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Exosomes are small extracellular vesicles, which stem from endosomes fusing with the

plasma membrane, and can be recaptured by receiving cells. They contain lipids, proteins,

and RNAs able to modify the physiology of receiving cells. Functioning of the brain relies

on intercellular communication between neural cells. These communications can modu-

late the strength of responses at sparse groups of specific synapses, to modulate circuits

underlying associations and memory. Expression of new genes must then follow to stabi-

lize the long-term modifications of the synaptic response. Local changes of the physiology

of synapses from one neuron driven by another, have so far been explained by classical

signal transduction to modulate transcription, translation, and posttranslational modifica-

tions. In vitro evidence now demonstrates that exosomes are released by neurons in a

way depending on synaptic activity; these exosomes can be retaken by other neurons

suggesting a novel way for inter-neuronal communication. The efficacy of inter-neuronal

transfer of biochemical information allowed by exosomes would be far superior to that of

direct cell-to-cell contacts or secreted soluble factors. Indeed, lipids, proteins, and RNAs

contained in exosomes secreted by emitting neurons could directly modify signal trans-

duction and protein expression in receiving cells. Exosomes could thus represent an ideal

mechanism for inter-neuronal transfer of information allowing anterograde and retrograde

signaling across synapses necessary for plasticity.They might also allow spreading across

the nervous system of pathological proteins like PrPsc, APP fragments, phosphorylated

Tau, or Alpha-synuclein.
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INTRODUCTION

The development and function of mammals, like that of any

multicellular organism, depends on intercellular communication.

Classically, this occurs either through direct cell-to-cell interaction

bringing together cell surface proteins or, at a distance, through

secreted soluble molecules binding to cell surface receptors. These

interactions lead to transduction of intracellular signals from the

cell surface to the nucleus, where regulation of gene expression

might occur. A breach of this dogma, which is based on the

impermeable property of biological membranes, came from the

demonstration that lipid vesicles containing RNAs and proteins

released by mammalian cells, can modify the biological activity

of non-contacting cells (Simons and Raposo, 2009). Microvesicles

can be shed directly by budding from the plasma membrane. They

can also form through budding into the lumen of endosomes and

be released after fusion of the limiting membrane of endosomes

to the plasma membrane. Once secreted in extracellular milieu

the endosomal intraluminal vesicles (ILVs) are referred to as exo-

somes. Our review will stick to this strict definition of exosomes

to discuss the most recent findings indicating the potential role

of neuronal exosomes in intercellular communication within the

normal and pathological central nervous system.

WHY NEURONS COULD MAKE GOOD USE OF EXOSOMES

It is now widely accepted that exosomes represent a way of intercel-

lular exchange of effector molecules, which allows emitting cells to

modify gene and protein expression in receiving cells. They allow

transfer of membrane and cytoplasmic proteins (Thery et al., 2002;

Morelli et al., 2004), as well as lipids involved in signal transduc-

tion (Laulagnier et al., 2004; Subra et al., 2010) or RNAs. Exosomal

mRNAs can be translated (Valadi et al., 2007), and small RNAs,

including microRNAs (miRNAs) mediate gene silencing in receiv-

ing cells (Kosaka et al., 2010; Pegtel et al., 2010; Montecalvo et al.,

2012).

Functioning of the brain relies on the capacity of neurons to

locally modulate each other at the level of synapses. Chemical

synapses are made of a presynaptic part filled with neurotransmit-

ter (NT) – containing vesicles and a post-synaptic part in which

NT receptors are anchored at the level of the post-synaptic density

(PSD). Specific patterns of stimulation of the presynaptic cell can

durably increase or decrease the strength of synaptic responses,

thereby reinforcing circuits underlying associations and memory.

Changes in synaptic efficacy are based on modifications of the

number of post-synaptic NT-receptors or of the amount of NT

released pre-synaptically for a given stimulus. Changes of one
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neuron driven by another, have so far been explained by ways

of classical signal transduction: NTs, lipids, or proteins secreted

from one side of the synapse bind to receptors of the opposite sur-

face. Pre-synaptic-activity substances can also be released by cell

bodies and dendrites (Regehr et al., 2009). This leads to mod-

ulations of second messengers and enzymatic activities acting

on effectors of the synaptic changes (adhesion molecules, neuro-

transmitter receptors, cytoskeleton anchors. . .; Malenka and Bear,

2004). Signal transduction also leads to changes in gene expres-

sion and translation, which are needed for long-lasting synaptic

modifications (Bullmore and Sporns, 2009). The efficacy of such

mechanisms must deal with the extreme compartmentalization

of the parenchyma. Indeed, control of transcription occurs in the

nucleus far away from synapses undergoing plastic changes. Tran-

scripts can be specifically transported along dendrites to synapses

undergoing specific patterns of activation, where they are trans-

lated into proteins modifying synaptic strength. Translation of tar-

gets mediating dendritic growth can also be regulated by miRNAs,

which are expressed within dendrites (Schratt et al., 2006; Siegel

et al., 2009). We have recently observed that exosomes secreted

by neurons contain miRNAs (unpublished observations). Given

that single miRNAs have multiple targets, the impact of exosome-

mediated local transfer of miRNA on the pattern of translated

mRNAs in receiving neurons may be quite extensive. Confined

exchange of RNAs at synapses would thus certainly represent

an efficient mechanism for long-term modifications of specific

synapses. Therefore, the exosomal pathway may constitute a well

designed mechanism for local and systemic inter-neuronal transfer

of information within functional brain networks, with a complex-

ity superior to that of direct cell-to-cell contacts or secreted soluble

factors (Belting and Wittrup, 2008). The dark side would be that

exosome transfer might also represent a privileged way for propa-

gating pathological alterations throughout the brain (Fevrier et al.,

2005; Aguzzi and Rajendran, 2009).

ENDOSOMES IN NEURONS CONTROL SYNAPTIC PLASTICITY

Endosomes are intracellular compartments collecting plasma

membrane proteins, which are constantly renewed by constitu-

tive or selective endocytosis (Figure 1). The first compartments to

accept incoming proteins after their endocytosis are early endo-

somes. From there, the majority of the proteins are recycled back to

the membrane. Other proteins, classically those meant for degra-

dation, are selectively entrapped in vesicles budding from the

endosomal membrane into the lumen of endosomes. Maturation

of endosomes leads to individualization of multivesicular bodies

(MVBs), which are large vacuoles delimited by a single membrane

and containing a varying number of 50–80 nm membrane vesicles

(Figure 2; Gruenberg and Stenmark, 2004; van der Goot and Gru-

enberg, 2006). Invagination of the endosomal membrane leading

to the formation of MVBs also allows selective microautophagy of

cytoplasmic proteins (Sahu et al., 2011). Membrane and cytoplas-

mic proteins entrapped in vesicles will be hydrolyzed after fusion

of MVBs with lysosomes. They can also be expelled from cells after

fusion of MVBs with the plasma membrane leading to the release

of exosomes into the extracellular milieu (Figure 1; Simons and

Raposo, 2009).

In neurons, endosomes are present in both pre- and post-

synaptic compartments. Electron microscopy (EM) observations

of the adult hippocampus revealed the presence of MVBs and sort-

ing endosomes in dendritic shafts and inside a limited number

FIGURE 1 | Endosomal trafficking of transmembrane proteins

(triangle). After endocytosis (1) the endocytic vesicle fuses to early

endosomes (2). Proteins can be concentrated into recycling endosomes,

which fuse to the plasma membrane and allow re-expression at the cell

surface (3). Alternatively proteins can be entrapped in vesicles budding

from the limiting membrane of the endosome (4). Maturation of the

endosome leads to the individualization of a multivesicular body containing

intraluminal vesicles (ILV) (5). The multivesicular body can fuse with

lysosomes in which the ILVs and their cargoes are hydrolyzed (6). The

multivesicular body can also fuse with the plasma membrane (7) thereby

releasing ILVs. Once in the extracellular milieu ILVs are referred to as

exosomes. Exosomes released by cell A, can bind to and be endocytosed

by a receiving cell [cell B, 8]. The endocytic vesicle containing the exosome

fuses with the early endosomes (9). Once inside the endosome, the

exosome undergoes back-fusion with the endosomal membrane (10).

Fusion of recycling endosomes to the plasma membrane allows

expression of protein of the cell A at the surface of cell B. Back-fusion also

allows the release of the intraluminal content of exosomes [proteins and

RNAs of cell A] into the cytosol of cell B. It is important to note that steps

9, 10, and 11 remain speculative.
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FIGURE 2 | (A) Electron micrograph of a multivesicular body present in a

neuron of the CA1 region of the adult rat hippocampus. Note the budding of a

vesicle from the limiting membrane of the MVB (upper right; Fiona Hemming,

unpublished). (B) Electron micrograph of a multivesicular body in a dendrite

(colored; CA1 region of an adult rat hippocampus). The protrusion of the

dendrite, called dendritic spine, corresponds to the post-synaptic part of a

glutamatergic synapse. Two post-synaptic densities, which anchor ionotropic

glutamate receptors, are visible. In this case the multivesicular body is

present within the dendritic shaft at the base of the spine neck (Fiona

Hemming, unpublished).

of spines, which represent post-synaptic parts of glutamatergic

synapses (Figure 2B; Cooney et al., 2002). Noteworthy, is that

MVBs are about 50 times more represented in somatodendritic

compartments than in axons (Von Bartheld and Altick, 2011).

Endosome-containing spines are mostly mushroom-like spines

i.e.,with the most active synapses (Kasai et al., 2003). Enhancement

of synaptic activity after injection of peptides known to improve

cognitive functions or during kindling, significantly increased the

proportion of MVBs inside spines in the dentate gyrus (Popov

et al., 2008; Kraev et al., 2009). Similarly, water maze training

of rats led to the migration of MVBs to the vicinity of PSDs in

dendrites of CA3 pyramidal cells, while chronic restraint stress

diminished the number of MVBs associated with PSDs (Stew-

art et al., 2005). Similarly neutrotrophic factors (BDNF, GDNF)

induced a relocalization of dendritic MVBs very near PSDs of

hypoglossal motoneurons (Rind et al., 2005). Thus, in the CNS,

movements of MVBs to synapses are tightly linked to synaptic

plasticity (Von Bartheld and Altick, 2011).

Studies of the trafficking of synaptic AMPA type-receptors,

which represent the major mediators of fast synaptic transmission

among glutamate receptors of the CNS, led to the demonstra-

tion that dendritic endosomes act as stores and sorting platforms

for synaptic receptors (Kennedy and Ehlers, 2006). During long-

term potentiation (LTP), a form of synaptic plasticity now widely

accepted as a model of learning and memory processes (Ehlers,

2000), membrane insertion of new post-synaptic AMPA recep-

tors increases excitatory post-synaptic currents thereby potenti-

ating the synapses. Live cell imaging of dissociated hippocampal

neurons demonstrated that glycine stimulation, a protocol used

to induce chemical LTP through activation of synaptic NMDA-

receptors, leads to the recruitment of endosomes into, or near

spines and their fusion with the plasma membrane (Correia et al.,

2008; Wang et al., 2008). Thereby, AMPA-Rs present in the lim-

iting membrane of endosomes become inserted at the neuronal

surface and diffuse laterally to synaptic sites where they accumu-

late through interaction with proteins of PSDs. Live imaging of

the insertion at the plasma membrane of transferrin receptors

(TfR) contained in endosomes, showed the requirement of Rab11

or syntaxin 13 for the endosomal fusion at the dendritic surface

(Park et al., 2006). Accordingly, expression of a dominant negative

form of Rab11 was found to inhibit LTP in slice cultures (Brown

et al., 2007; Wang et al., 2008), demonstrating that endosomal

fusion to the dendritic membrane is a necessary step for synaptic

potentiation.

The compartments fusing at the plasma membrane of cultured

neurons were identified as recycling endosomes because TfR is

usually detected in recycling endosomes, and Rab11 or syntaxin

13 are known regulators of recycling endosomes. However, the

strict separation between recycling endosomes and MVBs, con-

sidered as late endosomes, needs to be made with caution. Indeed,

in reticulocytes, TfR is present in exosomes (Geminard et al., 2004)

and Colombo and collaborators found that Rab11 is required for

MVB fusion to the plasma membrane in an erythroleukemic cell

line (Savina et al., 2005). Furthermore, NEEP21, known to regu-

late recycling of AMPA receptors at the synapse, has been localized

by immunofluorescence inside TfR-containing endosomes of cul-

tured hippocampal neurons (Steiner et al., 2005). However, EM

observations of rat brain sections demonstrated that the protein

is expressed at PSDs as well as in intralumenal, but not limiting,

membranes of MVBs (Utvik et al., 2009). Thus, even if fluores-

cence data suggest that endosomes fusing to the plasma membrane

during synaptic plasticity are recycling endosomes, one cannot yet

exclude that some of these endosomes are MVBs. The final proof

that MVBs fuse to the dendritic surface awaited the visualization

of this process by EM and the demonstration that exosome release

is modified by synaptic glutamate receptor activity.

REGULATED SECRETION OF EXOSOMES BY NEURONS

We made the first demonstration that cortical neurons in cul-

ture release exosomes (Faure et al., 2006). As in the case of

other cells, exosomes isolated from neuron culture media floated

on sucrose gradients at a density of 1.1–1.2 g/ml and contained
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both Tsg101 and Alix. Tsg101 belongs to the endosomal sorting

complex required for transport (ESCRT-0 to III), necessary for

the making of ILVs accumulating inside MVBs (Babst, 2011).

Alix is acytoplasmic protein binding to Tsg101 of ESCRT-I and

CHMP4B of ESCRT-III (Missotten et al., 1999; Matsuo et al.,

2004). Endophilin A, which also interacts with Alix (Chatellard-

Causse et al., 2002), was not detected in exosomes, demonstrating

that entry of cargoes into ILVs is regulated. Other cytoplasmic

proteins and enzymes were present inside exosomes, including

GADPH, ubiquitin, and Hsc70. This is in good agreement with the

recent finding thatHsc70 binding to GADPH drives its ESCRT-

dependent engulfment into MVB-ILVs (Sahu et al., 2011). Exo-

somes also contained AMPA-, but not NMDA-receptors and the

cell adhesion molecule L1/NgCAM, which, in the central ner-

vous system is expressed only by neurons (Maness and Schachner,

2007), thus demonstrating that exosomes are secreted by neu-

rons. We also observed that electrical activity regulates exosomal

secretion since long-term depolarization of neurons with 25 mM

potassium strongly increased the release of AMPA-R containing

exosomes.

Three other studies reported secretion of exosomes by neurons

(Vingtdeux et al., 2007; Putz et al., 2008; Ghidoni et al., 2009).

These studies, as well as our initial one, used embryonic neu-

rons cultured for only 3–8 days. In short term cultures, neurons

make only few synapses and neurite outgrowth is still on-going.

Thus, exosome release could simply reflect the fusion of late endo-

somes/lysosomes at growth cones necessary for neurite elongation

(Arantes and Andrews, 2006).

More recently, we have studied exosome release from fully dif-

ferentiated cultures (15 DIV; Lachenal et al., 2010). Dissociated

cortical cells contain both glutamatergic and GABAergic neurons,

which make functional networks within the second week in cul-

ture. Thus, incubation with GABA receptor antagonists, such as

picrotoxin or bicuculline, alleviates inhibitory activities within the

networks and increases synaptic glutamatergic activity. Picrotoxin

or bicucullin rapidly (10–15 min) and massively augmented the

secretion of exosomes in a way dependent on AMPA- and NMDA-

receptors (Lachenal et al., 2010). We also found that increasing

cytosolic calcium, using the calcium ionophore ionomycin, dras-

tically elevated exosome secretion. EM examination of cultures

treated for 1 min with ionomycin revealed clusters of exosomes at

the surface of dendrites visualizing the fusion of MVBs with the

plasma membrane. Altogether, our data suggest that calcium entry

through synaptic NMDA-receptors is a potent activator of MVB

fusion to the plasma membrane and thereby of exosome secretion.

The enhanced secretion of AMPA-R-containing exosomes follow-

ing glutamatergic synaptic activation, underlines exosomal release

as a way of local elimination of receptors at synapses undergo-

ing plastic changes. The loss of AMPA receptors upon extensive

synaptic activation could be a mechanism of homeostatic synaptic

scaling, necessary for adjusting the strength of all of a neuron’s

excitatory synapses to stabilize firing (Turrigiano, 2008). Thus,

while fusion of endosomes leads to an increase of receptors at

synapses undergoing potentiation, sustained synaptic activation

would lead to calcium increase within the dendritic shaft trigger-

ing fusion of MVBs at the base of nearby synapses to allow the

local elimination of the intracellular pool of AMPA receptors and

thereby synaptic down-scaling. In this scenario, regulation of the

pool of surface synaptic receptors by exosome secretion would be

a local event, avoiding retrograde transport of MVBs necessary to

hydrolyze the receptors in lysosomes, which are only present in

proximal dendrites and soma.

THE FATE OF EXOSOMES RELEASED BY NEURONS

Exosomes were first shown to be endocytosed by dendritic cells

of the immune system (Skokos et al., 2003). Those released by

neurons into the CNS parenchyma could potentially be endo-

cytosed by nearby cells as shown for oligodendrocyte derived

exosomes which are endocytosed by microglial cells (Fitzner

et al., 2011). Astrocyte end feet, which enwrap a number of

glutamatergic synapses, can also endocytose/phagocytose cellular

debris (Haydon and Carmignoto, 2006) and could thus capture

exosomes released at synapses. Transfer of exosomes could also

occur between spines of the same neuron or across synapses to

end up in afferent neurons. Indeed, the diameter of neuronal

exosomes is compatible with possible endocytosis in neuronal

clathrin coated pits occurring in presynaptic boutons, in spines,

or dendritic shafts (Lu et al., 2007). We have recently obtained

evidence that exosomes bind to and are endocytosed by hippocam-

pal neurons (unpublished observations) and that they allow the

inter-neuronal transfer of Tetanus Toxin, which is known to cross

synapses in vivo (Lachenal et al., 2010). EM observations are now

needed to characterize the site of entry of exosomes and their

fate inside endosomes. In non-neuronal cells, the fact that exoso-

mal RNAs can act on receiving cells demonstrates that exosome

intralumenal cargoes are released into the cytosol i.e., that the

membrane of exosomes fuses with the plasma membrane or with

endosomal membranes after their endocytosis (Figure 1). Back-

fusion of intralumenal vesicles has been demonstrated to occur in

MVBs (Falguieres et al., 2009) and could thus concern exosomes,

which have the same origin. Such a process would lead to the entry

of exosomal membrane proteins into the endosomal protein pool

and possibly re-expression at the cell surface (e.g., AMPA recep-

tors). It would also allow the release into the cytosol of the exosome

content, including signal transduction molecules and miRNAs.

RELEVANCE OF NEURONAL EXOSOMES FOR

NEURODEGENERATIVE DISEASES

Exosomes can contain pathogenic proteins such as alpha-

synuclein, PrPsc, amyloid precursor protein (APP), and phos-

phorylated Tau, which are involved in Parkinson’s, Prion, and

Alzheimer’s diseases respectively. The scrapie form of the Prion

protein (PrPsc) contained in exosomes is secreted via exosomes

and remains infectious under this form (Fevrier et al., 2004). Thus,

trans-synaptic exchange could be one way for the propagation of

Prion diseases from the periphery to the CNS. Alpha-synuclein

secreted together with exosomes released by neuroblastoma cells

causes cell death of recipient neuronal cells suggesting that alpha-

synuclein secretion via exosomes serves to amplify and propa-

gate Parkinson’s disease-related pathology (Emmanouilidou et al.,

2010). The catabolism of APP giving rise to the amyloidogenic

C-terminal APP fragment occurs in endosomes and this fragment

as well as Aβ amyloid peptides, are released by way of exosomes

(Rajendran et al., 2006; Vingtdeux et al., 2007; Sharples et al., 2008;
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Ghidoni et al., 2011). Exosomes could therefore contribute to the

spreading of the pathology throughout interconnected cortical

areas. These puzzling hypotheses require in vivo work (i) to show

that exosomal released from MVBs occurs in situ (ii) to find out

the privileged site of this release (iii) to demonstrate transynap-

tic exchange of exosomes. Furthermore, even though the activity

dependent-release of exosomes suggests a genuine function of exo-

somes in synaptic plasticity, molecular tools to specifically block

MVB fusion with the plasma membrane must be developed to

test this hypothesis. Nevertheless, studies on exosomes in the CNS

are bound to shed new light on intercellular exchanges within the

brain and to open new avenues toward understanding how neu-

rodegenerative diseases spread over time throughout the nervous

system.
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