13/, 2013. [Online;
accessed 09-Sep-2013].

[122] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face
recognition: A literature survey,” ACM computing surveys (CSUR),
vol. 35, no. 4, pp. 399–458, 2003.

[123] A. Bud, “Facing the future: the impact of apple faceid,” Biometric

Technology Today, vol. 2018, no. 1, pp. 5–7, 2018.

[124] P. J. Phillips, W. T. Scruggs, A. J. O’Toole, P. J. Flynn, K. W. Bowyer,
C. L. Schott, and M. Sharpe, “Frvt 2006 and ice 2006 large-scale
experimental results,” Pattern Analysis and Machine Intelligence, IEEE

Trans. on, vol. 32, no. 5, pp. 831–846, 2010.

[125] S. Marcel, C. McCool, P. Matějka, T. Ahonen, J. Černockỳ,
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