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Hypoxia-inducible factor-1a (HIF-1a) is a primary metabolic sensor, and is

expressed in different immune cells, such as macrophage, dendritic cell,

neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast,

and islet b cell. HIF-1a signaling regulates cellular metabolism, triggering the

release of inflammatory cytokines and inflammatory cells proliferation. It is

known that microenvironment hypoxia, vascular proliferation, and impaired

immunological balance are present in autoimmune diseases. To date, HIF-1a is

recognized to be overexpressed in several inflammatory autoimmune diseases,

such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function

of HIF-1a is dysregulated in these diseases. In this review, we narrate the

signaling pathway of HIF-1a and the possible immunopathological roles of HIF-

1a in autoimmune diseases. The collected information will provide a theoretical

basis for the familiarization and development of new clinical trials and

treatment based on HIF-1a and inflammatory autoimmune disorders in

the future.
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1 Introduction

HIF-1a involves in metabolic pathway, which regulates immune cell function and

inflammation (1, 2). The gene encoding HIF-1a is located at chromosome 14q21-q24 (3).

Under a normal oxygen condition, proline hydroxylase (PHD) binds to HIF-1a and then

combines with E3 ubiquitin ligase (VHL), triggering proline hydroxylation-

ubiquitination and proteasomal degradation of HIF-1a (4). In the absence of oxygen,

effects of the metabolic pathway is inhibited, and much HIF-1a accumulated in the
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nucleus, forming the active HIF-1a heterodimer with HIF-1b.
Then, the activated HIF-1 binds to hypoxia response element

(HRE) in the DNA and regulates expression of target genes

related to angiogenesis, apoptosis, and cell migration (5).

Expression of HIF-1a was up-regulated in response to tumor

necrosis factor-a (TNF-a), interleukin-17A (IL-17A),

phosphatidylinositol-3-kinase (PI3K) stimulation, which

regulates the homeostasis of immune cells. HIF-1a also

plays an anti-infection role in innate immune cells when

they sense microorganisms (6). For example, after infecting

with mycobacterium tuberculosis, HIF-1a in macrophages

increase phagocytosis and accelerate glucose metabolism (7).

Hypoxia alters the phenotype of dendritic cells, allowing

naive T cells to differentiate into Th2 cells (8). To date,

overexpression of HIF-1a was detected in the serum, skin

tissue, and urine of different inflammatory autoimmune

diseases, such as systemic lupus erythematosus (SLE) (9),

rheumatoid arthritis (RA) (10), systemic sclerosis (SSc) (11),

and psoriasis (12). In addition, functional studies in vivo

and in vitro suggested an important role of HIF-1a in the

pathogenesis of these diseases. Interestingly, targeting HIF-

1a makes a potential for alleviating inflammatory disorders

(13). Therefore, this review summarized the molecular

mechanism of HIF-1a and discussed the function of HIF-

1a in immune cells, particularly the relationship between

HIF-1a and inflammatory autoimmune diseases.
2 HIF-1a signaling pathway

As a nuclear transcription factor, HIF-1a enters the nucleus

after binding to HIF-1b, and then activates downstream signaling

pathways, inducing generation of inflammatory components,

vascularization and cell proliferation (14). Reactive oxygen

species (ROS) reflects oxidative stress and cellular inflammatory

metabolism, and expression of ROS is elevated under hypoxic

condition. Substantial ROS stimulates NF-kB and inhibits activity

of PHD and HIF asparaginyl hydroxylase (FIH), allowing HIF-1a
to accumulate in the cytoplasm (15, 16). G protein-coupled

receptor kinase 2 (GRK2)/HIF-1a are highly expressed after

ROS stimulation and then affect expression of nucleotide-

binding oligomerization structure-like receptor family Pyrin

domain protein 3 (NLRP3) (17). NLRP3 contributes to pro-IL-

1b and pro-IL-18 maturation with the aid of enzymes, which will

activate IL-1b, IL-18 and lead to cytolytic death. Conversely, low

levels of HIF-1a reduce expression of target genes, including

phosphoinositide-dependent protein kinase-1 (Pdk1) and glucose

transporter type 1 (Glut1), which in turn affect the glycolytic

pathway and cellular ATP supply (18). Epidermal growth factor

(EGF) and insulin-like growth factor-1 (IGF-1) activate PI3K.

Activated PI3K then activates protein kinase B (Akt) on the cell
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membrane (19). In addition, mammalian target of rapamycin

(mTOR) was activated by PI3K/Akt, which then increases HIF-1a
expression. Elevated expression of HIF-1a up-regulates

expression of VEGF, promoting vascular expansion (20). IL-23-

induced glycolysis is diminished after inhibiting the Akt/mTOR/

HIF-1a pathway (21). (AMP)-activated protein kinase (AMPK) is

activated by SIRT3 stimulation, which then inhibits mTOR/HIF-

1a pathway and induces less cell growth and more apoptosis

(22–24).

IL-6 binds to gp160, then activates STAT3/HIF-1a, which
promotes the proliferation of Foxp3+ regulatory T (Treg) cells

and reduces activity and migration of hemangioma-derived stem

cells (25, 26). IL-17 induces defective autophagy through

interacting with STAT3/HIF-1a and causes inflammatory

death of keloid fibroblasts (27). In addition, Janus kinase

(JAK) signaling, an important upstream activator of STAT3,

directly promotes NLRP3 expression and IL-1b secretion to

aggravate inflammation (28). The classical mitogen-activated

protein kinases (MAPK) and regulated extracellular protein

kinases (ERK) pathways adapt to hypoxia, and then activate

HIF-1a, thereby protecting cell development and avoiding

oxidative damage (29, 30).

Under hypoxia, high mobility group proteins 1 (HMGB1)

accelerated the c-Jun N-terminal kinase (JNK) pathway to

stimulate HIF-1a/vascular endothelial growth factor (VEGF)

axis, which is conducive to angiogenesis (17). In addition, TNF-

a interacts with transforming growth factor-activated kinase 1

(TAK1), and promotes HIF-1a expression and cell glycolytic

(31). MicroRNA-210 (miR-210), a marker of hypoxia, is

regulated by HIF-1a. Since the 3’UTR of HIF-1a contains a

non-canonical miR-210 target site, miR-210 also negatively

inhibits HIF-1a expression by binding to this target (2, 32).

Elevated miR-210 suppressed expression of HIF-1a target genes

Glut1, p53 and fas, therefore protecting cell against hypoxia-

induced apoptosis. Succinic acid, SIRT1/6 are two upstream

signals for HIF-1a activation. After transporting from

mitochondria to cytoplasm, succinic acid inhibits PHD

activity, and activates HIF-a, leading to increased expression

of IL-1b and inflammation (33). SIRT1 binds to the HIF-1a
inhibitory domain (ID) and protects HIF-1a from deacetylation

(34). Overexpression of SIRT6 inhibits the ubiquitination-

protease system and favors HIF-1a accumulation, resulting in

increased expression of VEGF, Ang1, Ang2, endothelin-1 (EF-1),

and platelet-derived growth factor-BB (PDGF-BB), and

promoting migration, invasion, and proliferation of human

umbilical vein endothelial cells (35). When retinoic acid related

orphan nuclear receptor gt (ROR gt) was subjected to HIF-1a, a
trimer composed of P300, ROR gt, and HIF-1a fosters Th17 cells

differentiation and IL-17 secretion (2). All these revealed that HIF-

1a may involve in cytokines secretion and regulation of cellular

function through downstream signaling pathways (Figure 1).
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3 HIF-1a and immune cells

HIF-1a accumulates in nucleus due to hypoxia or external

stimulation, which then induces proliferation, and metabolic

changes in innate immune cells, such as macrophages,

neutrophils, dendritic cells, natural killer cells, and mast cells.

As for adaptive immunity, a few studies have focused on the

relationship between T, B cells and HIF-1a. Nevertheless,

available evidence showed that HIF-1a regulates inflammatory

cytokines secretion, leading to imbalance of Th1, Th2, Th17,

Treg cells, and CD8+ T cells that are participating in

autoimmune disorders.
3.1 Role of HIF-1a in innate immune cells

3.1.1 Macrophage
Macrophages have strong deformation movement and

phagocytosis ability, and are involved in antigen presentation.

When monocytes differentiate into macrophages, expression

pattern of HIF-1a changes (36). Localization of HIF-1a shifts

from the cytoplasm of monocytes to the nucleus of macrophages

(36, 37). More monocytes were differentiated into macrophages
Frontiers in Immunology 03
under low oxygen condition, and there was higher expression of

HIF-1a in differentiated macrophages (38). Therefore, the

increase of glycolysis may be an inevitable result for monocytes-

derived macrophages in a hypoxic microenvironment. Since then,

increased HIF-1a will up-regulate function of macrophages, such

as antigen presentation and inflammatory cytokines secretion

(39). Elevated HIF-1a in macrophages also resists infection,

which are able to kill and clear pathogens, such as

mycobacterium tuberculosis, severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2), and some fungi (7, 40–42). There

are two types of macrophages, M1 and M2 macrophages. HIF-1a
is activated in both cells (43, 44).

3.1.2 Neutrophil
Neutrophils are one of the most abundant leukocytes in

peripheral blood with chemotaxis and phagocytosis. HIF-1a
regulates neutrophils survival under hypoxic condition, which

depends on NF-kappa B (NF-kB) activation and ROS

production (45, 46). Elevated HIF-1a causes neutrophils to

exhibit antimicrobial activity. High level of HIF-1a in

neutrophils before infection enhances reactive nitrogen species

(RNS) production, which will lessen the mycobacterial burden

(47). HIF-1a-deficient (HIF-1a-/-) mice are susceptible to
FIGURE 1

HIF-1a signaling pathway induces inflammatory response and metabolic changes. Hypoxia induces GRK2 and NF-kB expression by stimulating
ROS and increases HIF-1a expression. PHD and FIH can be inhabited by NF-kB, leading to accumulation of HIF-1a. PI3K stimulated by EGF and
IGF-1 induces Akt and mTOR to elevate HIF-1a secretion. SIRT3 activates AMPK to decrease mTOR expression. IL-6 binds to gp160, JAK, and
ERK, and then stimulates STAT3/HIF-1a signaling. Similarly, succinic acid, SIRT1 and SIRT6 increase the intracellular expression of HIF-1a. MiR-
210 interacts with HIF-1a. High level of HIF-1a promotes angiogenesis, cell migration and invasion, increases pro-inflammatory cells
differentiation and cytokines production. ROS, reactive oxygen species; GRK2, G protein-coupled receptor kinase 2; PHD, proline hydroxylase;
FIH, HIF asparaginyl hydroxylase; STAT3, signal transducer and activator of transcription 3; PI3K, phosphatidylinositol-3-kinase; Akt, protein
kinase B; mTOR, mammalian target of rapamycin; IL-6, interleukin-6; NF-kB, nuclear factor-kB; JAK, Janus kinase; MAPK, mitogen-activated
protein kinases; ERK, regulated extracellular protein kinases; HMGB1, high mobility group protein 1; JNK, c-Jun N-terminal kinase; TNF-ɑ, tumor
necrosis factor-alpha; TAK1, transforming growth factor-activated kinase 1; miR-210, microRNA-210; AMPK, adenosine monophosphate
activated protein kinase; SIRT1, sirtuin 1.
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bacterial infection and have negative response to vaccine (6).

Activation of HIF-1a in zebrafish reduced apoptosis of

neutrophils, delayed the improvement of inflammation,

exhibiting pro-inflammatory properties (48). A dual host

defense mechanism known as neutrophil traps (NETs) can

resist germs, harm tissue, and blood vessels as a result of

inflammation (49, 50). Blocking HIF-1a inhibits the

extracellular bactericidal impact of NETs (50). Treatment of

neutrophils with IL-4 inhibited HIF-1a-dependent hypoxic

survival, which then limited production of pro-inflammatory

components such as CCL2, CCL3, and TNF-a (51).

Lipopolysaccharides (LPS) stimulation triggered lactate release

by up-regulating glycolysis, NADPH-oxidase-mediated ROS

and HIF-1a levels in bone marrow neutrophils (52). There

was decreased glycolysis and lactate accumulation in bone

marrow neutrophils from HIF-1a-/- mice (52). Lactate induced

mobilization of bone marrow neutrophils into peripheral blood

and recruitment to the liver, leading to bone marrow

neutropenia (52). Activating transcription factor 3 (ATF3)

deficient (ATF3-/-) mice showed increased percentage of

intrahepatic neutrophil trafficking, elevated expression of pro-

inflammatory mediators IL-17A, CCL1, CCL2, and increased

HIF-1a activity. Silencing of HIF-1a in ATF3-/- mice inhibited

neutrophil trafficking and production of IL-17A, CCL1, CCL2 in

liver (53). In conclusion, HIF-1a is a global regulator of

neutrophil inflammation and makes a role for anti-bacterial

infection (54).

3.1.3 Dendritic cell
Dendritic cells (DCs) are the most effective antigen-presenting

cells and act as a bridge between innate and adaptive immunity (55).

DCs in anoxic tissues showed high expression of HIF-1a (56).

Hypoxia and LPS stimulation led to HIF-1a accumulation in DCs,

alongwith reduced biological activity of proline hydroxylase (57, 58).

HIF-1a alone, or interactswith target geneGlut1, glycolytic enzymes

enhanceglycolysis andATPproduction (59).HIF-1a-/-mice showed

increased IL-22 secretion under hypoxia (56). Moreover, HIF-1a
interactswithPI3K/Aktpathway to enhancemigrationabilityofDCs

(60). HIF-1a binding to p38 MAPK or long noncoding RNA Dpf3

(Lnc-Dpf3) will inhibit the reprogramming of glycolytic metabolism

of DCs (61). HIF-1a-/- immature DCs showed low expression of

surfacemoleculesMHC-II,CD80,CD86(62).CoculturingHIF-1a-/-

immatureDCswithCD4+Tcells or coculturingHIF-1a-/- immature

DCs with CD8+ T cells in the presence of LPS, TNF-a led to less

proliferation of CD4+ T cells, CD8+ T cells (62). Similarly, HIF-1a-/-

mice had low titers of IgG antibody after vaccination, suggesting that

HIF-1a deficiency may impair antigen presentation ability of DCs

(62). Furthermore,maturationofDCs isnegatively regulatedbyHIF-

1a/NOS axis during mycobacterium tuberculosis infection (61).

Silencing HIF-1a in DCs down-regulates the anti-fungal effect of

DCs (63). Collectively, HIF-1a plays a role in antigen presentation,

glycolysis reprogramming, and antimicrobial resistance of DCs.
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3.1.4 Natural killer cell
Natural killer (NK) cells mainly maintain anti-tumor and anti-

infection effects in innate immune response (64). In human

cardiomyocytes (HCMS), HIF-1a up-regulates expression of major

histocompatibility complexes I-relatedmoleculeA/B (MICA/B), and

then enhances the cytotoxicity of NK cells during hypoxia-

reoxygenation (65). HIF-1a induces MICA expression to amplify

the killing ability of NK cells. Loss of HIF-1a in NK cells leads to

nonproductive angiogenesis to suppress tumors (66). HIF-1a-/- NK

cells fail to control cytomegalovirus viral load, resulting in increased

morbidity (64). In addition, IL-15 activates STAT3pathway and IL-2

activates PI3K/mTOR signaling, which then stabilize HIF-1a
expression, and maintain natural defense against microbial

infection and tumor development (67, 68). Thus, HIF-1a plays a

role in regulating NK cell glucose metabolism, anti-tumor, and anti-

infection during hypoxia.

3.1.5 Mast cell
Mast cells are involved in inflammation and type I

hypersensitivity. HIF-1a is expressed in mast cells of human

and animal melanoma tissues (69). In LAD2 mast cells, HIF-1a
knockdown attenuates IL-6 release after Toll-like receptor 4

(TLR4) stimulation (70). Similarly, silencing HIF-1a reduces

mast cells degranulation and down-regulates expression of TGF-

b, and VEGF (71). In ovalbumin (OVA) vaccination-treated

mice, administration of HIF-1a increases vascular permeability

and plasma exudation through the PI3K/VEGF signaling axis

(6). Desferrioxamine treatment leads to elevated expression of

HIF-1a in human mast cell 1 (HMC-1), and promotes IL-6, IL-8,

TNF-a production in mast cells by activating HIF-1a or NF-kB
signaling (72). Lactic acid interrupts miR-155-activated HIF-1a,
leading to diminished IL-33 secretion in mast cells (73).

Treatment of melanoma mice with H1-receptor antagonist

blocks HIF-1a expression and suppresses tumor growth and

mast cells infiltration, suggesting that mast cell-derived HIF-1a
accelerates melanoma growth (74). MC extracellular traps

(MCETs) are formed as a result of phagocytosis of MCs, which

produce antimicrobial peptides (74). Enhancement of HIF-1a
activity leads to elevated anti-bacterial activity of MCs by inducing

MCETs. Conversely, mice lacking HIF-1a are more susceptible to

bacterial infection (75) (Figure 2).
3.2 Role of HIF-1a in adaptive immune
cells

3.2.1 B cell
HIF-1a involves the glycolytic process of B cells and affects

their differentiation, maturation, antibody secretion and

viability. Following LPS and IL-4 stimulation, HIF-1a-/-

germinal center (GC) B cells have reduced expression of

glycolytic genes and glycolytic rate-limiting enzymes, including
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GAPDH, M2-type pyruvate kinase (PKM2) (76). Similarly, loss

of von Hippel-Lindau tumor suppressor protein (VHL) in B cells

allows excessive stabilization of HIF-1a in B cells, thereby

interfering with the balance of glycolysis and aerobic

metabolism (77). HIF-1a-/- B220+ bone marrow cells have

lower glycolytic capacity than wild-type cells. This process is

due to restricted expression of genes encoding glucose

transporters, including phosphofructokinase 2 and fructose-

2,6-bisphosphate kinase (78). HIF-1a-regulated glycolysis is

important for early pre-B cells and IgM+ B cells, however,

blocking glycolysis using 2-DOG does not slow down pre-B

cells differentiation into immature B cells, suggesting that HIF-

1a is required for different stages of B cells (78). Similarly, HIF-

1a activity is higher in bone marrow pro-B cells and pre-B cells,

and is lower in immature B cells (79). HIF-1a limits pyruvate

entry into tricarboxylic acid cycle (TCA), and B cells with HIF-

1a deficiency can transport more pyruvate and generate energy

in the respiratory chain (78). In addition, binding of HIF-1a to

HRE of IL-10 gene promoter increases IL-10 secretion in B cells

(80), and regulates innate-like B cells and B10 differentiation,

resulting in decreased IgM secretion (81). Splenic B cells from

HIF-a-/- mice were cultured with hypoxia condition, showing

increased expression of IL-10 in B cells as compared to that in

normoxia (80). When naive CD4+ T cells were co-cultured with

CD1dhiCD5+ B cells from HIF-ɑ-/- mice, there were high

percentage of CD4+IFN-g+, CD4+IL-17A+ T cells, and

increased expression of IFN-g, IL-17A (80). Overexpression of
Frontiers in Immunology 05
HIF-1a in RA synovial fibroblasts (RASFs) promoted expression

of IL-6, IL-8, TNF-a, and IL-1b (82), and co-culturing HIF-1a-/-

RASFs with allogenic CD19+ B cells down-regulated expression

of stromal cell-derived factor (SDF)-1, vascular cell adhesion

molecule (VCAM)-1, IgG and up-regulated percentage of

CD19+CD24hiCD27+ B10 cells, CD19+CD27+IgD+ innate-like

B cells, expression of natural IgM (82). ROS activates tyrosine

kinase and promotes nuclear factor (erythroid-derived 2) like 2

(Nrf2), HIF-1a to improve B cells survival (83). In Wil2-NS B

cells under hypoxia, Nrf2 and HIF-1a promote expression of C-

X-C chemokine receptor type 4 (CXCR4) and increase viability

of B cells (84). HIF-1a was highly expressed in GC B cells.

Knockout HIF-1a in B cells impaired GC reaction, leading to

defective class-switch recombination and production of high-

affinity plasma cells (76).

3.2.2 Th1 cell
Coculturing HIF-1a-/- antigen-presenting cells (APCs) with

Th1 cells does not induce Th1 cells expansion (85). HIF-1a
selectively induced secretion of IL-12p40 to interrupt

differentiation of naive T helper cells into Th1 cells, limiting

mucosal inflammation (86). Under hypoxia, increased

phosphorylation of STAT3 in Th1 cells contributes to

transcription of HIF-1a , which in reversely inhibits

transcription of cell signal transduction inhibitor 3.

Consequently, this positive feedback enhances STAT3

activation and down-regulates Th1 response. Furthermore,
FIGURE 2

Role of HIF-1a in different immune cells. HIF-1a facilitates anti-infection, anti-tumor and hypoxic adaptation of innate immunity. HIF-1a
promotes the proliferation and differentiation of adaptive immune cells and secretion of inflammatory cytokines. VEGF, vascular endothelial
growth factor; ATP, adenosine triphosphate; IL-4, interleukin-4; TGF-b, transforming growth factor-b.
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Th1 cells under hypoxia lost the ability to secrete IFN-g. HIF-1a
limits Th1 cells differentiation through inhibiting production of

IL-12 under hypoxia (87, 88). In addition, treatment with miR-

182, an inhibitor of HIF-1a , accelerates Th1 cells

differentiation (89).

3.2.3 Th2 cell
Th2 cells involve anti-infection, asthma, and other

hypersensitivity responses. More Th2 cells differentiation and

increased VEGF expression were observed in OVA-induced

asthma mice model, and there was high expression of HIF-1a
in the mice lung tissue (90). In HIF-1a-/- mice exposed to cobalt,

expression of IgE, leukotriene C4 (LTC4), eosinophil cationic

protein (ECP) was decreased in alveolar lavage fluid and lung

tissue (91). In mice with HIF-1a-/- DCs, secretion of Th2

cytokines, such as IL-5, IL-10, and IL-13 was reduced (91).

Under hypoxic condition, expression of membrane binding

protein CD44 on DCs is increased, which then promotes Th2

cells polarization, accompanied by increased IL-4 secretion (8).

Usage of anthraquinone, a HIF-1a inhibitor, is able to restrain

HIF-1a expression, and inhibits differentiation of Th2 cells and

expression of IL-4, IL-13 (92–94). During infection with

pathogens, HIF-1a expression is increased in Th2 cells,

leading to Th2 cells proliferation (95).

3.2.4 Th17 cell
Evidence suggests that HIF-1a is a key molecule regulates

activities of Th17 cells and expression of IL-17 (1, 96). It is

known that RORgt is the transcription factor for Th17 cell. HIF-

1a deficiency inhibits Th0 cells developing into Th17 cells and

down-regulates RORgt expression (97). Escherichia coli

infection increases the amount of HIF-1a in the liver, which

then induces Th17 cells differentiation by increasing IL-6

expression (98). At condition of 5% O2, HIF-1a is activated

(99), and there are elevated percentages of Th17 cells and

expression of IL-6 (100). Treatment with metformin and

epigallocatechin-3-gallate (EFCG) inhibits the mTOR

signaling, thereby inhibiting HIF-1a expression and Th17 cells

differentiation (101, 102). In Adipor1-/-CD4+ T cells, there was

reduced glycolysis metabolism and Th17 cells polarization,

which is due to disturbance of HIF-1a (103). In addition,

HIF-1a is a target gene of miR-210. MiR-210 directly reduces

the transcription of HIF-1a to delay differentiation of Th17

cells (32).

3.2.5 Regulatory T cell
Treg cells, including natural regulatory T cells and inducible

regulatory T cells, are a class of cells with inhibitory effects in

immune response. During different Th cells metabolism and

differentiation, Th1 and Th17 utilize high levels of glycolytic

metabolism to provide capacity for their proliferation, whereas

Treg cells require aerobic metabolism to enhance their inhibitory
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function (104). HIF-1a promotes CD73 expression in Treg cells

and binds to CD73 to expand Treg cells to convert ATP into

immunosuppressive adenosine (105). Increased expression of O2

at the tumor site down-regulates HIF-1a to affect tumor cell

metabolism and negatively regulates Treg cells differentiation

(106). Under hypoxia, transfection of CD4+CD25+ T cells with

lentiviral vector containing low expression of HIF-1a increases

expression of Foxp3, which induces Treg cells differentiation and

immunosuppressive function (107). IL-1b up-regulates HIF-1a
expression to inhibit Treg cells polarization in response to

inflammatory stimuli (108).
3.2.6 CD8+ T cell
As HIF-1a-/-CD8+ T cells were differentiated into effector

cytotoxic T lymphocytes (CTLs), there was reduced expression

of genes regulating glycolytic metabolism, such as Hk2, Pdk1,

Mct4 and PgK, and less glucose uptake and lactate production

(109). HIF-1a-/- effector CD8+ T cells did not down-regulate

surface expression of CD62L, but down-regulated expression of

IFN-g, TNF-a. Hypoxia increased expression of the cytolytic

molecule granzyme B, activation-related costimulatory

molecules CD137, OX40, GITR, and checkpoint receptors PD-

1, TIM3, VEGF-A and LAG3 (109), which was obtained in HIF-

1a-/-CD8+ T cells in response to IL-2 stimulation as well. HIF-

1a-/- effector CD8+ T cells showed a reduced ability to kill target

cells (109). Deficiency in NIX-dependent mitophagy results in

metabolic defects in effector memory CD8+ T cells, and NIX

deficiency promoted HIF-1a accumulation, altering cellular

metabolism from long-chain fatty acid to short/branched-

chain fatty acid oxidation, thereby compromising ATP

synthesis (110). Inhibiting HIF-1a accumulation restored

long-chain fatty acid metabolism and effector memory CD8+ T

cells formation, suggesting that HIF-1a regulates effector

memory CD8+ T cells formation by NIX-mediated mitophagy

(110). High activity of HIF-1a in tumor microenvironment

down-regulated infiltration and activity of CD8+ T cells (111).

There was elevated T cells infiltration at early stage of

tumorigenesis in the tumor site along with up-regulated

percentage of memory CD4+, CD8+ T cells (112). Inhibition of

HIF-1a down-regulated expression of pro-inflammatory factors

IL-10, IL-12, PGE2, S-180, TNF-a, and abrogated memory

CD4+, CD8+ T cells-mediated suppression of tumor-associated

macrophages (TAM) (112). Knocking down HIF-1a negative

regulator von Hippel-Lindau (VHL) in CD8+ T cells led to

differentiation of tissue-resident memory-like (Trm-like) tumor-

infiltrating lymphocyte (TIL), by which VHL-/- TILs

accumulated in tumors and showed a core Trm signature,

indicating that HIF-1a activity in CD8+ TILs up-regulates

accumulation and antitumor activity (113). Similarly, VHL-/-

CD8+ effector T cells did not express KLRG1, a marker of T cell

terminal differentiation, suggesting a positive effect of HIF-1a on

CD8+ T cells differentiation (114).
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4 HIF-1a and autoimmune diseases

4.1 Systemic lupus erythematosus

SLE is a typical inflammatory autoimmune disease

characterized by production of autoantibodies and damage to

multiple tissues and organs, such as skin, joints, and kidneys.

Lupus nephritis (LN) is the mostly complicated disease in SLE,

which is also the major cause of incidence and mortality in lupus

patients (115).

Urinary HIF-1a levels are higher in LN patients compared

with that in healthy controls, and were associated with histologic

chronicity indexes and the estimated glomerular filtration rate

(eGFR) in LN patients (116). In LN patients and MRL/lpr lupus

mice, expression of HIF-1a in both glomerular and

tubulointerstitial areas was increased and percentage of

intraglomerular HIF-1a+ cells was increased (9). The levels of

intraglomerular HIF-1a were related to renal pathology activity

index and clinical manifestations in LN patients. In SLE patients’

CD4+ T cells, HIF-1a was overexpressed (2). Regarding gene

single-nucleotide polymorphism (SNP) and SLE risk, a study

showed that there are no significant differences in genotypes

frequencies between the patients with SLE and the controls

(rs11549465, rs12434438, rs1957757, rs1951795, rs7143164)

(117). Silencing HIF-1a in MRL/lpr mice can inhibit serum

levels of IL-17, anti-nucleosome antibody, proteinuria, IgG and

C3 depositions in kidney (1). Inhibition of glutaminase in MRL/

lpr mice affects the glycolysis pathway by reducing HIF-1a
expression and decreases percentage of CD3+CD4-CD8- T

cells, urine albumin, and glomerular renal pathology scores

(118). Thus, HIF-1a may be a promising target for treatment

of lupus.
4.2 Rheumatoid arthritis

RA is a chronic disease with symmetry arthritis as its main

clinical manifestation, which is characterized by synovial

hyperplasia and osteoarticular destruction (119). HIF-1a
expression was increased in serum, sublining layer in synovial

membrane from RA patients (10, 120, 121). The number of HIF-

1a+ cells in RA synovial tissue is correlated with blood vessels,

inflammatory endothelial cells infiltration, proliferation, and

synovial score (119). Moreover, expression of HIF-1a was

reinforced in collagen-induced arthritis (CIA) mice (122–125).

In CIA mice treated with hyperbaric oxygen, there was

elevated percentage of Treg cells accompanied by lower

expression of HIF-1a. Pannus formation represents a

distinctive pathological feature of RA, and VEGF mediates

arthropathic proliferative angiogenesis in arthritis. In

adjuvant-induced arthritis (AA) rats and RA patients,

expression of HIF-1a was positively related to expression of

VEGF, and increased HIF-1a accelerated synovial angiogenesis
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and resulted in joint inflammation (126, 127). On the contrary,

inhibition of HIF-1a expression in AA rats showed opposite

effects (128). It is known that erosion and destruction of articular

cartilage is a prominent pathological feature of RA. Under

hypoxic condition, fibroblast-like synovial cells in RA (RA-

FLSs) transformed into epithelial mesenchyme, and HIF-1a
promoted migration and invasion of the cells via STAT3/HIF-

1a/fascin-1 axis (129, 130). NF-kB interacts with HIF-1a to

promote the enzymatic activity of matrix metalloproteinases 2

(MMP2) and MMP9, and then disrupts histological barrier and

destroys bone material (131). When CD14+ monocytes

differentiate into osteoclasts, there was elevated expression of

HIF-1a in osteoclasts (132). HIF-1a increases osteoclasts-

mediated bone resorption (133). In RASFs, HIF-1a
overexpression induces Th1 and Th17 cells expansion and

increases expression of INF-g and IL-17 (82, 134). HIF-1a
inhibitor, Pyridine formamide compound AMSP-30m,

facilitated synovial cells apoptosis (125). Citrullinated proteins

are considered as a biomarker of RA. Knocking out HIF-1a in

RASFs decreased citrulline protein (135). CIA mice treated with

IL-34, succinate, and sinomenine up-regulated Ang-1 expression

via the HIF-1a/VEGF axis (128, 136, 137). IL-38, an

inflammatory related cytokine, exerts angiopoietin-inhibiting

and anti-inflammatory function in CIA mice (138). Activation

of PI3K/Akt/HIF-1a and NK-kB/HIF-1a signaling pathways

augmented migration and invasion of RA-FLSs (129, 131). HIF-

1a is capable of up-regulating osteoclasts-mediated bone

resorption (139), whereas IL-38 contributed to secretion of

osteogenic factors through SIRT1/HIF-1a signallings (129).

Therefore, expression of HIF-1a was increased in arthritis and

may promote arthritis development by downstream signals.
4.3 Inflammatory bowel disease

Inflammatory bowel disease (IBD), including ulcerative

colitis (UC) and Crohn’s disease (CD), are a class of chronic

intestinal inflammatory diseases characterized by intestinal

barrier dysfunction and intestinal mucosal hypoxia. Compared

with controls, higher expression of HIF-1a exists in intestinal

cells and M1-type macrophages of CD patients (140, 141). In

terms of population susceptibility, HIF-1a gene rs11549467

polymorphism did not correlate with IBD risk in Moroccan

population (142).

The HIF-1a/glycolytic pathway disrupts balance of M1/M2

macrophages and the secretion function of neutrophils to affect

the pathological state of colitis (143–145). Succinate is an

intermediate product of the tricarboxylic acid cycle that drives

HIF-1a to stimulate IL-1b production and aerobic glycolysis in

M1 macrophages, favoring the M1 phenotype (146). M2

macrophages, on the other hand, acquire energy mainly from

fatty acid metabolism and oxidative metabolism (146). Tiliroside

attenuates disease activity in mice with colitis, where it promotes
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HIF-1a enzyme degradation (143). In clinical trials with

cyclosporine from UC patients, cyclosporine increased HIF-1a
expression and glycolysis in neutrophils, accompanied by release

of antimicrobial peptides, ROS, and myeloperoxidase (MPO)

(145). CD-associated Escherichia coli activated VEFG in

intestinal epithelial cells, triggering angiogenesis (147). HIF-1a
interacted with IL-33 at the promoter region and is able to

stabilize IL-33-induced mucosal homeostasis (148). Inhibition of

PHD1 stabilizes HIF-1a levels, and then protects the intestinal

mucosa (149). Furthermore, treatment of Bifidobacterium IL-10

inhibited inflammation in colitis mice by restoring Treg/Th17

balance (150). Dimethyloxalylglycine (DMOG) is a hydroxylase

inhibitor that stabilizes HIF-1a, and DMOG improved chronic

intestinal inflammation (151). However, a study revealed that

mice with HIF-1a deficiency in DCs lost much weight and

exhibited severe intestinal inflammation after dextran sodium

sulfate (DSS) treatment. HIF-1a plays a protective role in DCs

(152), T cells (153), and epithelial cells (154) in murine colitis.

Inhibition of HIF-1ɑ in myeloid cells exacerbated infiltration of

neutrophils and Ly6+ monocytes in lesion tissues, and HIF-1a-/-

colonic macrophages had a reduced pro-resolving profile (155).

Therefore, HIF-1a signaling contributes to colitis resolution.
4.4 Systemic sclerosis

Systemic sclerosis (SSc) is an autoimmune disease featured by

autoimmunity, vascular lesions and interstitial fibrosis. Chronic

hypoxia is a prominent feature in SSc, which can lead to

vasculopathy and tissue fibrosis (11). It has been shown that

expression of HIF-1a in human microvascular endothelial cell

line-1 (HMEC-1) was up-regulated under hypoxia (11), and the

skin tissue had much HIF-1a+ cells in patients with SSc (156).

According to a study in French Caucasian population, HIF-1a gene

polymorphism was associated with SSc risk. The frequencies of

genotypes AG, GG in rs12434438 were higher in SSc patients than

in controls (157). Another study in Japanese SSc patients obtained

that AA genotype in rs12434438 was associated with SSc patients

with severe pulmonary arterial hypertension (PAH), suggesting that

rs12434438 polymorphism may relate to occurrence of SSc

combined with PAH (158).

HIF-1a expression was closely related to VEGF expression

in SSc patients (11). HIF-1a/VEGF axis induced vascular

endothelial transformation into interstitial under hypoxia,

leading to tissue fibrosis and vasculopathy (159, 160).

Expression of connective tissue growth factor (CTGF) and

HIF-1a was both rised in the skin of SSc patients, by which

HIF-1a facilitated CTGF expression, and then resulted in skin

fibrosis (161, 162). On the contrary, treatment with 2-

methylestradiol diminished HIF-1a expression, reduced

collagen synthesis, fibrocyte proliferation in fibroblasts,

suggesting that targeting HIF-1a may give potential for

treatment of SSc (161).
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4.5 Psoriasis

Psoriasis is a chronic inflammatory disease characterized by

excessive angiogenesis, proliferation of keratin-forming cells

(163). Expression of HIF-1a was increased in both skin

lesions, and serum from patients with psoriasis as compared to

those in controls (12, 164–167). Ang-1, Ang-2, and Tie-2 are

overexpressed in the papillary dermis of psoriatic skin, which are

induced by HIF-1a. Expression of insulin-like growth factor-II

(IGF-II) and VEGF in human keratinocytes cells (HaCat cells)

was regulated by HIF-1a. Expression of HIF-1a positively

correlated with microvessel density (164). MiR-150 restrains

HaCat cells proliferation by binding to promoter of HIF-1a
(168). It is accepted that increased proliferation and reduced

differentiation of keratinocytes are characteristics of psoriasis.

Stimulation of the cells with bone morphogenic protein 6

(BMP6) inhibited proliferation and promoted differentiation of

keratinocytes. HIF-1a inhibited expression of BMP6 by binding

to the HRE of promoter of BMP6, thereby aggravating the

pathological features in psoriasis (168). Furthermore, HIF-1a
bound to miR-210, suppressed expression of target genes STAT6

and LYN, leading to Th17 cells differentiation in psoriasis

mice (169).
4.6 Multiple sclerosis

Multiple sclerosis (MS) is a central nervous system disease

caused by autoimmune inflammation, accompanied by

demyelination, blood-brain barrier damage. Experimental

autoimmune encephalomyelitis (EAE) mouse model is the

classic animal model of MS.

In MS patients, white matters had hypoxia and high

expression of HIF-1a (170). Similarly, EAE mice had elevated

HIF-1a expression in mice tissues, and was related to the

neurological defect (171). A case-control study discussed

association between MS and HIF-1a polymorphism, showing

no association of HIF-1a polymorphism and MS risk (172). In

EAE mice, inhibiting HIF-1a expression leads to reduced

intermittent hypoxia and promotes Treg cells differentiation

and IL-10, TGF-b production (101). Treatment of MS patients

with fumarate caused accumulation of HIF-1a, lowered the risk

of MS recurrence (171). IL-1b induced expression of HIF-1a in

astrocytes, changing the permeability of the blood-brain barrier

in brain (173).
4.7 Type 1 diabetes mellitus

Type 1 diabetes mellitus (T1DM) is characterized by

hyperglycemia, in which islet b-cell damage is mainly caused by

autoimmunity. High expression of HIF-1a attenuated b-cell death
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and b-cell loss in islet (174). Induction of hypoxia in islet b-cell
with CoCl (cobalt chloride) improved b-cell survival and relieved

proteinuria and tubulointerstitial damage in diabetic rats,

mediated by increased transcription of HIF-1a (175, 176). Thus,

HIF-1a may protect against the hypoxia stress. Inhibiting

expression of HIF-1a increased the infectivity of b cells to

viruses, especially coxsackie viruses (177). Peripheral nerve

damage, diabetic heart disease and diabetic nephropathy are

some severe complications of diabetes. HIF-1a protects against

peripheral nerves damage caused by hyperglycemia via inhibiting

ROS, VEGF expression (178). P53 reduces cardiomyocyte

apoptosis by increasing HIF-1a stabilization and ameliorating

defects in glycolysis and angiogenesis. Similarly, a carbohydrate

restriction diet (CR) can up-regulate HIF-1a expression and

improve nephropathy in T1DM rats (179). Therefore, HIF-1a
may suppress T1DM pathogenesis (Table 1).
5 Conclusion

HIF-1a regulates angiogenesis and secretion of

inflammatory cytokines by adapting to a hypoxic environment.

In recent years, growing evidence has indicated that HIF-1a
worked in several inflammatory autoimmune diseases.

Functional studies suggest the effects of HIF-1a in the

pathology of these disorders. For example, HIF-1a mediates

excessive activation of innate immunity, leading to dysregulated

biological function of innate immune cells, such as antigen

presentation and anti-infection. Similarly, HIF-1a impacts cell

proliferation and differentiation, pro-inflammatory cytokines
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release in adaptive immunity. However, some points need to

be clarified in the future. Firstly, limited studies discussed

polymorphisms in the HIF-1a gene and lupus, IBD. Gene

polymorphism studies may provide basic data for the

treatment and prevention of autoimmune disorders by

revealing the risk of HIF-1a in autoimmune diseases, disease

phenotype, and responsiveness to drug treatment. Thus, the

above disorders require more studies with large samples and

multiple races. Secondly, since HIF-1a is closely related to cell

metabolism and energy supply, the relationship between HIF-1a
and non-immune cells involved in the process of autoimmune

diseases should be paid attention like cancer cells (180), renal

tubular epithelial cells (9), and synovial cells (121). Thirdly,

When Treg cells were subjected to hypoxia, high levels of HIF-

1a stimulated proliferation of Treg cells and promoted the

immunosuppressive effect. For instance, activation of the Akt/

mTORC1 signaling pathway and subsequent activation of HIF-

1a induces glucose transporter and glycolytic enzyme

expression. HIF-1a increases the levels of pyruvate

dehydrogenase kinase (PDK) and lactate dehydrogenase

(LDH), inhibits the conversion of pyruvate to acetyl-CoA and

promotes lactate production. The metabolic shift of Treg cells to

aerobic glycolysis facilitates immunosuppressive function (181).

However, in the presence of high levels of mTOR stimulator,

Treg cells prefer aerobic glycolytic reprogramming accompanied

by elevation of HIF-1a expression, thereby inhibiting Treg cells’

function. For Treg cells, the same pathway that inhibits their

development may be necessary in functionally mature Treg cells

(182). Therefore, when exploring the mechanism of HIF-1a in

regulating Treg cells, different proliferation and differentiation
TABLE 1 Expression of HIF-1ɑ in inflammatory autoimmune diseases.

Diseases Sample Expression References

SLE Urine Increasea 116

Glomerulus and Tubular Increasea,b 9

CD4+T cell Increasea 2

RA Synovial tissue Increasea 10, 120, 121

Serum Increaseb 123–126

IBD Intestinal cells Increasea 140

SSc Skin tissue Increasea 162

Psoriasis Skin lesion Increasea 12, 164–166

Serum Increasea 167

MS White matter Increasea 170

Tissue Increaseb 171

T1DM Islet tissue Increasea 175
SLE, systemic lupus erythematosus; RA, rheumatoid arthritis; IBD, inflammatory bowel disease; SSc, systemic sclerosis; MS, multiple sclerosis; T1DM, type 1 diabetes mellitus.
aHuman.
bMice.
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stages, different metabolic patterns of Treg cells, and expression

of mTOR signaling should be considered. Fourthly, in T1DM,

HIF-1a protects pancreatic islet b-cell, and reduces the

complications related to T1DM. Overexpressed HIF-1a
protects against intestinal inflammation, and low expression of

HIF-1a aggravates IBD. Interestingly, inhibition of HIF-1a
expression in bone marrow cells and myeloid cells exacerbates

intestinal inflammation, which contradicts its function in other

diseases. Thus, the clear molecular mechanism for HIF-1a in

different inflammatory autoimmune diseases needs specific

discussion in the future.

Although some of the above limitations remain to be

discussed to date, it is undeniable that HIF-1a performs

significantly in inflammatory autoimmune diseases. This

review can provide a theoretical basis for the development and

application of HIF-1a as a disease marker and targeted drugs in

the future.
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