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Abstract

Chronic, low-grade inflammation in osteoarthritis (OA) contributes to symptoms and disease 

progression. Effective disease-modifying medical OA therapies are lacking, but better 

understanding inflammatory pathophysiology in OA could lead to transformative therapy. 

Networks of diverse innate inflammatory danger signals, including complement and alarmins, are 

activated in OA. Through inflammatory mediators, biomechanical cartilage injury and oxidative 

stress compromise chondrocyte viability and reprogram viable chondrocytes to hypertrophic 

differentiation and proinflammatory, and procatabolic responses in mechanistically similar ways. 

Integral to this reprogramming are certain ‘switching’ pathways in transcriptional signals, other 

than the well-characterized effects of NFκB and mitogen-activated protein kinase signalling. 

HIF-2α transcriptional signalling and ZIP8-mediated Zn2+ uptake, with downstream MTF1 

transcriptional signalling, have been implicated in chondrocyte reprogramming, but further 

validation is required. Permissive factors in procatabolic reprogramming of OA chondrocytes by 

inflammatory mediators also have come to light, including impaired bioenergetics, such as altered 

mitochondrial function and decreased activity of the bioenergy sensors AMPK and SIRT1. These 

factors interact with molecular inflammatory responses and proteostasis mechanisms that normally 

resolve cell stress, such as the unfolded protein response and autophagy. Bioenergy-sensing by 

AMPK and SIRT1 modulates proteostasis and provides ‘stop signals’ for oxidative stress, 

inflammatory, and matrix catabolic processes in chondrocytes. The complexity of molecular 

inflammatory processes in OA, and the involvement of multiple inflammatory mediators in tissue 

repair responses, raises daunting questions about how to therapeutically target inflammatory 

processes and macroscopic inflammation in OA. Bioenergy sensing might provide a pragmatic 

‘entry point’ for novel strategies to limit OA progression.
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Introduction

Osteoarthritis (OA) is both the most common cause of arthritis, and a major public health 

problem. The prevalence of OA is growing in developed countries owing to ageing of the 

population and other, acquired factors including biomechanical injury and obesity. 

Currently, we lack effective disease-modifying medical therapy for OA. To help discuss 

translation in this area, this review applies a vocabulary to a variety of processes that 

regulate OA progression (Box 1). The central rationale of this Review is that chronic, low-

grade inflammatory processes in OA not only promote disease symptomatology, but also 

accelerate disease progression. Better understanding of the inflammatory pathophysiology of 

OA could lead to novel approaches to slow destructive changes in the joint and prevent 

permanent functional impairment. Therefore, this Review moves from discussing networks 

of innate inflammatory danger signals to how they are related to permissive and ‘stop 

signals’ for chondrocyte procatabolic reprogramming. We discuss linkages in impairment of 

certain chondrocyte proteostasis responses and of chondrocyte bioenergetics, such as altered 

mitochondrial function and decreased activity of the bioenergy sensors AMPK and SIRT1, 

and how these processes regulate both inflammatory and matrix catabolic processes in 

chondrocytes in OA. Last, we evaluate and compare the relevance for potential clinical 

translation of the inflammatory and bioenergetics processes discussed.

Inflammatory manifestations in OA

Progressive articular cartilage degradation is central to OA, and is driven by well-understood 

mechanisms of cartilage matrix catabolic effects (including via metalloproteinases [MMPs], 

aggrecanases, and other enzymes) and anti-anabolic effects (via factors including increased 

nitric oxide generation) of chondrocytes (1–5). However, OA is a disease mediated by and 

affecting the entire ‘synovial joint organ’, which includes not only meniscal fibrocartilage 

and hyaline articular cartilage, but also subchondral bone and synovium (1–4). Changes in 

periarticular musculature, and in articular and periarticular tendons and ligaments, can 

induce substantial biomechanical stress, compounded by the loss of other joint homeostatic 

functions including lubricant production (6).

Increased attention is now being paid to the role in OA-associated inflammation of 

metabolic factors related to obesity, such as insulin resistance and the effects of adipokines 

(7,8). Modulation of OA inflammation by articular adipose tissue is exemplified by the 

infrapatellar fat pad of the knee, as addressed in detail elsewhere (8). We now recognize that 

certain mediators of OA (including MMPs, TNF, and Toll-like receptor [TLR] and p38 

mitogen-activated protein kinase signalling) can promote neural mechanisms of chronic 

joint pain and, conversely, that pain itself, mediated in part by increased joint-fluid 

glutamate in OA (9), can modulate joint inflammation and cartilage degradation (10,11).

OA is a heterogeneous disorder (BOX 2), with inflammation and bone erosion playing more 

prominent roles in particular forms of disease, including a subset of small hand OA joint 

(12). Changes in subchondral bone, including transforming growth factor (TGF)-β-mediated 

angiogenesis, can be among the earliest pathologic changes in OA (13). Macroscopic 

synovitis clearly contributes to clinical signs and symptoms, becomes more prominent in the 
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middle and late stages of OA as part of a proinflammatory interaction between joint tissues, 

and is linked to OA progression (1,2,3,14).

In cross-sectional imaging analyses, macroscopic synovitis has been detected in up to 75% 

of human knee OA (14–17), but such studies probably underestimate synovitis as 

macroscopic synovitis could precede ultimate synovial fibrosis in some circumstances. Gene 

expression patterns for mediators of not only inflammation, but also cartilage matrix 

catabolism, anabolism, and angiogenesis, are strikingly different in inflamed and non-

inflamed areas of the synovium in individual patients with knee OA (18). Moreover, 

dysregulated synovial function without gross inflammation also is probably important in OA 

pathophysiology (19). A decrease in synovial production of lubricants such as hyaluronan 

and lubricin contributes to compromised protection of articular cartilage from wear in OA, 

and lubricin is a physiologic suppressor of synovial proliferation (6,20).

Molecular inflammatory processes in OA

‘Conventional’ inflammatory cytokines

As with many other organ diseases of ageing, basal inflammatory processes in OA are 

generally low-grade and ’molecular’, with many ‘usual suspects‘ implicated, including 

oxidative stress (1,21). So-called conventional inflammatory cytokines (such as TNF, IL-1β, 

IL-6, and multiple chemokines), released from various cell types, can promote OA 

progression by, for example, promoting synovitis and altering chondrocyte differentiation, 

function, and viability (22,23). Within this cytokine network, it is pertinent that autocrine 

activation of the NLRP3 inflammasome by chondrocytes and chondrocyte-derived IL-1β 

might not be functionally critical to OA progression (24). In this context, nitric oxide, which 

is generated in increased amounts by OA chondrocytes in situ, suppresses NLRP3 activation 

(25,26). A study of human and animal models of OA showed that the inflammasome 

constituents NLRP3, ASC, and caspase-1 were not robustly expressed in OA cartilage and, 

moreover, OA cartilage did not produce active IL-1β (24). In addition, cartilage explant 

catabolic responses to TNF, lipopolysaccharide, and biomechanical load were not inhibited 

by deficiency of either NLRP3 or IL-1 receptor (24). Hence, attention has turned to danger-

associated molecular patterns (DAMPS) in OA inflammation pathophysiology.

Alarmins, DAMPs, and complement

Multiple alarmins (for example, high mobility group box protein 1 and the calgranulins 

S100A8 and S100A9), degradation products of cartilage extracellular matrix proteins (such 

as collagen and fibronectin) and of proteoglycans constituents (for example, low-molecular-

weight hyaluronan), free fatty acids, and other DAMPs are increased in OA joints, 

essentially forming a network within a larger network of innate immunity (27–31)(Figure 1). 

These agents induce multiple ’conventional’ inflammatory cytokines, mediated in large part 

by signalling through various pattern recognition receptors (PRRs) expressed in OA 

cartilage and synovium, including TLR2, TLR4 and receptor for advanced glycation 

endproducts (RAGE) (1,27–31). In turn, the induced cytokines promote expression and 

release of many DAMPs (Figure 1). The consequent induction and amplification of 
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synovial-cell proliferation and other inflammatory responses can directly and indirectly 

drive procatabolic responses of chondrocytes, and thus OA progression (1,27–31).

Complement activation has emerged as a substantial factor in disease progression in 

experimental OA (32,33). Increased expression and activity of manifold effector molecules 

of the classical, alternative, and membrane attack complex (MAC) pathways of complement 

activation occurs in early human OA, and synovial expression of multiple complement 

inhibitors, including the C5a-inactivating enzyme carboxypeptidase B, is decreased in 

human knee OA (32,33). In OA joints, complement can be activated by DAMPs including 

cartilage matrix constituents (such as fibromodulin, aggrecan, and cartilage oligomeric 

matrix protein), by hydroxyapatite and calcium pyrophosphate dihydrate crystals, and also 

by apoptotic cells and the debris of dead cells. Generation of C5a, and of MAC (C5b-9), 

have been implicated in OA progression in elegant studies of knee OA mouse models (32). 

Activated complement components accumulate in cartilage, where C5b-9 can activate and 

kill chondrocytes (32). Although DAMPs activate various complement pathways that 

converge on C3, mouse knee OA was not substantially affected by C3 knockout, probably 

because coagulation factor-mediated compensatory mechanisms operate in C3−/− mice that 

enable C5 activation to proceed (32).

Networking of inflammatory mediators

The term hormesis describes the protective effects of low-level (subtoxic, sublethal) 

exposure to stressors, and can include adaptive responses that protect against deleterious 

responses to toxic levels of noxious stimuli, exemplified by low level physiologic 

mitochondrial reactive oxygen species (ROS) production potentially protecting against 

noxious levels of ROS (108). In the big picture, physiological hormetic processes within 

cartilage that are necessary for cartilage tissue remodelling and repair probably use 

inflammatory processes. One example seems to be the enzymatically stimulated release of 

latent chondrocyte growth factors such as fibroblast growth factor 2 and TGF-β stored 

within the extracellular matrix, which can have beneficial or detrimental effects depending 

on the target cells and timing. Another example is the capacity of inflammatory processes to 

have beneficial effects by influencing the recruitment, reorganization, and fate of 

mesenchymal precursor cells and chondrocytes within cartilage. Some mediators of innate 

inflammation, including TLR2, tenascin-C, and possibly RAGE, can have different effects 

in different phases of OA, and in the presence or absence of synovitis in OA (27). The 

chemokine receptor CXCR2, whose ligands include CXCL8 (IL-8), transduces not only pro-

catabolic responses in vitro (42) but also promotes chondrocyte phenotypic stability and 

limits chondrocyte apoptosis; CXCR2 knockout in vivo increases OA progression 

(Sherwood J, Bertrand J, Nalesso G, Poulet B, Pitsillides A, Brandolini L, Karystinou A, De 

Bari C, Luyten FP, Pitzalis C, Pap T, Dell’Accio F. A homeostatic function of CXCR2 

signalling in articular cartilage. Ann Rheum Dis. 2014 Aug 18. pii: 

annrheumdis-2014-205546. doi: 10.1136/annrheumdis-2014-205546. [Epub ahead of print] 

PubMed PMID: 25135253.)

Clearly, the number and diversity of inflammatory mediators in OA joints, the paradoxical 

roles of some of these moieties in tissue damage and repair, and the physiological roles of 
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some mediators in host defense renders their individual targeting for OA therapy a daunting 

task. Although complement activation promotes OA progression, the safe and pragmatic use 

of complement inhibition in OA, including in patients of advanced age and debilitation, 

would need substantial technological innovation to ensure the preferential and durable 

targeting of complement activation in OA joints. Given the collective limitations in the 

ability to control inflammatory mediators in OA, there is great interest in identifying and 

targeting the major ‘go signals’ (that is, stimulatory and permissive factors) for the 

procatabolic activities of chondrocytes in OA.

Catabolic reprogramming of chondrocytes

Cytotoxic effects of inflammatory and oxidative stress can both compromise chondrocyte 

viability and activate inflammatory transcriptional signalling, exemplified by NFκB and 

certain mitogen activated protein kinases, in surviving chondrocytes (34). The effects of 

several inflammatory mediators in cartilage evidently are transduced, in part, by certain ’go 

signals’ that transcriptionally reprogram chondrocytes into extracellular-matrix-catabolizing 

cells (35–41). One manifestation of procatabolic reprogramming by inflammatory mediators 

is chondrocyte maturation to hypertrophic differentiation (30,43–45). Moreover, mediators 

from hypertrophic chondrocytes including vascular endothelial growth factor and bone 

sialoprotein can promote angiogenesis in joint tissues, including synovium (46).

A HIF-2α-mediated gene expression programme was discovered to promote chondrocyte 

hypertrophy and increased cartilage matrix catabolism in response to multiple inflammatory 

cytokines in vitro, and to have a major role in OA progression in vivo (BOX 3) (39,40). 

Additionally, influx of Zn2+ into chondrocytes via ZIP8, and Zn2+-dependent transcriptional 

signalling through MTF1, have been reported to mediate OA pathogenesis in response to 

inflammatory mediators such as IL-1β in vitro and to biomechanical injury in vivo (BOX 3) 

(41). Evidently, the HIF-2α and MTF1 transcriptional regulatory pathways induce MMPs 

including MMP-13, and their deficiency prevents cartilage loss and OA progression in 

mouse models of OA (39–41). Previous work showed that NFκB is upstream of HIF-2α, but 

whether it is also upstream of ZIP8-mediated Zn2+ influx has not yet been addressed, and 

NFκB does not have a defined role in ZIP8-mediated expression of MMPs (41). Moreover, 

the role in OA of the HIF-2α transcriptional signalling pathway remains controversial, given 

the anabolic effects of HIF-2α on chondrocytes (47–49). The ZIP8-mediated and MTF1 

pathway mechanism would also benefit from further validation studies. Hence, we 

appreciate the limits of designating HIF-2α and the ZIP8–Zn2+–MTF1 axis as ‘go signals’. 

Furthermore, we need to learn if these pathways are induced and activated independently of 

each other and the other mechanisms discussed in this Review, or whether their regulation is 

coordinated upstream or downstream.

Impaired chondrocyte bioenergy

Mitochondrial damage and dysfunction

Inflammatory transcriptional ’go signals’ and chondrocyte procatabolic reprogramming are 

only part of the evolving story of how OA progression could be therapeutically targeted. 

Specifically, in several organ-degenerative diseases linked to both low-grade tissue 
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inflammation and ageing, acquired mitochondrial dysfunction and damage is not only 

induced by oxidative stress, but also promotes oxidative stress and related inflammatory 

processes, such as redox-sensitive inflammatory transcriptional signalling. In this context, 

chondrocytes derive ATP for their bioenergy needs from high basal rates of glycolysis. In 

OA, inflammatory mediators drive increased generation of nitric oxide by chondrocytes, 

which suppresses mitochondrial oxidative phosphorylation and can promote calcification 

(50–52). Moreover, oxidative stress in OA damages the chondrocyte mitochondrial 

respiratory chain protein complex (52). Concordantly, there is decreased mitochondrial ATP 

generation and an associated loss in the chondrocyte ’energy reserve’, contributing to the 

impaired matrix synthetic function and viability of chondrocytes in acquired OA (51,52). 

Notably certain mitochondrial haplotypes predispose individuals to OA via potentially 

related mechanisms (53). In OA chondrocytes, the mitochondrially localized antioxidant 

SOD2 is depleted, which promotes mitochondrial dysfunction and increased production of 

reactive oxygen species (54).

Mitochondria also mediate tissue inflammation and damage by way of effects beyond 

oxidative stress (55). For example, some agents that activate the NLRP3 inflammasome 

induce inflammasome assembly by causing the depletion of nicotinamide adenine 

dinucleotide (NAD+), with mitochondrially mediated microtubule assembly (56). In 

chondrocytes, mitochondrial dysfunction amplifies manifold chondrocyte inflammatory and 

matrix catabolic responses to IL-1β and TNF, mediated by oxidative stress and NFκB 

activation (57,58). Evolving evidence suggests the need for increased attention to the 

change, in OA chondrocytes, from anti-inflammatory reliance on oxidative phosphorylation 

and the tricarboxylic acid cycle for energy reserve to proinflammatory reliance on glycolysis 

for energy (59). Moreover, mitochondrial dysfunction, and associated oxidative stress, 

mediate inflammation related to ER stress and impaired autophagy (60.61), as discussed 

below.

Bioenergy sensors AMPK and SIRT1

The serine/threonine kinase AMPK, a master regulator of cellular energy balance, enables 

cells to adjust to changes in energy demand (62,63). Metabolic stress, such as in the hypoxic 

state of normal chondrocytes, normally activates AMPK (62,63), which phosphorylates 

multiple downstream targets that promote the inhibition of ATP-consuming pathways and 

the activation of ATP-producing pathways (62,63). Dysregulation of AMPK has been linked 

to multiple age-related diseases associated with mitochondrial dysfunction and cellular 

energy imbalance, including diabetes mellitus, atherosclerosis, cardiovascular disease, 

cancer, neurodegenerative diseases (62,63), and, most recently, OA (64,65).

Our group discovered that AMPK activity is constitutively robust in normal articular 

chondrocytes and cartilage, but is decreased in human knee OA chondrocytes and cartilage 

(64), in mouse knee OA cartilage, in aged mouse knee cartilage, and in chondrocytes after 

biomechanical injury or treatment with IL-1β and TNF (64,65). Notably, chondrocytes with 

decreased AMPK activity exhibited increased catabolic responses to IL-1β and TNF, and to 

biomechanical injury; these responses were attenuated by pharmacological activation of 

AMPK (64,65). The homeostatic effects of sustained AMPK activity in articular 
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chondrocytes could be particularly important in ageing, as responsiveness to AMPK 

activators declines during the ageing process (66), and low-grade molecular inflammation 

present in ageing tissue can further inhibit effects of AMPK (64).

Biochemical regulation of AMPK activity involves phosphorylation and dephosphorylation 

by certain kinases and phosphatases. The liver protein kinase B1 (LKB1) is the primary 

upstream kinase that promotes AMPK activity in chondrocytes (65). Chondrocyte catabolic 

responses to IL-1β and TNF are increased by loss of LKB1 activity in chondrocytes, (65) 

and we have observed the concomitant reduction of phosphorylation of both LKB1 and 

AMPKα (the marker for AMPK activity) in primary human knee OA chondrocytes, in 

mouse knee OA cartilage, in aged mouse knee cartilage, and in bovine chondrocytes after 

biomechanical injury (65). Hence, in cartilage affected by age or OA, dysregulation of 

LKB1 might have a major role in suppression of chondrocyte AMPK activity.

AMPK activity regulates energy metabolism via downstream mediators including the 

NAD+-dependent protein deacetylase SIRT1 (66) (Figure 2). In cartilage, SIRT1 promotes 

cartilage-specific gene expression (67–69), protects chondrocytes from radiation-induced 

senescence (70), and inhibits chondrocyte apoptosis (71–73). Cartilage expression of SIRT1 

is decreased in human knee OA, mouse knee OA and knees of aged mice (69,74). Inhibition 

of SIRT1 in chondrocytes results in enhanced procatabolic responses to IL-1β and TNF 

(75,76). Moreover, adult heterozygous Sirt1 knockout mice and mice with a Sirt1 point 

mutation exhibit increased OA progression (68,73), and cartilage-specific Sirt1 knockout 

mice develop accelerated OA progression (74). A path to translation to new clinical therapy 

exists, as pharmacologic SIRT1 activation exerts chondroprotective effects (77–82). 

Moreover, AMPK and SIRT1 can interact or impinge on the same pathways in multiple 

ways (Figure 2), including in inflammation (83). For example, activation of AMPK can 

stimulate the activity of SIRT1 by increasing intracellular NAD+ (66), and SIRT1 is able to 

deacetylate LKB1, which increases LKB1 activity and leads to AMPK activation (66). This 

positive feedback loop between SIRT1 and AMPK potentiates AMPK activity (66).

The functions of AMPK and SIRT1 are not restricted to the maintenance of energy 

metabolism during increased energy consumption; they coordinate several ‘housekeeping’ 

mechanisms of resistance to cell stress and inflammation (66). First, activation of AMPK 

can limit oxidative stress, most likely by improving mitochondrial function (66,84). Second, 

AMPK and SIRT1 have anti-inflammatory effects and limit matrix catabolism by 

chondrocytes (Figure 2). For example, AMPK inhibits NFκB activation via SIRT1, which 

deacetylates the p65 subunit of NFκB and thereby primes p65 for proteasomal degradation 

(66). Activation of AMPK or SIRT1 inhibits chondrocyte procatabolic responses to 

proinflammatory cytokines IL-1β and TNF, via attenuation of NFκB activation (64,74,75). 

Finally, AMPK and SIRT1 promote autophagy, with attendant repair of damaged 

mitochondria (and ER), and limiting ER stress (Figure 2), as discussed below.

Bioenergy sensing and proteostasis

Protein homeostasis or ’proteostasis’ involves several thousand mediators, and is carried out 

by multiple interconnected pathways and systems, which include the unfolded protein 

response (UPR), autophagy, the ubiquitin–proteasome system, and lysosomes (84–86). 
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Proteostasis regulates protein fate from biogenesis to conformation folding, subcellular 

trafficking, and degradation within cells. Normally, proteostasis maintains the health of cells 

in development, ageing, and resistance to environmental stressors, and prevents diseases 

mediated by excessive protein misfolding, aggregation, or degradation (84–86). In OA, 

however, not only changes in cell differentiation and fate, but also the proinflammatory 

effects of abnormal proteostasis (including increased UPR activation and dysfunction of 

autophagy in chondrocytes), seem to contribute to pathogenesis (BOX 4). Similar changes in 

other tissues are involved in both inflammatory diseases (87) and many metabolic and 

degenerative diseases of ageing (84–86,88). A prime example, in rheumatic disease, is 

ankylosing spondylitis, where abnormal proteostasis driven by protein misfolding amplifies 

TLR-mediated inflammatory signaling in response to DAMPs (87).

Autophagy is a cellular homeostasis process that functions in part by removing damaged 

organelles and protein aggregates; in so doing, autophagy generates energy that can assist 

cell survival under conditions of stress such as starvation, resistance to ongoing infection, 

and inflammation (85,89,90). Autophagy has substantial chrondroprotective effects, but is 

defective in ageing and OA chondrocytes (85). Disordered autophagy promotes 

inflammation in multiple tissues (85,89,90), and probably contributes to OA chondrocyte 

pathophysiology, at least in part, in this way. Autophagy in OA has been reviewed in detail, 

including in this journal (85,89,90). Here, we focus on the UPR, a response system activated 

by conditions including oxidative stress and inflammation, and one central to successful 

resolution of ER stress caused by protein misfolding (86,88,91,92).

The UPR lessens pressure on the stressed ER by limiting protein production, and by 

switching on a transcriptome replete with chaperones and protein-folding catalysts that 

boosts the protein-folding machinery (88,91,92) (Figure 3). Importantly, unsuccessful 

resolution of ER stress by the UPR promotes oxidative stress inflammation and apoptosis 

(88,91,92). The three UPR signalling cascades stem from functional activation of the ER 

transmembrane proteins PERK, IRE1, and ATF6, respectively, and are triggered by 

dissociation of the chaperone GRP78 (also termed BiP) from these ER transmembrane 

proteins (88,91,92)(Figure 3). The UPR cascades participate in normal skeletal 

development, where ER stress-induced chondrocyte dysfunction was first pinpointed in 

pathophysiology studies of hereditary chondrodysplasia triggered by misfolded transgenic 

mutant cartilage matrix proteins (93,94).

In vitro studies have elucidated that biomechanical injury, IL-1β and nitric oxide are among 

the factors in OA pathogenesis that can activate the UPR in cultured chondrocytes (86,95)

(Figure 3). Moreover, findings predominately related to the terminal effectors of the PERK 

and IRE1 pathways (CHOP and XBP1, respectively) have demonstrated increased UPR 

activation in OA articular chondrocytes (86,95–97). Alternatively spliced, transcriptionally 

activated XBP1 (XBP1s), the generation of which is UPR-specific, promotes chondrocyte 

maturation to hypertrophic differentiation through its association with the transcription 

factor RUNX2, and by modulation of IHH (Indian hedgehog) and parathyroid hormone-

related peptide signalling (98). Notably, XBP1 expression is induced by activated ATF6 

(97)(Figure 3), one of the modes of cross-talk between UPR cascades in chondrocyte 

biology.
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The generation of XBP1s is central to not only TLR-mediated inflammation signalling and 

expression of multiple inflammatory cytokines, but also ‘killing’ responses for intracellular 

pathogens in macrophages (99). XBP1s has a long half-life, whereas unspliced XBP1, as 

well as CHOP, normally has a short half-life. Our group demonstrated that biomechanical 

injury induces robust expression of CHOP in chondrocytes (86). CHOP constitutively works 

to resolve the UPR by restoring protein synthesis, but excessive CHOP loads the stressed ER 

with more protein, and promotes oxidative stress and apoptosis (87,88,91,92) (Figure 3).

XBP1s and CHOP potentiate the capacity of IL-1β to induce nitric oxide and MMP-3 release 

by cultured chondrocytes (86) (Figure 3). However, XBP1s also can have salutary effects on 

chondrocyte survival in some experimental conditions (97). In vivo analyses of a surgically 

induced instability model of knee OA in mice revealed that global knockout of Chop 

partially protected against increased chondrocyte apoptosis and cartilage degradation 

(mediated by anabolic and catabolic mechanisms), and these effects were not attributable to 

discernible differences in chondrocyte ER stress in situ (109).

Relevance for clinical translation

Many treatments that affect symptoms in OA, but are not truly disease-modifying, exert 

inhibitory effects on inflammatory processes. These treatments include glucocorticosteroids, 

NSAIDs and coxibs (100), and other FDA-approved medical treatments such as intra-

articular hyaluronan (101,102). Moreover, certain nutraceuticals can modulate proteostasis 

or inflammatory processes, or both (102–104). Conceptually attractive, rational, 

inflammation-targeting therapeutic approaches for investigation include intra-articular 

injection of lubricin to decrease synovial proliferation (20), or inhibiting DAMPS and their 

signalling, for example by limiting intra-articular complement activation or by constraining 

the effects of S100 calgranulins and of TLR4 signalling. Biologic therapies targeting single 

cytokines that are increased in OA joint tissues (for example, IL-1β, IL-6, TNFα) have not 

yet been established as either effective or pragmatic systemic or local approaches in human 

OA. Moreover, there are major limitations in how pragmatic such approaches can be, and 

we will probably need innovations in delivery systems, such as nanotechnology, to 

selectively and safely target joints in a durable manner.

In this Review, we have attempted to capsulize emerging thinking on potential preventative 

and therapeutic strategies for OA that target inflammation in an integrative manner. Entry 

points for therapeutic interventions that promote ‘stop signals’ for inflammatory processes in 

chondrocytes start with exercise, targeted strength training, and achievement of ideal body 

weight for overweight and obese patients, which are of proven benefit in human knee OA 

(105). More-specific entry points for therapy can target proteostasis-related inflammatory 

and aging processes, such as delivery to the joint of compounds known to directly promote 

chondrocyte autophagy, or to improve protein folding and limit ER stress, or both (85,88–

92,108). Direct activation of AMPK (BOX 5) is an alternative approach (Figure 4). AMPK 

can alleviate ER stress, and AMPK activation inhibits CHOP expression and catabolic 

responses induced by biomechanical injury and IL-1β in chondrocytes (86). AMPK and 

SIRT1 signalling also promote autophagy (66,106). Importantly, metformin, sodium 

salicylate, high-dose aspirin, and methotrexate are among drugs known to activate AMPK 
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that are already employed in the clinic for arthritis and other conditions (59). Moreover, a 

randomized placebo-controlled trial of methotrexate in knee OA demonstrated salutary 

clinical benefits and associated reduction of synovitis (107). As such, strategies to inhibit 

inflammatory reprogramming of chondrocytes in OA by modulating bioenergy sensors 

might be well within reach for definitive testing in further clinical trials.

Conclusions

To paraphrase Confucius, the quest to pinpoint fundamental roles of specific inflammatory 

processes that promote OA progression has often been “like looking for a black cat in a dark 

room; there may or may not be a cat in the room”. We now see a clearer portrait, with a 

broad network of inflammatory mediators and their receptors, and novel ‘go signals’ for 

chondrocyte differentiation reprogramming. Moreover, we better appreciate how articular 

chondrocyte metabolic factors and certain bioenergy sensors can refine inflammatory 

responses, and how loss of quality controls in certain cell-responses to stress are involved in 

inflammatory processes in chondrocytes (Figure 4). Future investigation should lead to 

better understanding of how bioenergy sensors, modulated by body weight, nutrition, 

exercise, ageing, and comorbidities, link metabolism with inflammatory processes to 

regulate both joint physiology and OA clinical phenotypes. Such research should open up 

more integrative and effective preventative and therapeutic strategies for OA.
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Key Points

• Multiple danger associated molecular patterns, including activators of 

complement, are increased within joints affected by osteoarthritis (OA), and 

complement activation is a major factor in progression of experimental knee OA

• Biomechanical cartilage injury and joint inflammation compromise chondrocyte 

viability and reprogram viable chondrocytes to procatabolic differentiation using 

transcriptional ‘go signals’, including NFκB, and possibly HIF-2α, and MTF1

• Oxidative stress and dysregulated chondrocyte mitochondrial function 

contribute not only to impaired matrix synthetic function and viability, but also 

to molecular inflammatory processes and matrix catabolism in OA

• Biomechanical injury, oxidative stress, and inflammatory mediators modulate 

proteostasis responses, including autophagy and the unfolded protein response 

to endoplasmic reticulum (ER) stress

• Chondrocyte bioenergy sensors including AMPK and SIRT1 can modulate 

deleterious chondrocyte responses to oxidative stress and inflammatory 

mediators, potentially providing therapeutic ‘entry points’ for limiting OA 

progression
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Box 1

Definitions and qualifying statements for major concepts discussed in this 
Review

Inflammation: Terminology used in this review to denote overt, macroscopic 

inflammation in OA, mainly but not solely, as synovitis and synovial effusion.

Inflammatory: Describes changes exerted at the molecular and cellular level, 

employing mediators, such as cytokines and DAMPs, that promote cell stress and 

jeopardize joint tissue homeostasis.

Proteostasis: Protein homeostasis carried out by multiple interconnected pathways 

and systems, which include the unfolded protein response, autophagy, ubiquitin-

proteasome system, and lysosomes. Proteostasis regulates protein fate, from 

biogenesis to folding, subcellular trafficking, and degradation in cells.

Oxidative stress: A promoter of inflammatory and matrix catabolic responses, 

including biomechanical stress-induced inflammatory and matrix catabolic responses 

in mechanotransduction. Also, is a regulator of cell stress responses including 

proteostasis.

Bioenergetics and bioenergy sensors: We focus here on altered mitochondrial 

function and activity of the bioenergy sensors AMPK and SIRT1, which react to 

changes in nutrition, energy balance, cell stressors, and inflammatory processes.
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BOX 2

Synovium and subchondral bone in OA

• OA is a heterogeneous disorder, with inflammation and bone erosion playing 

more prominent roles in particular forms of disease, including a subset of small 

hand OA joint

• Changes in subchondral bone, including TGFβ -mediated angiogenesis, may be 

among the earliest pathologic changes in OA

• Synovitis and other manifestations of macroscopic inflammation become more 

prominent in middle and later stages of OA, and contributes to clinical signs and 

symptoms, and disease progression

• Macroscopic synovitis has been detected in up to 75% of human knee OA by 

imaging, and synovial gene expression changes have marked regional variability 

in OA

• Whether or not there is frank synovitis, dysregulated synovial function and 

eventual fibrotic changes in OA are likely important in OA pathophysiology
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BOX 3

Transcriptional reprogramming of chondrocytes

• Several “go signals” transcriptionally reprogram chondrocytes into extracellular 

matrix catabolizing cells in response to inflammation

• The HIF-2α -mediated gene expression program promotes chondrocyte 

hypertrophy and increased cartilage matrix catabolism in response to multiple 

inflammatory cytokines and drives OA progression in vivo

• Zn2+ importation by ZIP8, and Zn2+-dependent transcriptional signalling 

through MTF1, mediate chondrocyte activation in response to inflammatory 

mediators, and OA progression following biomechanical injury in vivo
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BOX 4

Abnormal chondrocyte proteostasis in OA

• Inflammatory effects via abnormal proteostasis in chondrocytes, including 

increased UPR activation and impaired autophagy, are involved in OA 

pathophysiology

• Similar alterations in proteostasis are involved in multiple tissue degenerative 

disease of aging and in emerging paradigms in other rheumatic diseases 

involving inflammation, including ankylosing spondylitis
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BOX 5

Can AMPK activation be developed for OA?

• AMPK and SIRT1 signalling promote autophagy and can limit ER stress

• Metformin, sodium salicylate, high-dose aspirin, and methotrexate are among 

drugs, known to activate AMPK, that are already employed in the clinic for 

arthritis and some other conditions

• A recent randomized placebo-controlled trial of methotrexate in knee OA 

demonstrated salutary clinical benefits and associated reduction of synovitis
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Figure 1. Relationships between inflammatory mediator networks in OA
This schematic illustrates how several of the different classes of inflammatory mediators, 

including PRRs and their DAMP ligands, conventional inflammatory cytokines, and 

activated complement proteins C5a and C5b-9 network to augment meniscal fibrocartilage 

and articular cartilage damage in early and progressive OA. These mediators promote 

macroscopic inflammation, including synovitis, and can drive cartilage matrix catabolism, 

but some also promote cartilage remodelling and repair. The number and diversity of 

inflammatory mediators in OA joints, the paradoxical roles of some of these moieties in 

tissue damage and repair, and the physiological roles of some mediators in host defense, 

means targeting individual mediators for OA therapy is difficult. Abbreviations: COMP, 

cartilage oligomeric matrix protein; DAMP, danger associated molecular pattern; HMGB1, 

high mobility group box protein 1; LMW-HA, low molecular weight hyaluronan; MAC, 

membrane attack complex; OA, osteoarthritis; PRR, pattern recognition receptor; RAGE, 

receptor for advanced glycation endproducts; TGF-β, transforming growth factor β; TLR, 

Toll-like receptor.
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Figure 2. Functions of AMPK and SIRT1 in chondrocyte resistance to cell stress and 
inflammatory processes that promote matrix catabolism
AMPK, which has multiple endogenous and exogenous activators, promotes activation of 

SIRT1. LKB1 is the primary upstream kinase that promotes AMPK activity, and decreased 

LKB1 increases chondrocyte matrix procatabolic responses to IL-1β and TNF. Active LKB1 

and AMPK are decreased in OA, injured, and ageing chondrocytes. AMPK and SIRT1 exert 

anti-inflammatory effects, including inhibition of NFκB activation via SIRT1, which 

deacetylates the p65 subunit of NFκB and thereby primes p65 for proteasomal degradation; 

these effects limit chondrocyte matrix procatabolic responses. In addition, AMPK and 

SIRT1 promote autophagy, with attendant repair of damaged organelles, such as 

mitochondria and ER, and AMPK and SIRT1 inhibit ER stress, providing further means to 

limit inflammation in OA cartilage.

Abbreviations: AMPK, 5′-AMP-activated protein kinase; ER, endoplasmic reticulum; 

LKB1, liver protein kinase B1; SIRT1, NAD-dependent protein deacetylase sirtuin-1.
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Figure 3. Modulation of inflammatory processes by the UPR in chondrocytes in OA
The UPR signalling cascades triggered by dissociation of the chaperone GRP78 from the ER 

transmembrane proteins PERK, IRE1, and ATF6, and activated by biomechanical injury, 

nitric oxide, and certain inflammatory mediators. Alternatively spliced, transcriptionally 

activated XBP1 (XBP1s) promotes chondrocyte maturation to procatabolic hypertrophic 

differentiation, mediated in part by cross-talk with the ATF6 pathway. XBP1s also drives 

matrix pro-catabolic responses in response to IL-1β, as does excess CHOP, another terminal 

UPR effector. CHOP also promotes chondrocyte superoxide production and apoptosis. 

Knock-out of CHOP is chondroprotective in mouse knee instability-induced OA in vivo.

Abbreviations: ATF6, activating transcription factor 6; CHOP, C/EBP homologous protein; 

ER, endoplasmic reticulum; GRP78, 78 kDa glucose-regulated protein; IRE1, inositol-

requiring protein 1; PERK, protein kinase RNA-like ER kinase; UPR, unfolded protein 

response; XBP1, X-box-binding protein 1; XBP1s, X-box-binding protein 1 splicing form.
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Figure 4. Therapeutic modulation of AMPK and SIRT1 as an Entry Point for “Stop Signals” for 
Chondrocyte Pro-Catabolic Reprogramming by Inflammation, Oxidative Stress, and Altered 
UPR and Autophagy
The Figure schematizes the proposal that the bio-energy sensors AMPK and SIRT1 can be 

an integrative entry point to therapeutic suppression (red lines) of the inflammatory process-

mediated re-programming of chondrocytes to a pro-catabolic state. In this manner, there is 

potential to slow the progression of OA, but this question needs direct testing in vivo.
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