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Microbiome research has increased dramatically in recent years, driven by advances

in technology and significant reductions in the cost of analysis. Such research has

unlocked a wealth of data, which has yielded tremendous insight into the nature of the

microbial communities, including their interactions and effects, both within a host and in

an external environment as part of an ecological community. Understanding the role of

microbiota, including their dynamic interactions with their hosts and other microbes, can

enable the engineering of new diagnostic techniques and interventional strategies that

can be used in a diverse spectrum of fields, spanning from ecology and agriculture to

medicine and from forensics to exobiology. From June 19–23 in 2017, the NIH and NSF

jointly held an Innovation Lab on Quantitative Approaches to Biomedical Data Science

Challenges in our Understanding of the Microbiome. This review is inspired by some of

the topics that arose as priority areas from this unique, interactive workshop. The goal

of this review is to summarize the Innovation Lab’s findings by introducing the reader to

emerging challenges, exciting potential, and current directions in microbiome research.

The review is broken into five key topic areas: (1) interactions between microbes and

the human body, (2) evolution and ecology of microbes, including the role played

by the environment and microbe-microbe interactions, (3) analytical and mathematical

methods currently used in microbiome research, (4) leveraging knowledge of microbial
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composition and interactions to develop engineering solutions, and (5) interventional

approaches and engineered microbiota that may be enabled by selectively altering

microbial composition. As such, this review seeks to arm the reader with a broad

understanding of the priorities and challenges in microbiome research today and provide

inspiration for future investigation and multi-disciplinary collaboration.

Keywords: microbiome interactions, gut microbiome, skin microbiome, prebiotics, probiotics, microbiome

evolution, microbiome ecology, microbial forensics

INTRODUCTION

Microbiome research, which focuses on the behavior,
interactions, and function of microbial communities within
a specified environment, has made tremendous gains over
the past 15 years (McEnery, 2017). These advances have been
driven in large part by the dramatic cost reduction of high-
throughput screening and increase in computational power
over this period, which has provided a flood of data that can be
efficiently processed on ubiquitous hardware. From this data, our
understanding of the human and environmental microbiomes
has increased exponentially, and more discoveries continue to
be made every day. Herein, we present a review of the current
priorities in microbiome research and challenges at the frontiers
of this rapidly accelerating field.

We start by discussing interactions between microbes and
the human body and provide examples of current research
on the physiological effects of such interactions within the
body. We continue by identifying considerations that affect
the evolution and ecology of microbes, including the role
played by the environment and microbe-microbe interactions.
Next, we introduce some of the most important analytical and
mathematical methods used in current microbiome research. We
then present a discussion about how the microbial composition
may be used for diagnostics and classification and discuss
exemplary applications. Finally, we conclude by identifying
potential interventional approaches that may be enabled by
selectively altering microbial communities.

HOST-ENVIRONMENT-MICROBIOME
INTERACTIONS, EVOLUTION, AND
ECOLOGY

The microbiome, defined as a set of highly interactive microbial
species, is shaped by the environment in which it exists, which

Abbreviations: AMP, antimicrobial peptides; AMR, antimicrobial resistance;
ARB, antibiotic resistant bacteria; ARG, antibiotic resistance gene; FISH,
fluorescence in situ hybridization; GI, gastrointestinal; GLV, generalized Lotka–
Volterra; GNPS, global natural products social molecular networking; HGT,
horizontal gene transfer; IBD, inflammatory bowel disease; ISAPP, International
Scientific Association for Probiotics and Prebiotics; LGT, lateral gene transfer;
OTU, operational taxonomic unit; PCA, principal components analysis; PcoA,
principal coordinates analysis; PCR, polymerase chain reaction; pdf, probability
distribution function; qPCR, quantitative PCR; RCT, randomized control trial;
RFID, radio frequency identification; RNA, ribonucleic acid; RPKM, reads per
kilobase million; rRNA, ribosomal RNA; scRNA-seq, single cell RNA sequencing;
TE, transfer entropy; TLR, toll-like receptor; TMAO, trimethylamine-N-oxide;
WGS, whole genome sequencing.

includes hosts, and exogenous natural and human factors. In
this section, we present a discussion on the microbiome and
the role of microbe-environment interactions on the ecology
and its evolution.

Host-Microbe Interactions
The term “holobiont” (Margulis and Fester, 1991) refers to a host
and all its associated microbes, and the term “hologenome” refers
to the genomes of the host and the microbes. Some scientists
consider the holobiont as the unit upon which natural selection
acts, whereas others have criticized this metaphor, and question
whether the microbiome can respond to natural selection, given
its limited heritability (Moran and Sloan, 2015; Douglas and
Werren, 2016; Davenport et al., 2017).

Despite important differences in the microbiome of
different individuals of any given species (associated with
diet, environment, etc.), these microbial communities usually
vary less among individuals within a species than between
different species. Each host species has a core microbiome
comprised of microbial taxa that are present in most individuals
and that likely carry out essential functions, and a peripheral
microbiome made up of all other identified taxa, which probably
carry out accessory functions.

Each host can acquire microbes in two ways: vertically
(inheriting them from the parents) or horizontally (acquiring
them from the environment, including food and other
individuals of the same and other species). Vertical transmission
results in the phylogeny of hosts correlating with microbiomes
similarity (with closely related species exhibiting similar
microbiomes), a pattern known as “phylosymbiosis” – it
should be noted, however, that phylosymbiosis can emerge
due to mechanisms other than vertical transmission, e.g.,
due to close contact with other members of the host species
(Sanders et al., 2014; Groussin et al., 2017). Vertical transmission
can also result in co-speciation (microbes speciating as a
result of host speciation) and co-diversification (microbes
exhibiting similarity evolutionary histories due to co-speciation
or similar selective pressures) (Davenport et al., 2017).
Horizontal transmission, on the other hand, tends to erode
phylosymbiosis as it mixes evolutionary histories and breaks up
these associations.

Multiple lines of evidence indicate that vertical transmission
is a major force shaping microbiome evolution, both at the
level of community composition and of individual bacterial cells.
A phylogeny inferred from the gut microbiome composition
of different great apes is perfectly congruent with the great
ape phylogeny, despite frequent horizontal acquisition of
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new microbes (Ochman et al., 2010). In addition, individual
bacterial lineages exhibit phylogenies that resemble that of
great apes, both topologically and in their divergence times,
thus indicating co-speciation and co-diversification (Moeller
et al., 2016a). Germ-free mice can be colonized by gut
bacteria from other species as distant as humans, but the
success of the colonization and its beneficial effects on
the host (bacteria are necessary to fully develop intestinal
immunity) depend on how closely related the donor species
is to mouse (Chung et al., 2012; Seedorf et al., 2014;
Brooks et al., 2016).

Host-Environment-Microbiome
Interactions
Ecology and the Environment-Microbiome Nexus

Current microbiome research is highly biased toward aspects
pertaining to human health (Waldor et al., 2015; Karkman
et al., 2017; Martí et al., 2017). However, in the broader
realm of ecosystem health, human health reflects a single
dimension of interaction of themicrobiota with the environment.
The reality is that it is more and more accepted that an
healthy environmental microbiome determines a healthy human
microbiome (Lloyd-Price et al., 2016). Thus, it is critical to study
ecosystems’ microbiome. The structure and functional richness
of ecosystems’ communities at different scales of biological
organization are important in determining the microbiome
of individuals and populations (Dermyshi et al., 2017; Rees
et al., 2017). Additionally, human populations profoundly
influence the surrounding availability of environmental microbes
in urbanized areas, creating non-linear feedback loops that
are far from being understood (Pinto et al., 2014; Krause
et al., 2017; Van Rossum et al., 2018). Multi-scale variability,
universality ofmicrobiome drivers, and geographical dependency
(Bashan et al., 2016; Falony et al., 2016) are further topics
yet to be investigated. Here, we first focus on the ecology of
the microbiome and (i) how ecological theory can help in
understanding microbiome dynamics in natural and human
communities (Costello et al., 2012), (ii) how the environment-
microbiome nexus is shaped between natural and human
communities (Lynch and Neufeld, 2015), and (iii) how
engineering strategies can try to control harmful effects related
to microbiome alterations in ecosystems (see for example Bucci
et al., 2012). This review does not address any individual
microbiome variability, as population-level approaches can be
considered more appropriate for understanding and controlling
microbiome-related outcomes.

On the Ecology of the Microbiome in a Population

Community ecology is a discipline that is now deeply
consolidated theoretically, empirically, analytically and
computationally. In the context of a microbiome, diversity
is a key factor in determining the stability of the microbiome
and the microbiome-related health of a population (Costello
et al., 2012; Coyte et al., 2015). Functional diversity rather
than taxonomic diversity is a much more fundamental and
meaningful feature highlighting the state of the microbiome
(Li and Convertino, 2019). However, functional diversity

is difficult to measure and taxonomic diversity, if properly
accounting for collective endemic interspecies abundance
distribution, can be meaningful of microbiome states and
configurations (Woloszynek et al., 2019). In particular, here we
focus on a metacommunity representation of the microbiome
(Leibold et al., 2004; Convertino et al., 2009; Coyte et al., 2015)
composed of multiple interacting communities, determining
diversity within (alpha) and between (beta) communities or
assemblages, as well as total diversity of microbial species
(gamma diversity). These communities at different biological
and spatio-temporal scales (Figure 1) shares information
fluxes that are representative of microbial interdependencies.
Leaving aside niche versus neutral theories of organization
(Chao et al., 2005; Hubbell, 2006; Kraft et al., 2008), the
metacommunity approach is well-developed and highly
useful for predicting biodiversity assemblage and shifts,
its stability, and determining local and systemic drivers
of diversity, particularly in spatially defined communities
(Leibold et al., 2004).

Human – Environment-Microbiome Nexus

The connection between environmental and human health
dynamics in short and long time scales is a microbiome research
area that has not been well tackled yet at the population scale.
Recent efforts are mapping the microbiome of Earth for different
habitat types (see for instance the Earth Microbiome project1

and the Global Ocean Microbiome project2), however, the
connection between environment and population microbiome
is still lacking and difficult to predict. While it is true that
consistent efforts have been devoted to the analysis of disease-
or symptom-specific alterations of the microbiome in relation
to external environmental agents (Bucci et al., 2012; Davenport
et al., 2017; Karkman et al., 2017; Mitmesser and Combs,
2017), a large gap exists in the analysis of how the spatio-
temporal distribution of microbiota in the environment [e.g.,
soils (Jansson and Hofmockel, 2018), plants (Wackett, 2019),
water (Lee et al., 2016), and natural hosts (Bahrndorff et al.,
2016; Degli Esposti and Martinez Romero, 2017)] affects the
microbiome in natural and human communities. Note that this
ecological investigation, guided by theory, targeted monitoring
and models (see section “Pattern-Oriented Models”), does not
necessarily need to focus on health but on any spatio-temporal
pattern manifesting ecological states of co-evolving microbiomes
such as biodiversity patterns [see Parfrey and Knight (2012) and
Ochman et al. (Moeller et al., 2016b; Ochman, 2016)] and other
socio-ecological ecosystem services.

Within the metacommunity framework, some specific
research questions are about to determine the extent of
source-sink habitat dynamics for harmful or nuisance
species, and the frequency with which each is sourced from
human or environmental communities. For example, it is
interesting to know whether harmful microbiota share intrinsic
ecophysiological traits with traditional invasive species, such
as offspring quality/quantity-selection and high dispersal

1http://www.earthmicrobiome.org/
2http://ocean-microbiome.embl.de/companion.html
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FIGURE 1 | Metacommunity approach for studying the ecology and evolution of the microbiome. The ecosystem is discretized in communities (nodes) connected

via environmental and human links representing relevant connection determining the spread of species and/or hosts such as river networks and human mobility

networks (Convertino et al., 2009; Coyte et al., 2015; Bashan et al., 2016). Local/nodal environmental and human features constitute the likely niche of species to

exist in a community. The human-environmental microbiome nexus (HEM), that is the multiplex network between functionally relevant microbiome networks in the

human population and the environment, determines some population outcomes of interest (such as diseases in human populations, and other ecological outcomes

such as collective population abundance and functional diversity in animal populations). Each node of the community can contain a detailed characterization of the

microbiome interaction network or graph (see Figure 4). Systemic inter-community networks can also be inferred from information theoretic models (Convertino and

Valverde, 2019; Li and Convertino, 2019) or statistical models based on interdependence of microbial patterns.

abilities. It has been suggested that microbial biodiversity may
boost immunity to bacterial infections (Lax et al., 2015),
potentially by conferring resistance to invasion by new

species, but this dynamics has considered only taxonomic
diversity that has limited explanatory power when considering
microbiome function.
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In this perspective, the theory of multiplex networks (see
Servadio and Convertino, 2018) and Li and Convertino (2019)
for an example of these methods considering a portfolio of health
outcomes and microbial species interactions biodiversity
patterns) works well in representing co-evolving non-
linear species, or metacommunities, subjected to stochastic
environmental dynamics. Assumption-free pattern-oriented
models developed in a metacommunity perspective can detect
main local drivers of microbial diversity (Convertino et al.,
2013), fundamental dispersal corridors (Martí et al., 2017),
alternative stable and transitory states (Rees et al., 2017), stressor-
dependent variability and resilient mechanisms associated to
natural stationary conditions or specific population outcomes
(Shade et al., 2012; Gonze et al., 2017; Zaneveld et al., 2017; Li
and Convertino, 2019; Figure 1). Certainly, models are just a
component in future microbiome research, but these data- and
theory-based models should also guide field data collection and
in vitro experiments (Widder et al., 2016) in order to have an
optimal environment-microbiome nexus exploration.

Diet and Its Effect on Gut Microbiome Composition

and Function

Most of microbiome research focuses on coexisting microbes
and host-microbe interactions. One of the biggest microcosms
is the human gut (more than 1013 bacteria reside in the colon);
gut microbiota interactions occur directly through binding by
receptors to microbial ligands or indirectly by other factors
that are produced by gut microbiota. This results in alteration
of immune response, susceptibility to or protection against
inflammatory diseases (Round and Mazmanian, 2009; Sommer
and Backhed, 2013). For example, a seminal study by Rakoff-
Nahoum et al. (2004) showed that the presence of commensal
bacteria produce certain ligands like lipopolysaccharides (LPS)
and lipoteichoic acid (LTA) that are sensed by toll-like receptors
(TLRs) in the gut epithelium, and protect intestinal epithelium
against injury. Also, microbial products released by certain
microbes in the gut alter interactions between other microbes
and gut. For example, colonization of germ-free mice by
commensal bacteria was found to induce production of a
particular C-type lectin, REG3G, which has antimicrobial activity
(Cash et al., 2006), particularly against gram-positive bacteria
and thus indirectly affects interactions between other microbes
and the gut. On the other hand, many commensal gut-associated
strains also directly affect the gut by triggering a key nuclear
receptor, PPARγ, which plays a major role in metabolism
and inflammation within the gut (Nepelska et al., 2017). In
addition, a commensal bacterium, Fusobacterium nucleatum, had
the indirect effect of promoting human colorectal cancer cell
proliferation and thereby leading to colorectal cancer (Rubinstein
et al., 2013). These direct and indirect interactions are critical for
modulation of the immune status of the host and susceptibility
to disease. Moreover, the vagus nerve, the principal component
of the autonomic nervous system modulates gut microbiota
by slowing the cholinergic anti-inflammatory pathway which
decreases intestinal permeability and shapes gut microbes.
But under stress, this pathway is inhibited and increases the

risk of the pathophysiology of irritable bowel syndrome and
inflammatory bowel disease (Bonaz et al., 2018; Figure 2).
In many cases, the configuration of the microbiome can
significantly affect host-microbe interactions, leading to positive
or negative physiological effects within the host and through
our nervous system.

Diet plays a significant role in shaping the composition of
gut microbes both on a short- and a long-term scale. For
example, the short-term consumption of an animal-based diet
rapidly increased the abundance of bile-tolerant Bacteroides,
Alistipes and Bilophila and reduced abundance of carbohydrate-
metabolizing Firmicutes such as Roseburia, Eubacterium rectale
and Ruminococcus bromii over 1–2 days in humans (David et al.,
2014). Moreover, rapid alterations in the composition of the gut
microbiota were observed within 2–3 days with different sources
of indigestible carbohydrate or fiber, diversity increased with diet
rich in fiber from wheat bran (Walker et al., 2010).

Despite such dynamic shifts in the gut microbiome, habitual
dietary patterns and inter-individual variations, such as genetic
variations, appear to be primary determinants of the microbial
composition. Long-term dietary patterns consisting of high-
fat/animal protein and high-carbohydrate consumption have
been broadly associated with microbial enterotypes enriched
in Bacteroides and Prevotella, respectively (Arumugam et al.,
2011; Wu et al., 2011). Although these responses were observed
within 24 h, enterotype clusters did not switch in some
individuals after 10 days of feeding (Wu et al., 2011). In
addition, the gut microbiota diversity was increased after high-
fiber, low-calorie diet only in individuals with reduced gene
content of the gut microbiome compared to those with elevated
gene content (Cotillard et al., 2013). Diet-host interactions
have also been demonstrated with trimethylamine-N-oxide
(TMAO), a hepatic oxidation product of the gut microbiome-
generated trimethylamine from consumption of choline and
carnitine found in eggs and beef. Considerable inter-individual
variations in circulating and urinary TMAO concentrations
have been reported, with high-TMAO producers following
egg and beef consumption characterized by lower microbial
diversity and greater enrichment of Firmicutes relative to
Bacteroidetes (Cho et al., 2017). Our gut, food, and microbiome
are also connected with our nervous system. Humans might
get their prenatal microbiome (Aagaard et al., 2014; Parnell
et al., 2017; D’Argenio, 2018) or at least be exposed to some
bacteria (de Goffau et al., 2019) while in the uterus, and it
is suggested that the gut-brain-bidirectional axis originates in
utero (Borre et al., 2014; Jasarevic et al., 2017; Martin et al.,
2018). Our gut and brain communicate via neurobiochemical,
neuroendocrinal, and neuroimmune mechanisms, which are
still unclear, and can be the result of different stages of
development. Recent studies suggest that neurobehavioral
outcomes can be influenced by: cytokine imbalance, vagal nerve
signaling and hypothalamic-pituitary-adrenal (HPA) axis (Liu
and Zhu, 2018; Martin et al., 2018; Figure 2). A growing
list of neurobiological disorders includes autism spectrum
disorders, schizophrenia, Parkinson’s disease, multiple sclerosis,
bipolar mood disorders, anxiety, and depression have been

Frontiers in Microbiology | www.frontiersin.org 5 February 2020 | Volume 11 | Article 136

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Cullen et al. Emerging Priorities for Microbiome Research

FIGURE 2 | State-of the–science-Gut-Brain-Bidirectional Axis (GBM). Three ways microbes communicate with GBM: neurobiochemical, neuroendocrinal, and

neuroimmune mechanisms. Microbial sps can modulate hypothalamus-pituitary-adrenal gland (HPA) axis, by affecting corticotrophin releasing factor (CRF), and

cortisone levels which can subsequently affect intestinal permeability and cause hypersensitivity. Neuroactive molecules like γ-aminobutyric acid (GABA), 5-HT,

norepinephrine, and dopamine are produced independently by bacteria or through digestion of other food sources. Lactobacillus subspecies, Candida,

Streptococcus, E. coli, and Enterococcus can make 5HT which affects sleep, appetite, mood, and cognition (Liu and Zhu, 2018). Clostridiales regulate synthesis and

release of 5-HT by making tryptophan available (Martin et al., 2018) for its synthesis. Vagus nerve is the major connection between microbiome and gut, is imperative

for GBM-axis. Microbial metabolites like short chain fatty acids, bile acids, and tryptophan can communicate between gut and brain directly or through vagal/spinal

highways. Stress, dietary changes and microbiome can lead to cytokines imbalance and increases the risk of intestinal inflammation, IBD, and allergies, etc. Gut

microbiota made metabolites like butyrate have epigenetic effect on FOXP3 (forkhead box P3) promoter of T-regs (Furusawa et al., 2013). Prebiotics like

fructo-oligosaccharides and galacto-oligosaccharides increase BDNF, serotonin, GABAb receptor levels while reducing cortisone and L-Trp, hence have anti-anxiety

and anti-depressant effect. Prebiotics and probiotics regulate the capacity of intestinal microbiota, preserve the integrity of the intestinal barrier (enteroendocrine

cells), prevent bacterial translocation and regulate local inflammatory reaction through the intestinal related immune system. BDNF, Brain-derived Neurotrophic

Factor; 5-HT, Serotonin; Trp, Tryptophan; SCFA, Short-chain fatty acid. (A) Showing human brain with detailed picture of hypothalamus and pituitary gland (B).

Showing the gastric mucosa lined by epithelial, goblet, and enterochromaffin cells (EEC), gastric mucosa is also showing bicarbonate buffer and lumen which has

most of the microbiota (from Wikipedia) (C). Showing the epigenetic effect of butyrate on FOXP3 promoter.

associated with the gut-brain axis (Liu and Zhu, 2018;
Martin et al., 2018).

EVOLUTION AND ECOLOGY OF THE
MICROBIOME

Evolution of the Microbiome
A host and its associated microbiota have profound effects
on each other’s fitness, resulting in co-evolutionary processes
that are still not well understood. The microbiome can evolve
at two levels: first, each individual microbe is subject to
evolutionary processes (mutation, selection, migration, drift,
speciation, etc.), and second, a host species’ microbiome can

evolve by incorporation and elimination of microbial taxa, or by
changes in their relative abundances as a consequence of these
evolutionary processes.

The microbiome evolved slowly and in a clock-like manner
in the different branches of the great ape phylogeny, with the
exception of a rapid depletion of diversity in the human lineage,
which is thought to be associated with the consumption of
meat (Moeller et al., 2014). Interestingly, mammals that have
independently evolved an herbivorous diet often exhibit similar
microbiomes (Ley et al., 2008; Muegge et al., 2011); however,
this is not the case of panda bears, whose microbiome resembles
that of their carnivorous and omnivorous close relatives, despite
the panda’s herbivorous diet, probably due to phylogenetic
constraints (Ley et al., 2008).
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Within most mammals, the compositional overlap between
the gut microbiotas of species populations in the Western
hemisphere correlates with their geographic proximity, and
each geographic location exhibits a characteristic microbiome
composition that is not attributable to the diets or the
evolutionary histories of the mammals living therein, suggesting
that horizontal transmission also shapes the microbiome
(Moeller et al., 2017). This relationship is most evident in
sympatric predator-prey populations due to one species and their
associated microbiota serving as the diet for the paired predator.
The structure of the associations is unclear in primate species but
will likely display some similar trends.

Intra-Species Microbial Diversity
The composition of the microbiota within a species can vary
significantly due to complex behaviors of the host. Environmental
pressures derived from host-associated behaviors such as diet
and exposure to medicine and antimicrobial compounds heavily
influence the prevalence of microbial species within a host-
associated community (De Filippo et al., 2010). Major nutritional
shifts between a traditional diet, which is high in fiber, and an
industrialized ‘Western’ diet that is high in oils, refined sugar, fatty
meats, and salt correlate with the prevalence of certain microbial
taxa. For example, Bacteroides and Firmicutes dominate the gut
microbiome of healthy people on industrialized diet (The Human
Microbiome Project Consortium, 2012; Yatsunenko et al., 2012;
Lloyd-Price et al., 2016), whereas species commonly attributed
to disease states such as Prevotella and the spirochete Treponema
(Wu et al., 2011; Schnorr et al., 2014;Obregon-Tito et al., 2015) are
more common in people relying on traditional diets. Importantly,
switching between these diets during societal industrialization can
lead to detectable changes in the microbiome but require long-
term dietary shifts to be maintained (Wu et al., 2011; Gomez
et al., 2016). Ingestion of antibiotics, in contrast, has immediate
and severe consequences, decreasing the taxonomic diversity,
richness, and evenness by up to 30% (Dethlefsen et al., 2008;
Dethlefsen and Relman, 2011). Recovery of the initial microbial
diversity following an antimicrobial selective sweep may occur
quickly in some individuals whereas others experience dysbiosis,
i.e., disturbances in composition and function, for months or
years (Buffie et al., 2012; Fonseca et al., 2015; Wipperman et al.,
2017). Thus, initial insults to the microbiota that disrupt the
stable selective pressures maintaining a homeostatic balance lead
tomajor changes in the distribution of taxa in the gut with serious
consequences for the host.

In addition to environmental pressures on evolution of the
microbiome, intrinsic genetic mechanisms likely play a key role
in shaping microbial diversity. Yet, substantial barriers exist
to accurately measuring intra-species diversity within microbial
communities and, consequently, they have been largely ignored.
Numerous in vitro evolution and environmental microbial
community studies have demonstrated the dynamics of new
genetic variants emerging and quickly sweeping across complex
populations (Denef and Banfield, 2012; Jerison and Desai, 2015;
Levy et al., 2015; Bendall et al., 2016). Interestingly, these
population dynamics mirror the same selective sweeps that arise
following perturbation by antibiotic compounds in the gut.

We posit that variation observed within single individual hosts
over time (Caporaso et al., 2011; Gajer et al., 2012) may reflect
not only alterations in the microbiota due to changes in diet
or other external perturbations but also competition within the
host niche that produces shifts in the relative proportion of
different taxa, consistent with the “ecosystem on a leash” model
(Foster et al., 2017). Asmutations arise in resident microbes, their
relative fitness may increase or decrease leading to alterations
in the composition of the microbiome. In Candida albicans, a
common fungal commensal, strains harboring a single nonsense
mutation in EFG1 have an advantage over strain with an intact
EFG1 and quickly outcompete wild type strains in the GI (Pierce
and Kumamoto, 2012; Pande et al., 2013; Hirakawa et al., 2015).
Preliminary studies suggest that these evolutionary dynamics
do occur within the gut microbiome and we are beginning
to construct methodologies to directly measure mutation rates
(Garud et al., 2017).

Single species within the GI can exert selective pressure
on the composition of the rest of the microbiome. Distinct
GI communities of “enterotypes” are centered on key bacterial
species such as Bacteroides (enterotype 1) and Prevotella
(enterotype 2) although each enterotype spans a range of species
prevalence (Arumugam et al., 2011; Gorvitovskaia et al., 2016).
Additional microbes delineate these microbiome signatures that
likely reflect species-species interactions (Boon et al., 2014;
Zelezniak et al., 2015). These interactions are often difficult to
define in complex gut communities but have been identified
through in vitro and germ-free animal approaches for toxin
secretion (Chatzidaki-Livanis et al., 2014; Hecht et al., 2016),
shared metabolite cycling (Fischbach and Sonnenburg, 2011;
Zelezniak et al., 2015), and niche specialization (Mahowald
et al., 2009; Hibbing et al., 2010). The presence of other nearby
microbes within the GI can alter the transcriptional profile of
different species, suggesting microbial crosstalk that regulates
some of these interactions (Plichta et al., 2016). Thus, selective
pressure through inherited and contemporary interactions
through life likely plays a prominent role in establishment of a
microbiome and resilience to disruptive events.

More recently, an alternative view of species abundance
and competition has emerged that focuses more on the genes
encoded within the genomes of resident microbes and less on
taxonomical units. Microbes within communities tend to have
reduced genome size, relying on the surrounding microbes to
provide some of the metabolites required for growth as described
in the Black Queen Hypothesis (Ochman and Davalos, 2006;
Morris et al., 2012; Boon et al., 2014). The presence of genes
encoding different clusters of enzymes are central to this view
of the microbiome as an interdependent metabolic network that
can distinguish individual variation (Bradley and Pollard, 2017).
Complications linking the resident microbes to these enzymes
arise from the spread of genes by lateral gene transfer, LGT or
also known as horizontal gene transfer, HGT within the tightly
associated gut microbiome (Smillie et al., 2011). Importantly,
high rates of LGT within the human microbiome pose clear
health risks to resemble a reservoir for antimicrobial resistance
(AMR) genes (Sommer et al., 2009, 2010). The accumulation of
these genes likely stems from widespread and often unnecessary
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use of antibiotics in the industrialized world that selects for LGT
of AMR cassettes.

METHODS OF STUDYING THE
MICROBIOME

Microbiome research is a highly transdisciplinary field with a
wide range of applications and methods for studying it. In this
section, we identify several important methods (computational
approaches and models) for obtaining microbiome data, discuss
several widely used mathematical and computational techniques
to analyze microbiome data, and further understand the
functions and role of the microbiome.

Disparate Models and Versatile Methods
The current arena of microbiome research shows disparately
diversemodels anchored to the customs of each specific discipline
in terms of modeling efforts. Ecological, epidemiological, and
physical sciences have tackled the problem of understanding the
microbiome at very different spatial and temporal scales (say
from genes to populations, and from nanosecond to seasonal
variability) and trying to find a general, perhaps unifying,
modeling paradigm in microbiome research initially appears
daunting and unproductive. Here, we focus on methods that,
in our humble opinion, are tackling different objectives and
modeling philosophies. However, the methods that are currently
employed to analyze or predictive microbiome features at
different spatio-temporal scales can likely be applied at other
scales or integrated among each other; and this constitutes itself
a computational and biological avenue for research.

Properties of Microbiome Data and
Considerations Regarding Collection
Strategy
The microbiome is commonly studied through a variety of high-
throughput cultivation independent techniques. These include
using next generation sequencing to identify the genetic material
of the microbes, and additional ‘omic technologies to identify
the functional products of the microbes, such as metaproteomics
for proteins (Hettich et al., 2013), metatranscriptomics for gene
expression (Bashiardes et al., 2016), and metabolomics for small
molecules (Nicholson et al., 2005). All of these techniques probe
a different aspect of the microbiome and generate large amounts
of data that is processed and analyzed to infer information
about the microbial communities. Sophisticated bioinformatics
and mathematical methods are needed to extract meaningful
information and conclusions from these data.

Most commonly, the microbiome is studied using sequencing
by one of two approaches: metagenome sequencing and marker
gene sequencing (Weinstock, 2012). Metagenome sequencing
aims to sequence all of the microbial genes in a given sample and
provides insights into the composition and genetic repertoire of
the microbiota, while marker gene sequencing aims to sequence
a specific gene region, such as the 16S ribosomal RNA (rRNA)
gene that is specific to bacteria and archaea, and it gives a

broad picture of the types of microbes present. While both
strategies give information about the microbial composition
of the microbiome, there are distinct differences and benefits
for each approach. Sequencing entire DNA from a sample–
microbial or not–requires greater sequencing depth per sample.
This leads to a more complete picture of the genetic contents of
the microbiome and allows researchers to assess the functional
potential of the microbiome based on gene function and begins
to address population dynamics during longitudinal sampling.
However, metagenome sequencing generates large volumes of
data that requires more computationally intensive analysis than
marker gene sequencing. Since marker gene sequencing is
restricted to a specific site of the genome, much less sequencing
depth is required to characterize the microbial communities
in a sample, and hundreds of samples can be combined onto
a single sequencing run (Caporaso et al., 2012). This reduces
the computational and overall cost dramatically, but only
allows for the relative abundances of targeted organisms to
be identified at reduced taxonomic resolution. Selection of an
optimal amplification primer, however, is crucial to both limiting
the introduction of bias in relative abundances, which may be
caused by a primer’s lack of sensitivity to certain organisms
(Bergmann et al., 2011; Hayashi et al., 2013), and maximizing
coverage over a microbial community (Bergmann et al., 2011).

Although microbial sequencing surveys will continue to
advance the field, microbiome research is beginning to focus on
the function and mechanistic aspects of microbial communities
(Waldor et al., 2015). Metabolomics is one of the key technologies
that promises to assist in the understanding the function
of the microbiome (Dorrestein et al., 2014; Gilbert et al.,
2016; Knight et al., 2018). There are two basic approaches to
metabolomics (Gilbert et al., 2016; Melnik et al., 2017). First is the
targeted metabolomics, where analysis is performed with a pre-
determined list of molecules (Melnik et al., 2017). The strength of
this strategy is that one can target specifically and therefore it is
more sensitive and quantification is of higher quality. The most
common mass spectrometry instrument to use for this are triple
quadrupoles. When samples become very complex, however,
such as fecal samples that contain environmental, xenobiotics
such as drugs and personal care products, food, food packaging,
microbial, host and various metabolized versions of molecules,
one needs to be careful not to over interpret the data even
when co-migration with an authentic standard is performed
(Melnik et al., 2017). Further, with a pre-determined list of
candidate molecules that are investigated, it will not be possible
to discover molecules that are not in the pre-determined list
or discover specific molecules not yet described. Generally, a
targeted metabolomics experiment aims to find molecules that
belong to well-described pathways and with standards that are
commercially available. The second strategy is untargeted mass
spectrometry. In untargeted metabolomics there is no list of
defined molecules that are investigated, but rather it is a strategy
that lets the data inform on the molecules that are detected.
Once the data is collected it can be used in a broad sense to
show how the overall molecular profiles are changing or attempts
are made to annotate the observed molecules. Annotations are
accomplished by matching the data to reference libraries and to
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in silico predictions. Because there is a very small number of
reference spectra in the public domain compared to number of
known structures, the annotation rates are still low. For well-
studied samples such as human plasma the annotation rate may
be as high as 10% while the annotation rate for fecal samples is
halved while for soil or ocean samples the annotation rates are
below 1%. Also, one still has to manually inspect the annotations
and the most important annotations will need to be confirmed
with standards. However, manual inspection is not scalable
and there is an inherent bias in the reference libraries toward
commercially available molecules.

To address the scalability, the first algorithms that enable false
discovery estimations are being developed (Jiang et al., 2017;
Waldron, 2018). Because most microbially derived molecules,
especially natural products, are not commercially available, there
has been a dearth of widely available annotation data for such
molecules, limiting the detectability of such molecules during
annotation-based analyses, and leading to an inherent bias
against understanding such molecules’ functions. To overcome
this limitation a global natural products social molecular
networking infrastructure was created, allowing users to annotate
mass spectra directly in their data. When an annotation is
made it becomes a part of the public Global Natural Products
Social Molecular Networking (GNPS) contributed reference
collection (Wang et al., 2016). This is improving the amount
of public knowledge exists for the annotation of microbiome
derived molecules. Such annotations may also be propagated
using a molecular networking strategy. Another strategy is
through in silico predictions. Dereplication against a database,
including CSI:FingerID (Dührkop et al., 2015), Metfrag (Wolf
et al., 2010), Metfusion (Gerlich and Neumann, 2013), CFM-
ID (Allen et al., 2014), Network Annotation Propagation (da
Silva et al., 2018), dereplicator (Mohimani et al., 2016), and
dereplicator + (Mohimani et al., 2018), aims to accomplish
in silico prediction, with dereplicator + being the only approach
specifically tested against microbial data to date (Mohimani
et al., 2018). Interestingly much of the data that is observed in
an untargeted mass spectrometry experiment, including natural
products, do not fall into the traditional biochemical pathway
maps (KEGG is one such map) while often the molecules
targeted do fit such pathways, highlighting the complementarity
of the strategies.

Statistical Analysis, the Microbiome, and
the Importance of Data Normalization
Marker gene surveys of the microbiome are frequently used
to broadly understand microbial communities. In these studies,
the samples, which are processed through sequencing and
bioinformatics pipeline, are summarized as a table of operational
taxonomic unit (OTU) counts. Statistical analysis typically starts
with this OTU table, which is sparse, high dimensional and
exhibits dramatic variability in the total number of counts (called
library size) across samples. These microbiome-specific data
properties have serious implications on data analyses, where
popular first line approaches, such as Principal Coordinates
Analysis (PCoA), are not designed to deal with such extreme
levels of sparsity and heterogeneity (Warton et al., 2012;

McMurdie and Holmes, 2014). Two particular implications
include much larger number of principal components (up to 60
in some data sets) required to explain a reasonable amount (at
least 70%) of data variability and misleading estimates of sample-
wise dissimilarities, or beta diversity. These challenges create
immediate problems with data visualization since: (1) two- or
three-dimensional data reduction plots often express only a small
proportion of variability that may limit scientific conclusions
from limited resolution; and (2) the data should be properly
normalized, before downstream analysis, to evaluate differences
between groups of samples with different conditions (e.g., healthy
versus control). Thus, extreme care should be taken in data
processing before analysis. Counts tables should be properly
normalized, uninformative and potential contaminant OTU
features filtered out, and proper statistical methods designed
specifically for microbiome analysis, such as methods corrected
for over-dispersion, should be used (Alekseyenko, 2016). One
way to deal with the sparse count data and the large number
of OTUs is to incorporate the phylogenetic tree structure in
defining the distance between two microbial communities, which
provide a biologically interpretablemethod of pooling rare OTUs.
Important examples of such distances include weighted and
unweighted UniFrac distances and its generalizations. These
phylogenetic tree-based distance matrices can be used in PCoA.

Therefore, to assign 16S rRNA sequencing reads to a set of
p known taxa, for example at genus level for each sample, the
raw data must be summarized as an n x p dimensional matrix of
read counts, denoted by X, where n is the number of samples.
Such a matrix is often sparse with many zero elements. Such
zeros can be due to dropouts during sample preparation steps
or due to under-sampling due to limited sequencing depths. The
number of zeros observed in a given sample is often inversely
associated with the sequencing depths, suggesting many zeros are
due to under-sampling (Cao et al., 2017). In addition, the read
counts vary greatly from taxon to taxon, with some very large
read counts often being observed for a few taxa.

In order to make resulting taxon counts comparable across
different samples, the count matrix X is often converted into a
matrix of proportions by dividing each row by the row total. If
this normalization essentially assumes that for each sample, the
counts data follow a multinomial distribution conditioning on
the total number of reads observed. The empirical proportions
are the maximum likelihood estimates of the multinomial
probabilities. Such a simple normalization has two drawbacks.
First, the typical multinomial distribution usually does not
fit the observed read count data well in microbiome studies
due to both excessive zeros and also some very large counts
in a few taxa. Alternatively, Dirichlet multinomial or zero-
inflated Dirichlet multinomial distributions can be assumed
for the observed data and can be used for normalizing the
counts across samples (Holmes et al., 2012). Second, such
parametric models cannot differentiate structural zeros from
zeros due to under-sampling. In addition, the models might not
be flexible enough to capture the dependency structure of the
true compositional matrix. There have been some attempts of
using the methods developed for RNA-seq data such as edgeR
or DEseq to normalize the microbiome count data (Weiss et al.,
2017). However, neither of the models fits the microbiome
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data due to excessive zeros observed. These parametric models
are mainly developed for directly modeling the count data for
differential abundance analysis, rather than for normalizing the
count data into proportions. Among these parametric methods,
zero-inflated Dirichlet multinomial distributions provide the
most flexibility and fit the microbiome counts better than other
models (Tang and Chen, 2019).

Microbiome count data have some similarity to the count
data observed in single cell RNA sequencing (scRNA-seq) data in
term of excessive zeros due to dropouts. However, many existing
scRNA-seq normalization methods assume existence of spike-
in data, which are not available in microbiome studies (Vallejos
et al., 2017). If the truth is that different samples indeed have
different numbers of bacterial taxa, it is difficult to develop a
normalization method to account for such differences. This is
again different from RNA-seq data since the number of expressed
genes is often the same across different samples. If one assumes
that the observed zeros are indeed due to dropouts or under-
sampling and all the samples includes the same set of taxa,
allowing some bacterial taxa at very low abundances, it is possible
to take amulti-sample approach to obtain better estimation of the
relative abundance matrix and to make the data across samples
comparable. Cao et al. (2017) presented an effective empirical
Bayes method that borrows information across samples to obtain
more accurate estimate of the compositional matrix. Due to large
noise in the data, it is a good practice to eliminate the taxa with
very small counts before performing data normalization.

While many of the most-salient normalization issues for 16S
rRNA sequencing data have been discussed above, there is also
a great need for better normalization methods for metagenome
sequencing data. For such data, normalization can be applied at
several levels, including taxonomy, gene level and the pathway
level. At the species level, one can align the reads to a set of
universal marker genes or a set of clade-specific marker genes
(Segata et al., 2012). Like 16S rRNA read counts, how to handle
excessive zero in the data is not clear. For microbial genes
or gene sets, since there are not many zeros in the counts,
standard normalization methods such as reads per kilobase
million (RPKM) can be applied.

Pattern-Oriented Models
Pattern-oriented models are typically assumption-free models
that are concentrated on finding the necessary and sufficient
information to reproduce the observed or designed patterns
in complex ecosystems (Coyte et al., 2015; Zeng et al., 2015;
Servadio and Convertino, 2018). Patterns are meaningful,
stable, and potentially universal probabilistic relationships
reflecting the collective dynamics of complex ecosystems,
such as biodiversity patterns dependent on microbiome- and
microbiome-environment interactions. These patterns are the
foundation of metacommunity modeling. This theoretical
and computational modeling philosophy, applicable also in
microbiome research for predicting macroecological patterns (Li
and Convertino, 2019), is in striking contrast with statistical
and mechanistic process-oriented models that are anchored
to traditional probability theory or reductionist modeling
approaches aiming to mimic precisely the assumed mechanisms,

and to preserve the full set of data (thought as uncertainty
free) as they are. These mechanistic models typically rely on
completely hypothesized processes about the functioning of
complex ecosystems such as the microbiome (Hubbell, 2006);
mechanisms that are hard to verify if prediction accuracy is
the only endpoint to consider. Here we focus our attention
on information and network theoretic models (Servadio and
Convertino, 2018; Li and Convertino, 2019) that draw their
foundational concepts and analytics on statistical physics (or
complexity science at large) and define the most relevant input
data to characterizemacroecological patterns (Li and Convertino,
2019). Information theory is mostly useful when predicting
microbiome patterns by simplifying the complexity of the
problems and linking driving factors to outcomes considering
their whole probability distributions, which can explore the
complexity of the microbiome. In particular we are interested
in pattern-oriented models that aim to extract the ecological
and environmental information of microbial communities from
data and implement that into simple macroecological models
for predictive purposes [see also Convertino et al. (2009) and
Zeng et al. (2015) as well as Li and Convertino (2019) for
characterizing the linkage between species interaction networks
and macroecological patterns].

Specifically, these models aim to infer the optimal functional
and structural networks of microbes related to patterns of
interest for the studied animal and human populations (Li and
Convertino, 2019), as well as multiplex networks among multiple
populations or between the microbiome and the environment.
Other goals of these models include the identification of
local environmental features driving the ecology and evolution
of microbiome networks considering the observed patterns
(of microbiome composition or other associated patterns such
as of diseases) (Parfrey and Knight, 2012; Martí et al., 2017),
potential feasible patterns and state transitions which may be
associated to environmental exposures (Bucci et al., 2012; Bashan
et al., 2016), and symptoms or diseases (Martí et al., 2017). These
functional and/or structural networks can be the basis of verified
co-occurrence networks as defined later (see section “Harnessing
Association Graphs to Discover Co-occurrence Relationships”).

Figure 3A shows the typical modeling trade-off between
model complexity, uncertainty and scale (see Convertino and
Valverde, 2019), as well as potential plots of interest for
microbiome research generated by information theoretic or
other stochastic models. These plots, in order of information
significance from left to right, refer to key features of the
microbiome, such as microbiome functional diversity, which is
known to affect health and disease in populations (Martí et al.,
2017; Li and Convertino, 2019). In Figure 3B, the first plot on
the left shows a typical ‘’stress response” profile where the stress-
dependent response of the microbiome is evaluated at a singular
time point; the persistence of these fluctuations typically shows
the resilience of the microbiome against one or multiple external
stressors (Shade et al., 2012) but cannot say anything about how
the microbiome responds to different levels of the stressor. The
middle plot of Figure 3B shows the microbiome variability over
the gradient of a stressor or driver more generally (endogenous or
exogenous); this plot has the utility to evidence the landscape of
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FIGURE 3 | Conceptual model complexity-uncertainty-scale manifold and desirable model outputs. (A) According to general computational complexity principles, it

is expected that microbiome uncertainty (information) grows with the spatio-temporal scale of analysis and the complexity of the system (data) analyzed. These

principles are independent of model and microbial systems. The scale is the biological, spatial and/or temporal level of analysis and defines the sensitivity (variability)

of the model. For instance, at micro-, meso-, and macro-scales the analysis can be at the individual, population and multi-population level. The scale also defines

information complexity that may be related to potentially causal networks for the microbiome such as natural and human spreading networks (in blue and red). Each

node of the community details a microbiome interaction network or graph. (B) Three outputs of general interest in microbiome research for assessing systemic risk

and resilience that have an increasing focus on systemic properties, from left to right: microbiome feature value over time (e.g., function), microbiome feature

state-space over a gradient of drivers, and systemic probability distribution of microbiome features under different scenarios.

all potential states in relation to all drivers and more importantly
to manageable factors, such as antibiotics (see, e.g., Bucci et al.,
2012). The ‘’balls” in the plot identify a microbiome state that
is related to a metastable, stable or unstable condition of the
population considered (e.g., healthy or diseased). This second
plot, however, cannot show how the microbiome is changing
with respect to a stressor probabilistically speaking. Finally, the
last plot in Figure 3B shows the whole probability distribution
function (pdf) of a microbiome in relation to stochastic changes
in the stressors; this plot is the most informative since any pdf
can correspond to a ‘’microbiome state” as shown by the middle
plot, and the whole range of values (with the corresponding
probability) is identified. Typically, a ‘’state” is associated to a
microbiome functional network that is reflected by a certain pdf
type (Convertino and Valverde, 2019).

Harnessing Association Graphs to
Discover Co-occurrence Relationships
Association graphs (or networks as named before) are widely
used in informatics (Zunde, 1971; Pearl and Wermuth, 1994;

Pelillo et al., 1998; Bartoli et al., 2000; Jayadevaprakash et al.,
2005; Balaneshinkordan and Kotov, 2016; Liu and Shen,
2016; Mehler et al., 2016; Luo et al., 2017) to discover
and learn interrelationships between key agents that make
up a complex system. Historically, association graphs have
been used in text-based information retrieval (Jayadevaprakash
et al., 2005; Balaneshinkordan and Kotov, 2016; Mehler
et al., 2016), hierarchical pattern analysis (Pelillo et al., 1998),
interpretation of data models (Zunde, 1971; Pearl and Wermuth,
1994), and recently, in a diverse range of multi-variate data
informatics applications (Hosseinkhani et al., 2012; Date et al.,
2013; Liu and Shen, 2016; Luo et al., 2017). For example,
such associations have been employed for context mining
in crime diagnostics applications (Hosseinkhani et al., 2012).
More recently, association analysis and other computational
techniques to determine interrelationships between pathogens
and their ecosystem have been proposed in the context
of microbial networks (Jiang and Hu, 2016; Baker et al.,
2018; Park et al., 2018). Computational methods that employ
association graphs to discover co-occurrence relationships
between pathogens in the environment (Jiang and Hu, 2016;
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Baker et al., 2018; Park et al., 2018), could be employed in the
context of the gut microbiome. For example, association graphs
could be used to discover and track co-occurrence associations
between gut microbes of infants being introduced to solid foods.
Specifically, a multi-scale architecture for developing association
graphs across both longitudinal and aggregate studies may
be constructed. Figures 4A,B provide the schematic idea for
microbial co-occurrence networks for the infant gut microbiome
based on association graphs. Figures 4C,D provide the schematic
diagram showing how the changes across the gut microbiome
of a single infant can be tracked over different times and event
milestones (e.g., introduction of a particular solid food) using
distances between the association graphs. Data can be extended
to multi-scale graph architecture connecting the association
graphs tracked across individual longitudinal studies to aggregate
studies across larger cohort of subjects, to tease out microbial
agents that change over time and other factors. Association
graphs by themselves, however, do not provide a computational
means for inference modeling or an ecological view of microbial

interactions. Network inference models may be employed to
achieve these aims.

Network Inference Models
There are numerous network inference models that could
provide value in the study of the microbiome. Information
theoretic models, for example, can be used for inferring
microbial interaction networks (Li and Convertino, 2018);
these models are not based on any particular assumption
about microbial dynamics and are simply based on the
probabilistic characterization of species abundance and their
evolution over time and in space (where the spatial domain is
involved). Additionally, because of the entropy-based nature of
these models, relevant information is also extracted from the
original microbial data (Servadio and Convertino, 2018; Li and
Convertino, 2019) in order to infer the most stable network
considering the complexity-uncertainty-sensitivity information
landscape. In these models, the inferred interactions are not
necessarily revealing truly causal feedbacks between microbes,

FIGURE 4 | Association graphs demonstrating microbial co-occurrence networks and microbial composition changes over time. These association graphs can be

included into metacommunity models such as the one in Figure 1. (A) Schematic diagram of an association graph. (B) Schematic microbial co-occurrence network

based on the association graph shown in panel A. (C) Schematic showing the changes in gut microbiota associations within an individual in response to the

introduction of food; other external stressors can be considered equivalently. (D) Variation of the schematic shown in panel C with color-coding to show the degree

of change at each node.
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but the models’ output can often be used for biological research
and microbiome engineering. The inference of interactions is
based on transfer entropy (TE) (Schreiber, 2000), which is an
information theoretic and non-parametric function referring to
the directed exchange of information between two variables
(species abundance). This function describes the directional
communication from a source to a destination, with species in
the microbiome network each represented as a node.

DIAGNOSTICS AND INTERVENTIONS
USING THE MICROBIOME

Understanding the microbiome can enable us to use it as an
evaluative tool. If we can thoroughly understand the relationship
between the state of the microbiome and biological processes
(e.g., disease, wound repair, organ function) within the host, we
can look to the microbiome as a robust, low-cost diagnostic tool
to quickly identify dysfunction in such biological processes and to
remediate problems earlier than we otherwise could. Moreover,
the microbiome could potentially serve as a classification
tool using sample composition to gain insight into samples’
origins and history. In this section, we discuss several potential
applications of the microbiome for diagnostics and classification.

Gut Microbiome as Diagnostic and
Prognostic Tools
Research in the last decade has focused on the use of the
microbiome as a potential disease classification, diagnosis and
prognosis tool. Among these, the gut microbiome has been
mostly studied. Examples of using gut microbiome as a possible
diagnosis tool include inflammatory bowel disease (Gevers et al.,
2014; Zhou et al., 2018), progression of diabetes (Leustean
et al., 2018), and irritable bowel syndrome (Hollister et al.,
2019). Statistical methods to build such prognostic tools include
random forests and penalized regression analysis that can take
into account the compositional nature of the microbiome data
(Shi et al., 2016; Lu et al., 2019). Alternatively, for shotgun
metagenomic data, a combination of reference-based known
microbial abundance characterization together with assembly
binning-based known organism feature extraction has been
shown to improve the prediction of several diseases such as colon
cancer and type 2 diabetes (Zhu et al., 2019).

Dermatological Diagnostics and Tools
While many diagnostics have been made for the gut, the skin is
the most accessible human organ, and therefore, a natural target
for diagnostic sampling.

Skin Microbiome

The skin is the human body’s largest organ, and it is fully
exposed to the external environment. Consequently, the skin
is the first barrier of the human body and the first host of
microbiomes coming from the external environment. Its surface
is therefore inhabited by a plethora of microbial agents that
vary in genetic makeup and function in relation to the skin.
Some of these resident microorganisms are merely bystanders

while others work together with skin in a mutualistic relationship
such as to boost the immune system. This skin flora, or
microbiome, is crucial for healthy skin; yet harmful, pathogenic
agents sometimes invade the flora and cause damage, disease,
and slow healing. Understanding this microbiome, is the key to
understanding how to protect and maintain healthy skin. Here,
we discuss current methods of obtaining and analyzing skin
microbiome samples and predict a future direction for diagnostic
technology in this field.

Diagnostic Methods for the Skin

Swabbing has been previously shown to be just as effective at
collecting representative bacterial flora as more invasive methods
like scraping and punching biopsies (Grice et al., 2008). In fact,
using swabbing over more invasive techniques leads to better
sampling of the micro-organism DNA rather than the host DNA,
which would be highly prevalent in a skin biopsy. Swabbing
involves a sterile cotton swab immersed in saline and polysorbate
buffer to stroke across a selected area of skin for a number of
times. The swab is then placed directly into the storage buffer
and held at −20◦C until ready for extracting DNA or further
processing. One of the challenges with trying to obtain DNA from
skin for bacterial identification over the typical specimen of stool
is that the bioburden is much lower and thus the materials used
for the DNA detection must be optimized.

Processing of samples include cell counting and extraction
of DNA/RNA. To identify target cells, fluorescence in situ
hybridization (FISH) with probes for the 16S rRNA gene
sequence can be used to visualize bacteria (Fortner et al., 2014).
Stains like propidium iodide and thiazole orange may be used
to differentiate between viable and non-viable cells. The bacteria
may then be counted on a hemocytometer or by flow cytometry.

Bacteria in the samples may also have their DNA extracted for
genetic analysis. Generally, standard DNA extraction protocols
(lysis in extraction buffer) are followed with polymerase chain
reaction (PCR) amplification of the 16S rRNA gene (Grice et al.,
2010). Real-time PCR (also known as quantitative PCR or qPCR)
may also be used to quantify the target. The DNA may then be
sent for sequencing and phylogenic analysis of the 16S rRNA
gene to differentiate the strains of bacteria (bacterial species have
been defined as having ≥97% identical 16S rRNA gene sequence)
(Konstantinidis et al., 2006). Microarrays may also be used if
probes for bacteria are known.

In addition to DNA extraction and analysis, immunoassays
may be used to probe specific strains of bacteria directly with
high sensitivity (can also be made portable but requires a stable
antibody). Recent development of cell-binding antimicrobial
peptides (AMP) may function similarly to antibodies in
immunoassays, yet maintain greater robustness and broader
specificity, though more validation of these AMPs may be needed
(Mannoor et al., 2010).

As an alternative to skin swabbing, adhesive tapes can be
used to non-invasively collect samples of superficial layers of the
epidermal stratum corneum and residing bacteria. Such adhesive
tapes generally consist of an adhesive agent bound to a tape
backing which may be applied on the skin and subsequently
peeled. Recent commercial implementations have been shown
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to be as effective as swabbing for collecting microbiome (Yao
et al., 2017). Moreover, it has been demonstrated that an adhesive
may be applied on the skin in a way that does not change the
skin’s cytokine profile or cause inflammatory cell migration from
vasculature to the dermis/epidermis during the first few hours
following application of the adhesive (Rheins and Morhenn,
2005; Benson, 2011), which otherwise could alter the microbial
composition of the collected sample from its natural state.
Consequently, use of an adhesive for collecting samples may help
streamline the process of sample collection by standardizing the
collection process and simplifying storage and transfer.

Future Directions

In the future, one could anticipate treatment devices such as
bandages and wound dressings that also function as diagnostic
in nature, such as a bandage within which DNA from bacterial
can be extracted and analyzed (Rheins and Morhenn, 2005;
Benson, 2011). Future studies may include comparing the DNA
extraction obtained from various sampling methods from swabs
to adhesive patches to alternative devices. There might even be
technologies by which these devices could analyze the materials
in real-time. For instance, colorimetric assays imbedded in the
bandages may be used to detect bacterial metabolomics. Because
bacteria have distinct metabolic requirements, their metabolites
may be used as a biomarker for indirectly detecting and
characterizing the microbiome. Further studies will be needed
to describe correlations between metabolites and microbiome
and to validate the metabolic signatures, but future technology
may incorporate analytical measures such as colorimetry of
bio-signatures, either ex situ after samples have been collected
or in situ and real-time via adhesive bandage to characterize
the skin’s microbiome. A metabolomics approach may be
advantageous over direct detection of bacteria as detection of
biomarkers can be simpler and less restrictive with respect to
analytical detection methodology and more generally applied to
various bacterium.

Other methods to explore include use of radio frequency
identification (RFID) signal fluctuations to detect in real-time
the presence or absence of bacteria, though specific information
on bacterial strains have not been demonstrated (ElMahgoub
and Shaban, 2014). Additionally, an auto-fluorescent device
utilizing a broadband white LED output and dual-wavelength
LED detection array may be capable of real-time detection of
bacteria and is currently in preclinical studies (Wu et al., 2014).

Microbial Forensics
Physical and chemical features have traditionally been used for
forensic analysis of samples (Katz and Halámek, 2016), however,
these are not always sufficient to characterize samples (due
to intentional and non-intentional contamination). Therefore,
microbial signatures are being investigated due to their slower
adaptation to contamination and their uniqueness within various
environments (soil, human body sites, etc.), thus helping us to
identify their origin (Hampton-Marcell et al., 2017). With the
increasing possibility to sequence DNA “anywhere, anytime”
using nanopore technology (Jain et al., 2016), microbial DNA
can be used as a new type of “sensor” in environmental analyses.

Microbes and DNA are ubiquitous and diverse, yet microbial
communities exhibit repeatable patterns across many ecosystems
and sample types (Relman, 2012). Furthermore, microbes exhibit
different phenotypic and functional profiles that drive observed
phenotypes, e.g., the biogeochemical processes in soil. Many
of these features depend on geospatial environmental factors
(e.g., climate), the presence or absence of other microorganisms,
and availability of nutrients and space. Therefore, metagenomic
sequencing (and metabolomics) can be useful forensic tools, even
though these are still underdeveloped. Also, there is almost no
information regarding how microbial signatures vary and/or are
robust to chemical disturbances.

Current research has focused on geolocation, human
microbial signature identification, and postmortem identification
(Clarke et al., 2017). We know that environmental factors have
large effects on microbial community structure (Bouchot et al.,
2014). Therefore, climate, altitude, and land-use all can have a
drastic effect onmicrobial community composition and function,
as shown in sampling different cities (Afshinnekoo et al., 2015;
O’Hara et al., 2017). Human microbial signatures are diverse
across body parts (The HumanMicrobiome Project Consortium,
2012) and can be affected by a variety of lifestyle factors (Casarin
et al., 2012; Yatsunenko et al., 2012; Bizzarro et al., 2013; Song
et al., 2013; David et al., 2014; Kort et al., 2014; Moon et al., 2014;
Misic et al., 2015). It has been shown that human skin microbial
signatures dominate the indoor microbiome (Kembel et al., 2014;
Chase et al., 2016), especially indoor air and HVACs (Meadow
et al., 2015; Misic et al., 2015; Prussin and Marr, 2015). The
gut microbiome can be collected from toilets, and individuals
from diverse geographic locations can be differentiated both by
specific microbial sequence signatures (Yooseph et al., 2015),
and by 16S rRNA-based taxa composition (Yatsunenko et al.,
2012). Moreover, postmortem intervals can be determined by
the microbiomes’ turnover in the host’s decomposition (Damann
et al., 2015), and in different body locations (Damann et al., 2015;
Hauther et al., 2015; Johnson et al., 2016).

Microbiome Interventional Strategies
In addition to the diagnostic methods described in the previous
section, the microbiome may further be leveraged as an
interventional tool. For example, in scenarios where a particular
microbiome is well understood, we may be able to alter the
microbiome to achieve a desired physiologic effect in the host
or other effects within a larger environment. In this manner, we
may use the microbiome as a lever to indirectly intervene in other
processes within a microbiome-host system or even a larger-
scale microbiome-environment system. Here, we discuss several
examples where such an interventional strategy may be applied.

Prebiotics

As the gut microbiome holds great promise for modulating
risk of chronic diseases (Shreiner et al., 2015), the International
Scientific Association for Probiotics and Prebiotics (ISAPP)
consensus panel has recently updated the definition of a prebiotic
as a substrate that is selectively utilized by host microorganisms
conferring a health benefit (Gibson et al., 2017). Non-digestible
carbohydrates such as inulin, fructo-oligosaccharides (FOS)

Frontiers in Microbiology | www.frontiersin.org 14 February 2020 | Volume 11 | Article 136

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Cullen et al. Emerging Priorities for Microbiome Research

and galacto-oligosaccharides (GOS) are commonly used
prebiotics; abundant in onions, asparagus, agave, artichoke,
etc. They have been shown to increase the abundance of
beneficial Bifidobacterium and/or Lactobacillus spp. (Gibson and
Roberfroid, 1995; Thongaram et al., 2017), contain enzymes
that aid in the digestion of FOS and GOS, and protect our
gut from pathogens and relieve constipation (Mitmesser and
Combs, 2017). Furthermore, the specificity of polysaccharide use
among Bacteroides spp. has been linked to their proliferation in
the presence of fructans (Sonnenburg et al., 2010), suggesting
the response of the microbial community to dietary glycans.
However, inconsistent effects are present across different studies
using various durations, doses, dietary forms, and subject
characteristics, and the efficacy of carbohydrate-based prebiotics
is inconclusive (Gibson et al., 2017).

The updated ISAPP definition of prebiotics expands to
include diverse substances such as non-carbohydrate-based
products (Gibson et al., 2017) such as polyphenols and fatty
acids, can also shift the microbial populations (Singh et al.,
2017). Polyphenols are plant secondary metabolites that are
known for their antioxidant properties (Scalbert et al., 2005),
and many of these compounds have been associated with
greater levels of Bifidobacterium and Lactobacilli and reduced
levels of Clostridium spp. (Tomás-Barberán et al., 2016; Singh
et al., 2017). However, these effects are difficult to assign
to polyphenol independent of dietary fiber present in the
food matrix (Cuervo et al., 2014). Dietary fat sources like
fish oil and lard affect gut microbiota. For example, feeding
fish oil-derived lipids to mice resulted in greater abundance
of Actinobacteria, Verrucomicrobia and lactic acid bacteria
with concurrent protection from inflammatory and metabolic
dysfunction compared to those fed a high-lard diet (Caesar
et al., 2015). Fermentation by commensal bacteria like Clostridia
of plant-derived nutrients leads to the production of short-
chain fatty acids like butyrate and propionate. Butyrate is
the source of energy for colonial epithelial cells and has
anti-inflammatory effect on these cells by through epigenetic
mechanisms. Butyrate acetylates FOXP3 (forkhead box P3)
promoter and induces the differentiation of T-regulatory cells
(Tregs) that helps in reducing intestinal inflammation (Figure 1;
Furusawa et al., 2013) and ameliorates IBD. In human clinical
studies, administration of prebiotics like FOS and GOS showed
a reduced awakening cortisone reaction, a biomarker of anti-
anxiety and anti-depression, rats on prebiotics also showed high
levels of brain derived neurotrophic factor (BDNF), serotonin
receptor 5-HT and low levels of cortisone and L-Tryptophan
which suggests that prebiotics can relieve mood disorders
(Liu and Zhu, 2018).

Probiotics

Probiotics are ingestible viable microorganisms which have
garnered much attention as a means to influence the
configuration of gut microbiota to provide health benefits
for the host (Woloszynek et al., 2016). Once ingested, these
bacteria have been shown to promote epithelial barrier integrity,
produce antibacterial compounds, ferment indigestible fiber,
regulate the acidity of the gut lumen, modulate inflammatory

responses, contribute to amino acid and vitamin production,
prevent colonization of pathogenic microorganisms, and support
maintenance of the gut-brain-axis (Kristensen et al., 2016;
Woloszynek et al., 2016). These microorganisms are mainly lactic
acid-producing Lactobacillus and Bifidobacterium strains that
are thought to impact the existing microbial structure/function
or the host epithelial barrier integrity and immune system
regulation (Bermudez-Brito et al., 2012). Furthermore, these
bacteria may produce deconjugated bile acids that increase
their survival in the gastrointestinal (GI) tract (Begley et al.,
2006). Patients with high anxiety levels show increase in
sleep time after 3 weeks on probiotics. These patients also
showed constitutional change in bacteria: Lactobacillus and
Bacteroides increased, Clostridium family (spiral bacteria,
Blautia) decreased, Actinomycetes decreased (Collins bacteria
mainly decreased) (Liu and Zhu, 2018). On the contrary, the
lack of microbial colonization or inconsistent outcomes with
probiotics have previously created difficulties in determining
their effects on host health.

For example, a few studies have demonstrated a potential
link between probiotic supplementation and GI tract infection,
diarrhea secondary to GI infection, and general bouts of
persistent diarrhea. Both Goldenberg et al. (2013) and Shen
et al. (2017) found beneficial effects of probiotics on improving
Clostridium difficile infection among children and adults.
Similarly, Yang et al. (2017) also determined that subjects (28
randomized control trials, RCTs) with postoperative infections
after undergoing GI surgery had fewer complications, shorter
hospital stays, and shorter durations of antibiotic use compared
to controls on probiotic supplementation. Another meta-analysis
(4 RCTs) also concluded that probiotic supplementation may
reduce duration of persistent diarrhea in children, but the
evidence is limited (Bernaola Aponte et al., 2010). Despite all
these studies showing efficacy of probiotics, Allen et al. (2010)
advised caution in developing probiotic regimens since their
meta-analysis (63 RCTs) found that effect-sizes from study-to-
study varied considerably.

The literature linking probiotic supplementation to other
diseases is still limited and often far less convincing than the
links to GI tract infection and diarrhea. Although only non-
high-throughput techniques were used, McFarland reviewed 63
studies and concluded that the evidence is lacking to support
a definitive role for probiotic supplementation (McFarland,
2014). When Ghouri et al. (2014) reviewed 35 RCTs for both
types of inflammatory bowel disease (IBD) (Crohn’s disease and
ulcerative colitis), notably linked to gut dysbiosis (Gevers et al.,
2014), their evidence does not support probiotic supplementation
for Crohn’s disease, but may be for ulcerative colitis and
pouchitis. Their conclusion with respect to ulcerative colitis
contradicts that of Naidoo et al. (2011), who performed a meta-
analysis of four RCTs, two of which were reviewed in Ghouri et al.
(2014), concluding that evidence does not support the efficacy
of probiotic supplementation for the maintenance of ulcerative
colitis remission. These inconsistencies may have stemmed from
the majority of the included studies being limited in sample
size, trial dropout rate, and duration, use of histological and
endoscopic examinations and presence of placebo groups.

Frontiers in Microbiology | www.frontiersin.org 15 February 2020 | Volume 11 | Article 136

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


Cullen et al. Emerging Priorities for Microbiome Research

Ameta-analysis that included 30 RCTs demonstrated reduced
incidence of stage II and III necrotizing enterocolitis, late-onset
sepsis, and mortality in necrotizing enterocolitis in preterm
infants (Dermyshi et al., 2017). Rees et al. (2017), on the
other hand, included 19 RCTs, and despite including many
of the studies used in Dermyshi et al. (2017), as well as
using the same statistical approach (a random effects regression
model), across all RCTs, found no significant associations
between probiotic supplementation and the incidence of stage
III necrotizing enterocolitis, surgical intervention, and mortality.
The disagreement between Dermyshi et al. (2017) and Rees
et al. (2017) suggests that the RCT selection criteria is likely
critically important when performing a meta-analysis but
may be indicative of a larger issue: current RCTs exploring
probiotic efficacy are poor in quality. Fiocchi et al. (2015)
similarly reported little confidence in the estimated effects to
recommend probiotic use for allergy prevention in children
from 21 RCTs due to poor quality. Probiotic RCTs are often
underpowered, poorly designed (not randomized, controlled
and double-blinded, lack a priori power calculations, fail to
correct for multiple comparisons, etc.), and heterogeneous in
terms of age, sex, and demographics (Kristensen et al., 2016).
Moreover, the number of studies that even meet the selection
criteria to perform a systemic review or meta-analysis is very
small, for example, despite a meta-analysis suggesting that
a probiotic cocktail of Bifidobacterium lactis and lactic acid
bacteria can improve GI discomfort, it only included 3 RCTs
(Eales et al., 2017).

Current Challenges in Studies Using Prebiotics and

Probiotics

Research has established various ways in which microbiota
coexist with their host, but strong evidence via pre- and
probiotic supplementation on health outcomes is still unclear.
What currently exists is a large amount of correlative studies,
linking host outcomes to supplementation, or studies focused
on intermediate outcomes to demonstrate the effects of
prebiotics and probiotics on microbiota. The term ‘synbiotics’
has recently been coined to describe a combination of
probiotics and prebiotics that promotes the function of
probiotics and colonization of beneficial microbes (Gibson et al.,
1995). Synbiotics show synergistic effects on the composition
of gut microbiota, rather than the probiotic components
alone (Saulnier et al., 2008). The very fact that conclusions
differ among meta-analyses and systemic reviews, however,
should suggest that the evidence is quite variable, and hence
it is often difficult to justify prebiotic and/or probiotic
supplementation for the majority of disorders, yet probiotics are
routinely available and marketed toward disease-free consumers
(Scudellari, 2016; Jabr, 2017).

Importantly, there lacks any consensus definition of
what constitutes a “healthy microbiome,” so efficacy is not
easily inferred by shifts in the configuration of microbiota;
little information exists describing how different modes
of administration and particular bacterial strains influence
health outcomes; and dose-response guidelines only exist for
GI disorders (Guarner et al., 2012; Kristensen et al., 2016).

Moreover, the proximal effects probiotics have on commensal
bacteria do not necessarily tell the entire story as to how
probiotics impact host health outcomes (Kristensen et al., 2016);
that is, the relationship between host health outcomes and
probiotic supplementation is strictly correlative. Given the fact
that little evidence suggests that probiotic supplementation
impacts the configuration of microbiota in a dysbiotic state, it
begs the question of what impact does supplementation have
on the configuration of microbiota in disease-free individuals.
Kristensen et al. (2016) reviewed studies that assessed differences
in the composition of microbiota in healthy adults given
probiotics and placebo. Of the seven studies included, only
one demonstrated any shifts in composition (specifically, beta
diversity), but this study was notable for its crossover design
which may have led to carryover effects. No differences in
composition were detected between the two groups in any of the
other six studies.

Overall, prebiotics and probiotics supplementation for
stable changes in the gut microbiome will require further
assessment of functional microbial metabolic markers of diet-
induced response. In addition, target populations and their
background diets need to be considered as confounding
variables since dietary components can bias the effect on
the gut microbiome (Salazar et al., 2014). Inter-individual
variations in response to diet should also be clarified by further
characterization of internal environment including metabolic
status of responders versus non-responders to dietary changes.
Ultimately, addressing these inter-individual differences with a
focus on dosing, routes of administration and interaction of
specific bacterial strains would help establish the relationship
between dietary inputs and health outcomes of the host,
and in turn, create individualized recommendations to reduce
chronic disease risk.

Even though the gut microbiome studies are contradictory,
but the recent invention of the gut-on-a-chip device seems
promising in understanding the gut microbiome interactions, the
gut-immune pathologies, and perhaps the gut-brain axis. Gut-
on-a-chip is a microfluidic human gut device that simulates the
gut epithelial barrier function, and host-microbiome interactions.
By coupling microbial and immune cells in a spatio-temporal
manner, gut-on-a-chip has shown that the intestinal epithelial
barrier is quintessential for the healthy function of gut
(Shin et al., 2019).

Community Modeling and Prediction as a Strategy

for Establishing a Healthy State

The concept of community ecology arose in plant and
animal ecology (Konopka, 2009) but other theoretical and
computational principles have been developed recently in
epidemiology and computational social sciences. Organisms that
live together in a contiguous environment form a community
in which they can interact with each other. A microbial
community, discretizeable as a metacommunity (see sections
“Host-Environment-Microbiome Interactions” and “Pattern-
Oriented Models” for pattern-oriented models aimed to assess
assumption-free community interdependence), can be viewed
as a group of microorganisms that interact with each other
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in a microenvironment. From a complex system perspective, a
stable microbial community can rest at an equilibrium, which
corresponds to a local or global minimum point in the dissipated
energy landscape representing all microbiome potential states
(see the middle plot of Figure 3B for an example of minimum
points in such an energy landscape). When some environmental
stressors are input into the system, the composition and function
of this microbial community can change in response to the
input. Microbial communities show higher-order properties that
are not present in individual microbes but arise from their
interaction (Song et al., 2014). Thus, the microbial community
can be viewed as a complex adaptive system where patterns
emerge from global scale interactions vs. individual microbial
properties. This is helpful for understanding their behavior
and to mathematically model microbial communities. Moreover,
mathematical models of these communities provide a way to
predict their dynamics as well as control them as a system.
These models can be applied to one isolated community, for an
ensemble community, or to more communities that are spatially
linked (see Figures 2, 3).

The interactions in a microbial community can be on very
different spatial and temporal scales that define the structure
and function of a microbial network (Li and Convertino, 2018).
Habitat structural features are much harder to modify but
microbiome function seems highly delicate in particular in
response to extreme stressors. For example, biological processes
can vary over nine orders of magnitude from an enzymatic
reaction to seasonal community succession (Song et al., 2014),
leaving aside the spatial dimension where the microbiome is
analyzed. Different models have been adopted to capture the
interactions on different scales. For example, population-based
approaches are often used to model the systemic interaction
between species whereas individual-based models are suitable
for understanding behavior, in the form of decision rules, of
individual cells or other elementary units. Hence, we can classify
mathematical models based on the scale of interactions that
are aimed to be represented, whether more-focused on macro
collective behavior or individual decisions. The modeling choice,
however, should ideally not result in dramatically different
results for the same pattern. Song et al. (2014) reviewed
mathematical models for different interaction units, such as
Stoichiometric Model-Based Analysis and Metabolic Function-
Based Dynamic Modeling.

With the help of DNA sequencing and metagenomics
techniques, we can estimate the abundance of species by
analyzing the temporal metagenomics samples. Stein et al. (2013)
proposed using generalized Lotka–Volterra (GLV) equations
(that are pattern-oriented statistical physics models; see section
“Pattern-Oriented Models”) to analyze temporal metagenomics
samples and account for time-dependent external perturbations.
The GLV equations consists of autonomous, non-linear, coupled
first-order ordinary differential equations of the form shown by
Eq. 1 (Stein et al., 2013). It has been shown that microbiota
temporal dynamics can be predicted with the help of suchmodels,
which do have some theoretical ecological foundation, such as
a connection to neutral and niche dominant dynamics of the
microbiome (Zeng et al., 2015). Gibson et al. also used GLV

to model the dynamics of population in microbial communities
(Gibson et al., 2016).

dxi(t)

dt
= µixi(t) + xi(t)

L∑

j=1

Mijxj(t) + xi(t)

P∑

l=1

εilul(t) (1)

xi(t) is the abundance (or relative abundance) of a species
i, i = 1, · · · , L, at time t, µi is the model-based (and potentially
habitat-dependent) growth rate of species i, Mij is the effect of
the interaction of species j on species i (potentially estimated
via pattern-oriented models or assumed to reflect a particular
structure) and εil is the susceptibility to the time-dependent
perturbation ul(t). The first term,µixi(t), captures the fluctuation
of the species itself (related to the species entropy), the second
term, xi(t)

∑L
j=1Mijxj(t), describes the interactions between

different species (e.g., a proportion of the inferred transfer
entropy, such as that described by Li and Convertino (2018) or an
estimate based on an empirical assessment), and the third term,
xi(t)

∑P
l=1 εilul(t), accounts for the influence of perturbations

such as an antibiotic or diet or other stressors. The third term,
that is a multiplicative noise term, is sometimes considered
optional when analyzing stable states of a microbial community
without taking one or all perturbations into consideration, in
other words, when assuming that themicrobiome is not subjected
to the environmental fluctuations.

It should be noted that Eq. 1 does not necessarily expresses
only a niche-dominated ecological process because diverse
species interactions are explicitly accounted for; the model can
exhibit a pure neutral model if interactions are balancing out and
summing up to zero. Niche processes are much more dependent
on environmental dependencies if taken into account in the first
term of Eq. 1 or when those affect interaction dynamics (Li and
Convertino, 2019). The fixed point or stable state of the system

can be determined by setting dxi(t)
dt

= 0 and solving for xi(t).
The solutions correspond to the steady state species abundances,
which may correspond to either a healthy or unhealthy state;
however, stability is often associated with a disease-free condition
and this is reflected by the monomodal low energy state in the
ecosystem potential landscape (Figure 3B, third plot). When
we introduce a new species into a stable community, we can
potentially predict the abundance of each species when the system
is stable (or, in some cases, unstable) bymodeling such event if the
microbial interactions are represented correctly; in other words, if
the topology of interactions has been correctly inferred which is
not an easy task. The accuracy of our models can be confirmed
by determining whether the patterns predicted by the model
correspond to the observed ones considering the probability
distributions of all factors. Inferences can be made by predicting
the system response to some certain inputs/perturbations (see
Figure 3). For example, Stein et al. (2013) discovered a group of
commensal microbes that potentially protect against infection by
the pathogen C. difficile and proposed a possible mechanism to
explain how antibiotics can make the host more susceptible to
infection. This type of inferences must first validate the model
on baseline conditions and after predict microbiome response
under stressors.
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With the model being established and the state of system
being predicted, we can try to control the system and drive
the microbial community to a state we desire (via prebiotics
and/or probiotics, for example). The intestinal microbiota is
an ecosystem susceptible to external perturbations such as
dietary changes and antibiotic therapies (Bucci and Xavier,
2014). Large-scale natural ecosystems, such as coral reef
microbiome that share many similar microbes with humans, are
subjected to similar stressor patters (e.g., relate to temperature
shocks) and interventions (via probiotics). Hence, if we
can establish a mathematical model for intestinal microbiota
or other ecosystems, then we can associate the resultant
species abundance, interactions and biodiversity patterns with
perturbation/inputs and engineer microbiome ecology and
evolution in both short and long terms. Taking this a step further,
it may be possible to drive a subject’s microbial community
configuration to one associated with a healthy state by applying
perturbations such as dietary changes or antibiotic therapies.
Specifically, healthy individuals are known to have certain
topologies of microbial community network configurations (Li
and Convertino, 2019). The same can be said for large-scale
ecosystems where structural habitats can be altered to cause
a change in the ecohydrodynamics and microbial functional
biodiversity leading to a healthy state. Care should be placed
in maximizing functional diversity vs. taxonomic diversity; the
latter with unintended consequences and typically associated
to dysbiosis due to the presence of invasive species. With a
working model of the effects (or outcome) of input changes
on the microbial community, we may adjust the microbial
community configuration in a controlled manner to match
a configuration known to be associated with a healthy state
(Figure 1). For example, Gibson et al. (2016) proposed to control
the presence and absence of some strongly interacting species
to steer the microbial composition to a healthy configuration.
Thus, the stratification of healthy individuals based on the relative
abundances of their microbes, that correspond to different
network topologies of microbal interactions, holds promise for
drastically improving personalized medicine (Gibson et al., 2016)
informed by microbial population ecology. Equivalently, targeted
environmental management can be performed by altering the
microbiome supporting habitats or by modifying directly the
microbiome network via host introduction (e.g., via introducing
corals in reefs) or bacteria inoculation (e.g., via the introduction
of microbial mats).

Ecohydrological and Engineering Control of the

Microbiome

In addition to intervention within a host-microbe system,
effective control of the microbiome constituents within an
environment can be used to engineer large-scale changes in the
environment. Consider, for example, the effects of runoff and
water treatment on microbial ecosystems. Engineering control
of microbe-related issues is a relatively old practice within
the field of water treatment (Pinto et al., 2014). However,
these practices are typically designed ad hoc to stop the
spread of selected microbes of concerns such as coliforms and
specific pathogenic organisms rather than targeting the whole

microbiome (leaving aside of course whether that is a matter
of concern and feasible). What is certainly novel is the control
of microbes for enhancing biodiversity and that is still a highly
difficult procedures in natural large-scale ecosystems. Current
serious problems such as antimicrobial resistance, also related
to the widespread diffusion of point source complex mixtures,
make any ‘’old” environmental engineering control dated. The
massive uses of antibiotics have turned wastewater into an
environmental reservoir of antibiotic resistant bacteria (ARB)
and antibiotic resistance genes (ARGs). Therefore, without
appropriate treatments, wastewater may disseminate antibiotic
resistance to various environments, such as soil, groundwater
and surface water through seepage and runoff (Wang and Yu,
2012). Eventually, ARB and ARGs enter the food chain through
crops grown on the affected land and aquaculture products
(Wang and Yu, 2012). Increasing levels of contamination, from
antibiotics and antibiotic resistance genes in water bodies and
bottom sediments, promote the abundance of drug resistance
genes in the microbiota of animals exposed to those water
bodies (Amos et al., 2014). Although antibiotic resistance is
mostly carried by commensal bacteria, ARGs can also be
transferred to pathogens of both animals and humans through
LGT (Brody et al., 2008). Wide dissemination of ARGs, via HGT
in various microbiomes, adversely impacts the effectiveness of
pharmaceutical antimicrobials against infections. Conventional
wastewater treatment processes include a combination of
physical, chemical and biological approaches to eliminate
or reduce suspended solids, organic matter, nutrients and
pathogens. However, they are not effective in term of inactivating
ARBs and destroy ARGs (Rizzo et al., 2013). Actually, high
bacterial abundance and diversity in activated sludge can
promote LGT of ARGs (Moura et al., 2012), and this highlights
how the ecological paradigms of maximizing taxonomic diversity
may not necessarily associate with healthy population outcomes.
Some studies showed that biological processes might positively
affect ARB strains’ spread and selection as well as ARG
transfer (Rizzo et al., 2013) and some other studies reported
the slight increase of AMR after conventional wastewater
treatment (Ferreira da Silva et al., 2007; Luczkiewicz et al., 2010).
Although most bacteria in water can be effectively removed
after disinfection, some of them may survive and proliferate due
to their resistance to disinfectants (Gerba et al., 2003). Several
studies have demonstrated that disinfectants induce transcription
of genes encoding virulence and antibiotic resistance by using
model bacteria (Chang et al., 2007; Rizzo et al., 2013).

To assess the effectives of engineering controls, it is critical
to examine the response of microbiota to them in terms of
the dynamics of structures and functions. Moreover, within
an ecosystem perspective, these engineering controls should
be certainly combined with non-point source management
and ecohydrological controls at the river basin scale since
water and ecological dynamics shape the microbiome. Harmful
microbiota may contaminate runoff due to poorly managed
livestock operations, septic systems, the over application of
human sewage sludge, contaminated storm sewers, and sanitary
sewer overflows (Wiggins et al., 1999). This unhealthy microbiota
in the runoff as well as the overload of other compounds
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such as nitrates propagates their negative effects geographically,
along the whole river basins to the ocean, and biologically,
from microbes to animals and humans beyond water bodies.
Agricultural operations account for a large percentage of all non-
point source pollution of ARB and ARGs to the environment
due to the widespread use of the veterinary antibiotics (Wiggins
et al., 1999). Therefore, managing animal waste to minimize
contamination of surface water and ground water is critical. The
management of manure collection and storage can minimize
runoff and leaking from livestock farm, including the use of
vegetative filter, catch basins and clean-water diversion ditches,
etc. (Spiehs and Goyal, 2007). Proper biological treatment
(e.g., composting, aeration, anaerobic digestion) or chemical
disinfection (e.g., chlorine, lime stabilization, UV, ozone) should
be conducted to reduce the pathogens and ARB inside before
disposal or land application (Spiehs and Goyal, 2007). However,
the effectiveness of those management and ecohydrological
control approaches needs to be investigated further and likely a
portfolio approach of multiple environmental controls is needed
(Convertino and Valverde, 2019).

Potential for Nanotechnology

Nanoparticles, materials that are from 1 to 100 nanometers (nm)
in size, have been used for synthesis of metal nanostructures,
nanofibers, nanotubes, nanorods, nanofluids, semiconductors,
quantum dots, nanoalloys, and magnetic crystals (Aziz et al.,
2015; Prasad et al., 2016; Singhal et al., 2017), sustainable
agriculture (Prasad et al., 2017), in dermatological topical
applications (Antonio et al., 2014), medicine (Mauricio et al.,
2018), and also, more recently, in microbiome interventions,
with a particular focus directed toward for cancer treatment
and blockade therapy (Karavolos and Holban, 2016; Song et al.,
2019). Many metals are used in nanomedicines – for example,
silver nanoparticles are used as antimicrobials. Mucor hiemalis-
derived silver nanoparticles showed significant antimicrobial
properties when tested against six pathological bacterial strains
like K. pneumoniae, P. brassicacearum, A. hydrophila, E. coli, B.
cereus, and S. aureus along with three fungal pathogens Candida
albicans, Fusarium oxysporum, and Aspergillus flavus (Aziz
et al., 2016; Qing et al., 2018). Additionally, silver nanoparticles
derived from the fungus Piriformospora indica showed increased
cytotoxic effects against human breast adenocarcinoma (MCF-
7) followed by human cervical carcinoma (HeLa) and human
liver hepatocellular carcinoma (HepG2) cell lines as compared
to chemically synthesized silver nanoparticles (Aziz et al., 2019).
Silver nanoparticles have been also used in wound dressings and
coatings for consumer products and biomedical devices (Marassi
et al., 2018; Mihai et al., 2019).

Other metals, such as gold nanoparticles are used for imaging,
anti-inflammation and infection, titanium dioxide nanoparticles,
cerium oxide nanoparticles, zinc oxide, carbon and polymeric,
poly (lactic-co-glycolic acid; PLGA) nanoparticles, also have
antimicrobial properties (Shaikh et al., 2019). Not only can
nanoparticles be used to intervene with the microbiome, but
microbial flora can generate metal nanoparticles (Ovais et al.,
2018). Nanoparticles can be attached to microbial surfaces
especially tumor associated bacteria to improve nanoparticle

delivery to tumor site especially in areas of hypoxia containing
nitric oxide and reactive oxygen species. For example, Bacillus
coagulans was used as a factory for nanoparticle synthesis to
treat colon cancer (Song et al., 2019). In future nanotechnology
has unlimited potential in oral drug therapy, making possible
rigorous targeting and controlled drug release in areas of
human body where our medicine fails, improvements in the
absorption and availability of drugs and gastro-retention for any
medical condition, but it is crucial for us to explore microbial
interaction with nanoparticles (Mahawar and Prasanna, 2018;
Siemer et al., 2018), but engineering a specific nanoparticle
to a specific microbe in a specific area remains a challenge
(Biteen et al., 2016).

CONCLUSION

The significant amount of research on the microbiome in
recent years has led to a more-robust understanding of the
microbiome and its role in both human health, urban and natural
environments. Host-microbe studies, such as investigations of
the interactions between the gut microbiome and diet, provide
considerable insight into how the microbiome responds to the
introduction of new microbes and changes over time and could
ultimately serve as a blueprint for interventional and diagnostic
techniques based on the microbiome. Similarly, studies of
environment-microbe interactions, such as those investigating
microbiome diversity within communities, have yielded much
information about the role of environmental stimuli in
composition and function of the individual microbiome and its
evolution over time deepening on environmental structural and
functional features.

Models and methods used to evaluate and study the
microbiome are critical to developing an accurate understanding
of microbiome composition and dynamics. The advent of next
generation sequencing and other -omic technologies have made
it considerably more efficient to probe the microbiome and
generate rich data sets. Moreover, normalization and analysis
techniques have been developed to account for the uniqueness
of microbiome data collected with these technologies. Some
techniques, such as pattern-oriented models and association
graphs, have proven to be quite useful in studying microbiome
data in association to environmental and engineering controls.
Such techniques can provide substantial insight when seeking
to identify changes within the microbiome over space, time and
biological scales.

Current tools and understanding of the microbiome have
enabled researchers to develop new strategies to leverage
applications of the microbiome. Analysis techniques have
enabled faster and more accurate clinical diagnostics, such
as allowing non-invasive sample collection from the surface
of skin using adhesives or swabbing in lieu of the invasive
biopsies that have been used historically. Moreover, pattern-
matching techniques further expand the diagnostic potential
of the microbiome to fields as diverse as forensics, where the
microbial signature of a sample may provide insight into the
source (individual, geolocation, etc.) of the sample. Similar
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techniques are evolving in ecology and environmental sciences
to detect microbial species, hosts and health ecosystem states.

Knowledge of the microbiome also presents potential for
interventional strategies, such as personalized medicine or
targeted ecological engineering controls in the environment.
For example, if we know what the “healthy” state of an
individual’s gut microbiome looks like and we know how the
gut microbiome responds to external factors, such as diet,
we could potentially prescribe a diet for the individual that
would restore the gut microbiome from an “unhealthy” state
to a “healthy” state. Contamination of public water supplies
could be limited using a similar interventional technique. For
example, suppose traces of antibiotics are found in a water
supply. Evaluation of the microbiome within the water supply
and local agricultural sites may help pinpoint the source of
contamination, such that appropriate management (disinfection,
waste collection, changes in livestock management, etc.) may
be put in place at the source before the water supply itself is
contaminated. In ecological settings (e.g., coral reefs) alteration
of the microbiota via changes of the habitat and/or pro-/pre-
biotic treatments can restore biodiversity to its desired levels.
Nevertheless, these interventional strategies are still in their
infancy and will require additional study before scaling to actual
large-scale systematic applications.

As researchers learn more about the microbiome and
develop new tools for probing the microbiome, a flood of
new questions will continue to arise. For example, the mixed
results demonstrated by studies on the effects of prebiotics and
probiotics on the microbiome suggest that improved analytical
techniques and experimental controls may be needed to gain
useful insight into host-microbe interactions. Further, while
researchers have made considerable progress in understanding
the role of microbial interactions and genetic factors in the
evolution of the microbiome, the sheer complexity of the
microbiome provides fertile ground for additional studies on
distinct microbial communities and inheritance-based studies
over generations. Many unanswered difficult questions remain
on how healthy natural ecosystems transfer their state to
humans in dependence and independently to environmental and
population features, and, vice versa how we humans impact
natural microbial communities.

Current sequencing technologies also require certain trade-
offs between accuracy and speed or resources. For example,
WGS can provide a highly accurate picture of the microbes
within a sample but requires deeper sampling and considerably
more computational resources than marker gene sampling.
In contrast, marker gene sampling may require less depth
per sample and far fewer computational resources, but it
only allows for a determination of relative abundances of
microbes and may potentially omit specimens without the
marker genes. Consequently, there is a need to develop new
methods that provide more-detailed information than marker
gene sampling and/or that require fewer resources and less
time than WGS, such as the functional annotation techniques
described herein. Moreover, there is a pressing need to
develop new normalization approaches and analysis techniques
(using machine learning and data visualization, for example)

appropriate to the idiosyncrasies of microbiome data collected
using existing technologies.

As evidenced by the discussion above, the microbiome
provides a rich and diverse area of study, which can provide
us with diagnostic tools and interventional methods that
could ultimately revolutionize medicine, in addition to many
other diverse fields such as ecology, environmental sciences
and engineering, biotechnology, and computational sciences.
Beyond the advancement of research in distinctive fields,
microbiome research can also greatly solve grand planetary
challenges of humanity such as those related to climate change.
To ensure that we can continue probing the limits of the
microbiome and developing new strategies to leverage our
insights, we need to continue developing robust informatics
tools and analytical methods that can process the vast
quantities of microbiome data available and guide monitoring
and experiments. Such advancements will surely lead to new
understandings within this complex field, and it will enable
continued growth in microbiome research for decades to come.
Moreover, gaining deeper understanding of the microbiome
through improved tools and methods will enable engineers
and innovators to develop better applications and unlock the
potential of the microbiome.
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