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Abstract | The microbiota is vital for immune system development and homeostasis. Changes 

to its composition and function, termed dysbiosis, in the respiratory tract and the gut have 

recently been linked to alterations in immune responses and to disease development in the 

lung. Here we review the microbial species normally found in the healthy gastrointestinal and 

respiratory tracts, their dysbiosis in disease and interactions with the gut-lung axis. Although 

this gut-lung axis is only beginning to be understood, emerging evidence indicates the 

potential for manipulation of the gut microbiota in the treatment of lung diseases.  

 

 
Chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD) 

are common and often occur together with chronic gastrointestinal tract (GIT) diseases, such 

as inflammatory bowel disease (IBD) or irritable bowel syndrome (IBS)1,2. Up to 50% of 

adults with IBD and 33% of patients with IBS have pulmonary involvement such as 

inflammation or impaired lung function, although many patients have no history of acute or 

chronic respiratory disease3,4. Furthermore, COPD patients are 2-3 time more likely to be 

diagnosed with IBD4. Asthmatics have functional and structural alterations of the intestinal 

mucosa and COPD patients typically have increased intestinal permeability2,5. Although the 

mature GIT and respiratory tract have different environments and functions, they have the 

same embryonic origin and consequently have structural similarities. Thus, it is not 

unsurprising that the two sites might interact in health and disease (FIG. 1), but the 

underlying mechanisms are not well understood. 

An emerging area of intense current interest is the influence of the microbiota (defined 

here as a microbial community occupying a defined area of activity6) on local and systemic 

host immunity. This is exemplified by germ-free mice, which lack a properly developed 

immune system and show mucosal alterations, both of which can be restored through 
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colonisation with gut microbiota7,8. The microbiome changes over time from birth, to 

adulthood and into old age, and in response to environmental factors, such as diet, and drug 

and environmental exposures9.  

In this ever-expanding field, researchers are now investigating how the local microbiota 

influence immunity at distal sites, in particular how the gut microbiota influence other organs 

such as the brain, liver or lung. This has led to the coining of terms such as the ‘gut-brain 

axis’ and ‘gut-lung axis’. For example, antibiotic-induced alterations of the gut microbiota in 

early life increases the risk of developing allergic airway disease10-13, which adds to our 

understanding of the links between exposure to microorganisms and allergy and 

autoimmunity (Box 1). The mechanisms by which the gut microbiota affect the immune 

responses in the lung, and vice versa, are being uncovered, but many questions remain. Here, 

we summarise the emerging role of the microbiota in the gut-lung axis, highlighting gaps in 

our knowledge and the potential for therapeutic intervention.  

 

[H1] Microbiomes of the healthy gut and lung 
The GIT remains by far the best-studied host-microbial ecosystem, partly due to its 

abundance of microorganisms and partly because the microbiota can be profiled through 

easily obtainable faeces. Both the abundance and diversity of the commensal microbiota 

generally increase along the GIT, and there are site-specific variations in the mucosa and the 

lumen14,15. These differences are governed by the prevailing environment, including pH, bile 

acid concentrations, digesta retention time, mucin properties and host defence factors16. 

Despite these variations, the GIT microbiome is dominated by four bacterial phyla, 

Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria; with lesser and sporadic 

representation of others including Fusobacteria, Verrucomicrobia and Spirochaetes. This 
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‘core’ gut microbiome comprises up to 14 bacterial genera and 150 bacterial ‘species’, many 

of which have not yet been cultured17-19.  

We are beginning to understand the lung microbiota through programmes such as the 

lung HIV microbiome project, a multi-centre network examining both HIV-infected and 

uninfected persons with varying histories of lung and/or respiratory disease20. The lung has a 

large surface area with high environmental exposure, and is equipped with effective 

antimicrobial defences. Healthy lungs were long considered sterile, however, the advent of 

culture-independent approaches for microbiome profiling has resulted in the detection of 

microbial DNA within the lungs of healthy subjects20,21. These bacteria likely reached the 

lung from the oral cavity through micro-aspiration, as the taxonomic profiles of the two sites 

resembled each other20,21. Compared to surrounding sites, the lung has a reduced abundance 

of Prevotella-affiliated taxa and an enrichment of Proteobacteria, specifically 

Enterobacteriaceae, Ralstonia, and Haemophilus20, which may result from host immunity 

and environment such as redox state and oxygen availability. The lung microbiota might not 

be resident in healthy individuals, but rather transiently recolonise by micro-aspiration and 

breathing. The lungs have a comparatively low bacterial biomass and remarkably similar 

microbial composition to adjacent sites, yet the lungs are continuously exposed to entering 

microorganisms and their environmental conditions differ vastly from other body sites. These 

observations support the hypothesis that entry and selective elimination of a transient 

microbiota is the major determinant of microbiome composition in the lung, as opposed to 

resident and expanding microorganisms. This does not negate the importance of host-

microbiome interactions in the lungs, as evidenced by correlations between microbiome 

composition and pulmonary inflammation and disease22. Rather, it highlights the delicate 

balance of microbial exposure and elimination; the possibility of dysbiosis at oral sites 

preceding and/or causing dysbiosis in the lung and contributing to disease pathogenesis20, 
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and; the importance in distinguishing whether bacterial DNA detected by culture-independent 

techniques is truly representative of viable bacteria in the lungs23. Technical challenges, such 

as low microbial biomass and bronchoscope contamination, constant seeding from oral and 

GIT sites and mucociliary and immune clearance have hindered the identification of a viable 

and resident, or a transiently recolonising microbiome in the lungs, as well as further research 

into host-microbiota interactions. Novel methods of sampling tissue with minimal 

contamination24, longitudinal studies to identify temporal changes in microbiota, and the 

increasing use of metagenomic analysis to facilitate the cultivation of fastidious bacterial 

species25 will provide a clearer picture of the role of the respiratory microbiota and allow for 

better design of interventional studies to develop a more complete understanding of host-

microbiota interactions in the lung. 

 

[H1] Interactions between the gut and lung 

[H3] Interactions of microorganisms between the sites 

The epithelial surfaces of the GIT and respiratory tract are exposed to a wide variety of 

microorganisms; ingested microorganisms can access both sites and microbiota from the GIT 

can enter the lung through aspiration. Both the gut and respiratory mucosa provide a physical 

barrier against microbial penetration, and colonisation with normal microbiota creates 

resistance to pathogens, for example through bacteriocins16. Furthermore, a rapidly 

expanding collection of gut commensal bacteria, including segmented filamentous bacteria 

(SFB), Bifidobacteria spp. and members of the colonic Bacteroides genus, induce the 

production of antimicrobial peptides, secretory IgA and pro-inflammatory cytokines. Non-

pathogenic Salmonella strains downregulate inflammatory responses in GIT epithelial cells 

by inhibiting the ubiquitination of I-kappa-B-alpha26, whereas Clostridia spp. also promote 

anti-inflammatory regulatory T-cell (Treg) responses in the colon27. In the respiratory tract, 
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Streptococcus pneumoniae and Haemophilus influenzae synergistically activate host p38 

mitogen-activated protein kinase in a Toll-like receptor (TLR)-independent manner to 

amplify pro-inflammatory responses28. Conversely, non-pathogenic S. pneumoniae and other 

bacteria and their components can suppress allergic airway disease by inducing Tregs29-32. In 

lung transplant recipients, airway microbiota alters immunity in the lung. Firmicutes or 

Proteobacteria-dominated dysbiosis were associated with expression of inflammatory genes 

in pulmonary leukocytes, whereas Bacteroidetes-dominated dysbiosis was linked to a gene 

expression profile characteristic for tissue remodelling33. In both cell culture33 and animal 

models34, the inflammatory response induced by pathogenic species is greater than that 

induced by commensal microorganisms, indicating that the diverse lung microbiota protect 

against pathology by ‘diluting’ the more pro-inflammatory stimuli of pathogens. Although 

transfer of microorganisms from faecal suspensions has been used to determine the role of the 

gut microbiota, such techniques have not yet been used to transfer respiratory microbiota 

between animals, limiting our understanding of their roles. 

Several studies show the effects of GIT colonisation with orally administered bacteria on 

lung function. Oral gavage of faecal suspensions in mice treated with broad-spectrum 

antibiotics improved survival rate and reduced lung damage induced by S. pneumoniae 

infection35. Even though the nature of this ‘gut-lung axis’ has been challenged due to 

potential confounding effects of faecal administration by oral gavage and antibiotic use36, the 

concept warrants systematic and controlled evaluation. In infants, gut microbiota composition 

and caesarean section have been linked to atopic manifestations, and colonisation by 

Clostridium difficile at age 1 month was associated with wheeze and eczema throughout early 

life, and with asthma at 6-7 years37. Positive associations between the presence of ‘beneficial’ 

bacteria such as Bifidobacterium longum in the gut and a lower incidence of asthma have also 

been identified38, although larger and longer studies are needed.  
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Considerable evidence suggests that host epithelia and other structural and immune cells 

assimilate information directly from microorganisms and from the concomitant local cytokine 

response to adjust inflammatory responses, and that this shapes immune responses at distal 

sites such as the lung39,40 (FIG. 2). There is less evidence of direct transfer of microorganisms 

between sites, although the translocation of GIT bacteria to the lung has been observed in 

sepsis and acute respiratory distress syndrome where barrier integrity is compromised41. 

Additionally, some environmental factors such as dietary fibre can produce similar changes 

in the GIT and lung microbiota40. Whether this results from diet-driven changes in microbial 

metabolites, changes in innate immune responses, or a combination of both remains to be 

determined. 

 

[H3] Microbial species-specific effects on host immunity 

The crucial role of the microbiota in lung homeostasis and immunity is demonstrated by the 

poor outcomes of germ-free mice exposed to acute infections42 and their susceptibility to 

allergic airway disease43. Current research is assessing the impacts of selected members of the 

commensal gut microbiota on systemic immunity including in the lung, as well as the use of 

probiotics and prebiotics to prevent and treat acute and chronic pulmonary disease (FIG. 3). 

For example, SFB in the gut, when present naturally or introduced by probiotic dosing or co-

housing of mice, stimulated pulmonary Th17 responses and protection from S. pneumoniae 

infection and mortality44. Intriguingly, a respiratory microbiome enriched with oral-related 

taxa, such as Prevotella, Rothia and Veillonella, was associated with Th17-mediated 

immunity in the lungs of healthy humans22, whether these links are correlative or causative 

remain unclear. Exposure of mice to dog-associated house dust altered the caecal 

microbiome, and in particular increased the abundance of Lactobacillus johnsonii and other 

Firmicutes-related lineages such as Peptococcaceae and Lachnospiraceae45. Both dog dust-
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exposed mice and mice inoculated with L. johnsonii had reduced Th2 cytokine responses in 

the airways, which protected against exposure to respiratory syncytial virus and allergens 

such as ovalbumin. Other examples of microbial influences on host immunity include the 

ability of various Bacteroides spp. to expand Treg populations or bias the Th1/Th2 phenotype 

in either direction in a strain-specific manner, or the suppression of host inflammatory 

responses by the common bacterial metabolites short-chain fatty acids (SCFAs), which act 

through free fatty acid (FFA) receptors and/or epigenetic regulation of immune cells46.  

In related human studies, seropositivity to the gut-specific pathogen Helicobacter 

pylori, and in particular cagA+ strains, has long been linked with reduced incidence of asthma 

and allergy47,48,49. Conversely, two recent meta-analyses suggest that H. pylori infection is 

positively associated with increased incidence of COPD and other chronic bronchial 

diseases50. Although these differences might be partly attributable to genetic, environmental 

and lifestyle factors, these findings raise the possibility that systemic immune responses 

triggered by H. pylori might have different roles in the aetiology of different lung disorders. 

Strain variations, in addition to the cagA expression, might also affect Treg responses51. 

Clearly, the incredible diversity and abundance of gut microbiota results in many 

immunomodulatory signals, which have considerable combined effects on host health. 

Although much has been uncovered about the activity of specific bacterial species, current 

research has only just begun to assess the structure-function relationships of the gut and lung 

microbiota with host immunity.  

 

[H3] Components and metabolites of gut microbiota that influence the lung 

Early studies showed that germ-free mice have reduced responsiveness to LPS-induced 

pathology and that this oral tolerance to microbial components was due to IL-10 mediated 

hypo-responsiveness; however, subsequent LPS exposure was no longer tolerated and the 
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immune response became similar to that seen in conventional mice52,53. Furthermore, a robust 

response to LPS by colonic macrophages could be restored by commensal microbiota54.  

Bacterial components can also have anti-inflammatory effects, attenuating GIT 

pathology. Polysaccharide A (PSA) from B. fragilis induces IL-10 expression by T-cells and 

protects against intestinal inflammatory disease caused either chemically or by Helicobacter 

hepaticus infection55. Sphingolipids, naturally occurring cell membrane components of many 

gut anaerobic genera including Bacteroides, reduce the number of invariant natural killer T 

cells in the colon, cells which have been implicated in the development of colitis56. The best-

studied metabolites, SCFAs, are by-products of microbial fermentation of dietary fibre, have 

anti-inflammatory properties, are a source of energy for colonocytes, and regulate fatty acid 

and lipid synthesis in the host57. 

Much less is known about the influence of microbial components and metabolites on 

other sites, including the lung. Reductions  in Faecalibacterium, Lachnospira, Veillonella, 

and Rothia in the gut, and the urine levels of some microbial bile acid metabolites correlate 

with the development of atopic wheeze in children, although whether they are a cause or a 

consequence of wheeze is not known13. Oral administration of SCFAs has been shown 

experimentally to alleviate allergic airway disease40,58. Microbial components and metabolites 

have been implicated in other disorders, such as tryptophan in brain health, PSA in the central 

nervous system and trimethylamine N-oxide in atherosclerosis, further highlighting their 

importance in extra-intestinal environments56. In studies of other diseases Bacteroidetes spp. 

were associated with early-onset autoimmune diseases, which may be a consequence of 

potent activation of immunity by the LPS of these bacteria59. 

 

[H1] The gut microbiota and lung diseases 

[H3] Microbiota and asthma 
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An increased risk of asthma has been connected with the disruption of the gut microbiota in 

early life (Box 1), and several studies have sought to characterise the precise microbial 

constituents associated with the development of the disease in infants. 

The overall community composition of the gut microbiome is not altered in infants at 

risk of asthma development, but subtle, transient changes in select taxa can be detected in the 

first few months of life13,60. Increased asthma risk has been associated with increased 

abundance of B. fragilis and total anaerobes in early life61, as well as reduced microbial 

diversity60, Escherichia coli62, Faecalibacterium, Lachnospira, Rothia and Veillonella 

species13, although these findings were not consistent across all studies. Additionally, 

although models of allergic airway disease support the existence of a critical developmental 

window early in life43,63, only one study has provided direct evidence that restoring the 

altered gut microbiome through probiotic treatment can reduce asthma susceptibility13. 

Similarly, in adults, the overall composition of the faecal microbiome in allergic asthma 

does not differ from healthy controls64,65. There are taxa-specific differences, such as 

enrichment of Bifidobacterium adolescentis, which negatively correlated with the time since 

asthma diagnosis64. Interestingly, heat-inactivated Bifidobacterium spp. isolated from allergic 

infants induced greater pro-inflammatory responses than those from healthy individuals66.  

There are several proposed mechanisms through which the microbiota can attenuate the 

risk of asthma development. Infants at risk of developing asthma had reduced levels of LPS 

in their faeces13, whereas PSA from B. fragilis protected against the development of allergic 

airways disease in mice by inducing IL-10 responses in T-cells67. H. pylori alleviated murine 

allergic airway disease in several ways, namely by direct activation of Tregs by neutrophil-

activating protein68, or indirectly through urease B subunit, which promotes tolerogenic 

reprogramming of dendritic cells69. Additionally, γ-glutamyl transpeptidase and vacuolating 

cytotoxin from H. pylori altered dendritic cell function, but did not require Tregs to alleviate 
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symptoms70. Commensal bacteria can also influence asthma development through the 

production and secretion of metabolites, specifically SCFAs. Asthma risk in infants was 

associated with reduced acetate concentration in faeces13 and inversely correlated with serum 

acetate concentrations in their mothers when they were pregnant58. A high-fibre diet, which 

increased levels of SCFAs in serum and faeces, protected mice against the development of 

asthma symptoms, a phenomenon which could be replicated by direct administration of 

acetate or propionate prior to disease onset to promote tolerogenic immune responses in 

dendritic cells and Tregs40,58. The benefits of a high-fibre diet were associated with a reduced 

ratio of Firmicutes:Bacteroidetes and an enrichment of Bacteroidaceae in both the faeces and 

lung, which highlights the necessity of investigating microbial communities at several body 

sites for a complete understanding of the influence of microorganisms on host health. These 

studies did not directly explore the relationship between microbiome composition at the two 

sites, or the relative importance of the gut or lung microbiota in protection against disease. 

Such studies would be valuable in determining which body site to target with therapeutic 

interventions. An important but understudied area is the role of interactions between 

microorganisms in the development of asthma. For example, the loss of intestinal bacteria 

and outgrowth of commensal fungi triggered prostaglandin E2-induced changes in alveolar 

macrophages and increased allergic airway inflammation71. Furthermore, gut helminth 

infection protected mice against allergic airway disease, which was associated with an 

increased abundance of Lachnospiraceae and other Clostridiales members, the production of 

SCFAs and subsequent robust Treg responses in the lungs72. Although the Treg-promoting 

capability of Clostridia spp. have previously been demonstrated in the colon27,73, it is 

increasingly being explored for the treatment of diseases at other body sites, including 

asthma74,75. 
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[H3] Microbiota and COPD 

Respiratory microbiome research in COPD has assessed changes in the disease state, and 

with smoke exposure, a major risk factor for the development of this disease. Interestingly, 

although the lung microbiome is similar in healthy smokers and non-smokers, the oral 

microbiome differs substantially between the two groups20. As enrichment of lung microbiota 

with taxa from the oral cavity is associated with increased inflammation in smokers76, it is 

plausible that changes in the oral microbiota and a failure to effectively clear aspirated 

microorganisms contribute to disease development, and may help explain why only a subset 

of smokers develop COPD. In any case, there are stark differences in the lung microbiome of 

COPD patients compared to ‘healthy’ smokers77,78, which led to the proposal that the 

respiratory microbiome may be useful in the early diagnosis of COPD. In contrast, no study 

to date has investigated changes of the gut microbiome in COPD patients. Nevertheless, in 

‘healthy’ smokers, the faecal microbiome is characterised by an increase in abundance of 

Bacteroides-Prevotella spp.,79 and a reduced Firmicutes:Bacteroidetes ratio80 compared to 

non-smokers. These changes in microbiota composition have been associated with intestinal 

inflammation and IBD81,82. Smokers also have a reduced abundance of Bifidobacterium80,83, 

and hence may lose the anti-inflammatory effects often associated with this genus.  

The causes of smoking-associated changes in microbiome composition are likely a 

combination of environmental, host and microbial changes such as intestinal and immune 

disruption, impaired clearance of pathogens84,85, acidification of gastric contents86 and 

ingestion of bacteria that occur in cigarettes87. Furthermore, cigarette smoke can directly 

affect the virulence of both bacteria88 and fungi89, as well as altering the growth and 

exopolysaccharide structure of known gut bacteria such as Bifidobacterium animalis90, which 

may contribute to dysbiosis. Even following smoking cessation, many of these changes that 
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cause dysbiosis persist for prolonged periods, and thus any therapeutic intervention to restore 

the microbiota may potentially require repeated administration to avoid relapse. 

In the absence of longitudinal or interventional studies, it is difficult to ascertain whether 

changes in the gut or respiratory microbiome are a cause, or a consequence of COPD. Most 

likely, both are true and operate simultaneously or at different stages of disease. Exposure to 

environmental stimuli and onset of disease cause dysbiosis, which in turn likely contributes to 

disease progression. In any case, defined probiotic use may benefit COPD patients, 

particularly if used as an early, preventative intervention. Oral Lactobacillus casei 

administration improved the previously defective function of peripheral natural killer cells in 

adult male smokers91, whereas Bifidobacterium breve and Lactobacillus rhamnosus reduced 

lung pathology in a mouse model of COPD92, and reduced inflammatory responses in 

macrophages exposed to cigarette smoke extract in vitro93. Similarly, a diet which increased 

SCFA production protected against elastase-induced inflammation and emphysema94. 

Although a causal relationship between SCFAs and protection in this study was not 

confirmed, both cigarette smoke95 and environmental particulate matter96 reduced SCFA 

concentrations in rodents, and cigarette smoke condensate reduced their production in vitro90. 

Furthermore, increased intestinal translocation of bacteria and their products occurred after 

exposure to particulate matter or development of COPD2,96,97. Bacterial toxins such as 

enterotoxin98 or LPS99 can contribute to the pathogenesis of COPD and microbiota-associated 

intestinal inflammation may become systemic and also contribute. The potential of SCFAs to 

improve intestinal barrier function may account for their benefits in animal models of 

COPD100,101, although this is yet to be explored in clinical studies.  

 

[H3] Microbiota and respiratory infections 



14 

 

The gut microbiota is broadly protective against respiratory infection, as its depletion or 

absence in mice led to impaired immune responses and worsened outcomes following 

bacterial or viral respiratory infection35,42,102-104. Administration of SFB improved resistance 

to S. aureus pneumonia44 and Bifidobacterium spp. protected against both bacterial105 and 

viral pulmonary infection in mice104,106. Lactobacillus and Bifidobacterium-based probiotics 

also improved the incidence and outcomes of respiratory infections in humans107-110. 

Several aspects of experimental design influence the results of infection studies, 

including the route of administration of bacterial ligands103,111, the facility from which 

research animals are sourced44, the type of antibiotic used for microbiota depletion63,103 and 

the infecting pathogen. For example, herpes simplex virus type 2 or Legionella pneumophilia 

do not appear to be influenced by antibiotic-mediated microbiota depletion103.  

Nevertheless, several important mechanisms by which the gut microbiota promotes 

clearance of infection have been identified. Innate immune responses to bacteria in the lungs 

are greatly enhanced by exposure to NOD-like receptor and TLR agonists in the GIT, 

including peptidoglycan, LPS, lipoteichoic acid and CpG DNA42,102,111. Similarly, stimulation 

of TLRs by gut bacteria cell wall components and flagellin is necessary for effective adaptive 

immune responses to influenza103,112, whereas the anti-inflammatory effects of oral SCFA 

administration are linked to reduced pulmonary pathology following both bacterial105,113 and 

viral114 infection in mice. However, microbiota can also drive gut pathology in pulmonary 

infection. Influenza virus infection in mice increased the number of lung-derived 

CCR9+CD4+ T-cells, which preferentially migrate to the GIT under the guidance of CCL25 

expressed on intestinal epithelial cells115. This resulted in the outgrowth of E. coli and the 

induction of aberrant Th17 responses and intestinal damage. 

 

[H3] Conclusions and perspectives 
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Many studies have identified the presence of a lung microbiome in health and disease. 

However, we believe that the healthy lung microbiota may be transient and best described as 

a progression of taxa influenced by adjacent body sites and the external environment, rather 

than an actively reproducing core resident community. This is not down-playing the 

importance of a transient microbiome in the healthy lung which could still have important 

roles in inflammatory responses whether viable or not. By contrast, the microbiota is more 

likely to be persistent and resident in the airways and lungs in respiratory disease, although 

whether it is a cause or consequence remain to be elucidated. Furthermore, the lung 

microbiota could affect or be affected by microbiota or immune responses at distal sites.  

 The crosstalk between microorganisms and the host is complex and our current understanding 

of these interactions is only in its infancy. It is unlikely that any one of these interactions is 

solely responsible for the functions of the microbiota, and alterations of any part of these 

relationships may be enough to affect health and disease. It is unclear whether changes in the 

microbiota at one site affect many distal sites equally, or if these systemic effects might be 

specific to certain tissues. To date, no such broad study investigating these systemic 

widespread effects has been performed. 

Gut-lung microbiota studies thus far have two major limitations: the first is discerning 

causative over correlative effects, the second is timing. Most studies have been associative. 

Furthermore, culture-independent identification of microbiota has not yet replaced the need to 

isolate and culture suspected opportunistic pathogens or probiotics in order to study their 

effects, and many members of the microbiota cannot be easily cultured. Thus, it is typically 

unclear whether changes observed in the microbiota are the cause or effect of disease. As for 

timing, most experimental data have described the role of the gut microbiota on the 

development of lung disease, and not in established lung disease. Longitudinal studies in 

humans and animals that associate changes in the microbiota with the severity of established 
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chronic lung disease are required. Research into manipulations of the microbiota during lung 

disease is necessary to improve our understanding and inform the development of novel 

therapies (Box 2).  

 Increasingly, microbiome research is moving towards defining the ‘functional’ 

microbiome. As taxonomic variation between sites and individuals is so large, and the 

microbiome consists of thousands of species, it is highly likely that there is redundancy 

between species in terms of their interactions with other microorganisms and in the 

metabolites they produce. Thus, next-generation ‘-omics’ approaches are required to define 

how the microbiomes of the gut and lung interact with each other and influence health and 

disease. 

In summary, lung microbiota in the healthy state may be transient and constantly re-

seeded from the environment and cleared by the immune system, but may still influence 

health and disease. In respiratory diseases the lung microbiota likely becomes persistent and 

may be both a cause and consequence of the disease forming a pathogenic feedback loop. It is 

clear that bacterial components and metabolites in the gut and lung have the capacity to 

modulate systemic and local immunity, with specific taxa able to influence the pathogenesis 

of respiratory diseases such as asthma, COPD and respiratory infections. Such relationships 

have been identified in other respiratory diseases, such as cystic fibrosis116, which, as a 

genetic disease, is a special case. Respiratory challenges with environmental factors such as 

pollution, cigarette smoke, antibiotics, and diet influence disease risk and likely drive 

pathogenesis through their ability to modulate microbiota composition, although the 

mechanisms of these effect remains unknown. Further longitudinal studies and improved 

interventional experiments will help to elucidate the role of the microbiota and gut-lung 

crosstalk in respiratory disease, and will potentially lead to the identification of new and 

effective avenues for treatment.  
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Box 1: The hygiene hypothesis and microbiota 
In 1989, after observing an inverse correlation between the occurrence of hay fever and 

number of siblings, David Strachan coined the term ‘hygiene hypothesis’117. He proposed that 

reductions in the incidence of infections during childhood altered the development of the 

immune system, leading to increased risk of allergic disease. Subsequent studies showed that 

growing up on a farm118, attendance of child care119 and exposure to dog-associated house 

dust45 all protected against the development of asthma. This hypothesis was later modified to 

state that microbial exposure from commensal bacteria that had co-evolved with humans (as 

opposed to faster evolving viruses) were necessary to properly mature the immune system120. 

Both hypotheses have since been used to explain the rise of various autoimmune and allergic 

diseases that correlate well with the decrease in infectious diseases in affluent countries. This 

is now supported by substantial epidemiological evidence for asthma, hay fever117, atopic 

dermatitis121, type 1 diabetes mellitus122 and multiple sclerosis123. 

Expansion of the gut microbiota begins immediately after birth and is heavily 

influenced by environmental factors, with species of the phylum Actinobacteria often 

dominant during infancy124,125. In this early window of life, changes in the microbiota may be 

linked with the development of chronic lung disorders arising in later life. The decline in 

exposure to infectious agents and changes in the microbiota has many causes, including 

improved hygiene and sanitation practices, provision of clean water, pasteurisation, and 

vaccination. Antibiotics directly cause dysbiosis and in infants this may increase 

susceptibility to chronic inflammatory diseases in later life126. Furthermore, the modern diet 

that is high in processed foods also affects the gut microbiota and may have a major but 

currently undefined role in these processes. 

In addition, in areas where helminth infection is rare, the incidence of allergic disease 

is high. Those with chronic helminth colonisation show antigen-specific immune 
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hyporesponsiveness, with increased levels of IL-10 and suppressive Tregs. In addition, 

helminths can influence B-cell differentiation, IgE responses, natural killer T-cell activity and 

macrophage function, to downregulate immune responses and thereby protect the host against 

allergic disease127. 

 

Box 2: Future directions  

Therapeutic efforts that involve the microbiota and are focused on gastrointestinal disorders 

are further advanced than endeavours targeting the gut-lung axis, or indeed targeting the lung 

in general. Whereas initial research has focused on associative studies between 

pathophysiology and microbiota composition, the next step is a shift to causal links, which 

will then indicate interventional strategies for microbiota-modifying or immunomodulatory 

therapeutics. A recent survey of the microbiota intellectual property landscape128 showed that 

patent filings (dominated by food and nutraceutical companies and smaller biotechnology 

start-ups) were directed towards treating infectious diseases (for example, Clostridium 

difficile infection), digestive and metabolic disorders (IBD, type 1 diabetes), and to a lesser 

extent inflammatory and/or immune disorders. Products in development encompass faecal 

transplants and ‘cocktails’ of live microorganisms. In addition, there is interest in microbial 

metabolites and related designer small molecules to beneficially modulate host immune 

responses. For example there are several patents filed on small molecule agonists of FFAR2 

(free fatty acid receptor 2), the host receptor for SCFAs129-131. FFAR2 is a G-protein coupled 

receptor, a class considered to be inherently ‘drugable’, which is expressed on neutrophils, 

eosinophils, and other immune cells and has been linked to exacerbated or unresolved 

inflammation in animal models of colitis, arthritis and asthma132. This provides a link 

between the SCFAs from fermentable dietary fibre and beneficial effects in inflammatory 

diseases such as asthma58. Receptor-targeted approaches such as this may be complementary 
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therapies to more traditional corticosteroids, and cytokine-directed treatments for pulmonary 

disorders. 
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Figure 1 | Principles of gut-lung crosstalk in health and disease. A healthy intestinal 

microbiota maintains a homeostatic local immune responses through the exposure of 

structural ligands (for example, LPS, peptidoglycan) and secreted metabolites (for example, 

SCFAs). Invading microbiota and absorbed metabolites influence circulating lymphocytes 

and contribute to the regulation of systemic responses. When the gut microbiota is disturbed, 

for example during infection or antibiotic exposure, the normal microbiota-derived signals 

are altered, leading to a transformed immune response. In early life, when the immune system 

is still developing, this disturbance can dramatically alter the way in which the immune 

system perceives its surroundings in later life, leading to chronic inflammatory disorders in 

the gut and lung. In adulthood, dysbiosis of the gut microbiota, for example through exposure 

to cigarette smoke, can cause systemic inflammation and an outgrowth of opportunistic 

pathogens, which can lead to chronic inflammation at distal sites. Although the specific taxa, 

ligands, metabolites and/or host responses may differ in specific disease situations, these 

broad principles outline the role of the microbiota in gut-lung crosstalk.  
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Figure 2 | Structural and functional similarities and differences between the gut and 

lung. The gut and airway epithelia have substantial differences in functional purpose and 

exist in different environments, yet they retain some anatomical similarities. Both are derived 

from the endoderm and consist of columnar epithelial cells with projections of microvilli 

(gut) or cilia (airway) that function as a physical barrier and as sentinels for the immune 

system in conjunction with associated lymphoid tissue. Both secrete mucus through goblet 

cells as well as secretory IgA (although less in the lung). The alveoli found in terminal 

airways in the lung differ substantially, consisting of squamous epithelial cells that secrete 

surfactant (type 2 alveolar cells) or function in gas exchange (type 1 alveolar cells). The 

similarities end here: the intestinal lumen is an oxygen-poor environment and functions to 

digest food and absorb nutrients. Movement of matter is unidirectional (mouth to anus), with 

the exception of reflux or vomiting. Furthermore, the pH, enzyme presence and structure vary 

along the GIT. In contrast, the airways and alveoli are oxygen-rich, and movement is 

bidirectional (inhalation and exhalation). The gut is of a relatively uniform 37°C, whereas 

airway temperature differs depending on the proximity to the pharynx. Thus, it is 

unsurprising that the microbial life in each environment is distinct. Changes in diet and 

exposure to therapeutics and environmental particulates can directly affect the composition of 

the microbiota. Both the gut and lung are able to influence each other’s immune responses. 

Dendritic cells in the intestine and airways, and macrophages in the lungs, sample antigens in 

the lumen. Lymphocytes in the associated lymphoid tissues circulate through the lymphatic 

system to affect systemic immunity. Bacteria from the gut can travel to the lung through 

aspiration of vomit or oesophageal reflux. In times of dysbiosis, disturbed epithelial integrity 

may enable bacteria and their components and metabolites to enter the circulation causing 

systemic inflammation. 
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Figure 3 | Immune system programming by microbiota. Secreted and structural 

components of microbiota can influence the host immune response both locally and at distal 

sites. Microbial metabolites, such as short chain fatty acids (SCFAs), bind free fatty acid 

receptors or promote epigenetic changes in host leukocytes, which induce anti-inflammatory 

responses and reduce inflammation. Virulence factors from pathogenic bacteria, such as 

Helicobacter pylori or Bacteroides fragilis, can downregulate host immune responses, 

whereas structural components from commensal bacteria influence inflammatory responses 

through the activation of pattern recognition receptors. LPS, lipopolysaccharide; LTA, 

lipoteichoic acid; PSA, polysaccharide A; UreB, urease subunit beta; VacA, vacuolating 

cytotoxin A; GGT, gamma-glutamyl transpeptidase; NAP, neutrophil-activating protein. 
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Glossary Terms 

Microbiota: a microbial community occupying a defined area of activity 

 

Key Points 

 The gastrointestinal tract (GIT) and respiratory tract, while separate organs, are part of 

a shared mucosal immune system termed the gut-lung axis. 

 The microbiota of the GIT and the respiratory tract are involved in the gut-lung axis, 

influencing immune responses both locally and at distant sites   

 Current research has identified specific bacterial taxa, their components and 

metabolites which can influence host immunity. 

 With greater knowledge of the gut-lung axis and microbial influences of immunity, 

great advances have been made in understanding the role of microbiota in respiratory 

diseases such as asthma, chronic obstructive pulmonary disease and respiratory 

infection. 

 This newfound understanding has created a number of possible therapeutic strategies 

for the treatment or prevention of acute and chronic respiratory diseases. However, 

several technical challenges and unanswered questions remain. 
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The microbiota is central for host homeostasis and this affects not only the gut but also other 

organs, including the lung. In this Perspective, Hansbro and colleagues explore the role of the 

microbiota in the gut-lung axis and lung disease. 


