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Cardiac fibroblasts make up a major proportion of non-excitable cells in the

heart and contribute to the cardiac structural integrity and maintenance of the

extracellular matrix. During myocardial injury, fibroblasts can be activated to

trans-differentiate into myofibroblasts, which secrete extracellular matrix

components as part of healing, but may also induce cardiac fibrosis and

pathological cardiac structural and electrical remodeling. The mechanisms

regulating such cellular processes still require clarification, but the

identification of transient receptor potential (TRP) channels in cardiac

fibroblasts could provide further insights into the fibroblast-related

pathophysiology. TRP proteins belong to a diverse superfamily, with

subgroups such as the canonical (TRPC), vanilloid (TRPV), melastatin (TRPM),

ankyrin (TRPA), polycystin (TRPP), and mucolipin (TRPML). Several TRP proteins

form non-selective channels that are permeable to cations like Na+ and Ca2+

and are activated by various chemical and physical stimuli. This review highlights

the role of TRP channels in cardiac fibroblasts and the possible underlying

signaling mechanisms. Changes in the expression or activity of TRPs such as

TRPCs, TRPVs, TRPMs, and TRPA channels modulate cardiac fibroblasts and

myofibroblasts, especially under pathological conditions. Such TRPs contribute

to cardiac fibroblast proliferation and differentiation as well as to disease

conditions such as cardiac fibrosis, atrial fibrillation, and fibroblast metal

toxicity. Thus, TRP channels in fibroblasts represent potential drug targets in

cardiac disease.
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1 Introduction: Fibroblasts as important myocardial
cellular components

Traditionally, the understanding of heart function at the cellular level has focused on

contractile cells (i.e., atrial and ventricular myocytes) as well as pacemaker and

conduction cells. Hence, cardiac diseases such as heart failure have been understood

as being mainly due to a dysfunction of these cells: loss of contractile function to account

OPEN ACCESS

EDITED BY

Dana Cucu,
University of Bucharest, Romania

REVIEWED BY

Francesco Lodola,
University of Milano-Bicocca, Italy
Florentina Pluteanu,
University of Bucharest, Romania

*CORRESPONDENCE

Asfree Gwanyanya,
asfree.gwanyanya@uct.ac.za

SPECIALTY SECTION

This article was submitted to Membrane
Physiology and Membrane Biophysics,
a section of the journal
Frontiers in Physiology

RECEIVED 13 June 2022
ACCEPTED 20 September 2022
PUBLISHED 06 October 2022

CITATION

Gwanyanya A and Mubagwa K (2022),
Emerging role of transient receptor
potential (TRP) ion channels in cardiac
fibroblast pathophysiology.
Front. Physiol. 13:968393.
doi: 10.3389/fphys.2022.968393

COPYRIGHT

© 2022 Gwanyanya and Mubagwa. This
is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Review
PUBLISHED 06 October 2022
DOI 10.3389/fphys.2022.968393

https://www.frontiersin.org/articles/10.3389/fphys.2022.968393/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.968393/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.968393/full
https://www.frontiersin.org/articles/10.3389/fphys.2022.968393/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.968393&domain=pdf&date_stamp=2022-10-06
mailto:asfree.gwanyanya@uct.ac.za
https://doi.org/10.3389/fphys.2022.968393
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.968393


for pump failure, and abnormalities of electrical impulse

initiation and conduction to account for arrhythmias. With

growing interest in conditions such as heart failure with

preserved ejection fraction where there is no apparent loss of

cardiomyocytes or of conduction cells, there has also been an

increase in the attention given to other cardiac cell types and to

the extracellular matrix as well as to their alterations under

disease conditions (Gevaert et al., 2019). The other cell types

within cardiac tissues include endothelial cells (in the

endocardium and in vessels), smooth muscle cells (in the

coronary vessels), and fibroblasts (in the interstitium). The

latter are reported to represent at least 27% up to nearly two-

thirds of the total adult cardiac cell population (Banerjee et al.,

2007; Ongstad and Kohl, 2016), and the cell proportion may

change in disease conditions (Moore-Morris et al., 2015). In

some extreme conditions, increased proliferation of fibroblasts

and increased synthesis and deposition of modified extracellular

matrix proteins may develop, leading to cardiac fibrosis, which is

increasingly recognized as being a hallmark of heart failure

(Schimmel et al., 2022).

Cardiac fibroblasts are non-excitable cells that play key roles

in the normal myocardium as well as during myocardial healing

and in cardiac disease (Soliman and Rossi, 2020). Individually,

they can be identified as spindle-shaped flat cells that express

biomarkers such as discoidin domain receptor 2 (DDR2) and

vimentin (Tarbit et al., 2019). The origin of cardiac fibroblasts is

heterogeneous: besides the resident fibroblasts which derive from

mesenchymal trans-differentiation of epicardial or endocardial

cells especially during embryonic development, others derive

from pericytes surrounding capillaries or from pluripotent

(hematopoietic, fibrocyte) progenitor cells (Aujla and Kassiri,

2021). Functionally, cardiac fibroblasts synthesize and secrete

components of the extracellular matrix (ECM) surrounding

them, including collagen fibres (mainly type I but also type

III) and ground substances containing mucopolysaccharides,

proteoglycans, and multi-adhesive glycoproteins (Deleon-

Pennell et al., 2020). The secretion of ECM components is

kept in balance via the opposite actions of proteolytic

enzymes such as proteases like metalloproteinases and of anti-

proteases (Umbarkar et al., 2021). The ECM components and the

fibroblast network together contribute to the structural and

mechanical integrity of the heart, which ultimately determines

the compliance and modulates the contraction/relaxation

characteristics of the myocardium. In addition to their role in

determining the ECM, the fibroblast-cardiomyocyte coupling

involves not only structural connections via gap junctions that

influence the cell membrane electrical properties or via

desmosomes, but also involves chemically mediated

connections via paracrine secretions. These structural and

functional interactions of fibroblasts with cardiomyocytes

(Hall et al., 2021) play a role in cardiac electrical conduction

and rhythmicity (Gaudesius et al., 2003; Kohl et al., 2005;

Miragoli et al., 2006; Sridhar et al., 2017).

Being part of the myocardium, cardiac fibroblasts exist and

function in a demanding micro-environment with continuous

episodic mechanical stress and high metabolic requirements, and

therefore, are subjected to a variety of physical and chemical

stimuli. The role of fibroblasts in ECM homeostasis is attributed

to their ability to respond to increased (mechanical and other

types of) stress. This response consists of increased cell

proliferation and ECM protein synthesis. During myocardial

injury, cardiac fibroblasts can be triggered to migrate to the

site of injury by chemotactic factors and pro-inflammatory

cytokines as well as be activated to trans-differentiate into

myofibroblasts. The latter are secretory and contractile cells

with an even greater capacity for fibrinogenesis and

proliferation, resulting in the remodeling of the ECM and the

development of fibrosis and the formation of fibrotic scars (Davis

and Molkentin, 2014). Myofibroblasts can be identified by their

fibroblast-endothelial cell-like features such as the expression of

α-smooth muscle actin (α-SMA) (Tarbit et al., 2019), and are not

expected to be present in the myocardium after healing, unless

there is persistent stress or fibrinogenesis dysregulation that leads

to chronic cardiac fibrosis. Cardiac fibrosis develops following

excessive activation of fibroblasts by various mechanical and

chemical signaling factors (see below).

The mechanisms through which cardiac fibroblasts and

myofibroblasts are activated and regulated have been detailed

in comprehensive reviews (Weber et al., 2013; Frangogiannis,

2019; Tarbit et al., 2019; Umbarkar et al., 2021), which highlight

that the precise molecular pathways involved are still not fully

understood. Broadly, the triggers for fibroblast proliferation and

differentiation include stress-related factors derived from

mechanical forces or from the activation of neurohumoral

pathways or from inflammatory processes. The profibrotic

neurohumoral factors include aldosterone (Stockand and

Meszaros, 2003) and angiotensin II, produced locally via the

release of renin and angiotensin-converting enzyme by injured

cardiomyocytes, infiltrating macrophages, and other fibroblasts

(Weber et al., 1997; Sun et al., 2001). In addition, there is release

of profibrotic endothelin-1 by the injured myocardium (Katwa,

2003) and adrenergic neurotransmitters from cardiac

sympathetic overdrive (Levick et al., 2010). The profibrotic

by-products of inflammation include cytokines like tumour

necrosis factor alpha (TNF-α) and interleukins (Sun et al.,

2007; Fix et al., 2011; Schafer et al., 2017) as well as cytokine-

like growth factors such as the transforming growth factor beta 1

(TGF-β1) (Du et al., 2017; Gao et al., 2019; Vallee and

Lecarpentier, 2019), produced by macrophages and other

interstitial immune cells. TGF-β1, in particular, is a key

profibrotic trigger that also cross-talks with other modulators

of fibrosis such as angiotensin II, Wnt proteins and microRNAs

(Rosenkranz, 2004; Yousefi et al., 2020; Dzialo et al., 2021).

Antifibrotic humoral factors include connective tissue growth

factor, eventually produced by cardiomyocytes (Aranguiz et al.,

2021) and natriuretic peptides (Kapoun et al., 2004).

Frontiers in Physiology frontiersin.org02

Gwanyanya and Mubagwa 10.3389/fphys.2022.968393

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.968393


Intracellularly, TGF-β1 receptor-mediated effects occur via

either Smad protein-mediated (canonical) pathways or Smad-

independent non-canonical pathways (Hanna et al., 2021).

Alternatively, oxidative stress can be produced from reactive

oxygen species (ROS)-generating NADPH oxidases in response

to pro-inflammatory cytokines or indirectly via Ca2+ overload

(Chan et al., 2013). In turn, the oxidative stress stimulates ROS-

sensitive kinases such as mitogen-activated protein kinases

(MAPKs) or activates the small GTP-binding protein RhoA

and Rho-associated coiled-coil containing kinases (ROCKs)

(Jatho et al., 2015). The downstream signaling molecules of

TGF-β1, MAPK, or RhoA can interact with regulators of gene

expression such as microRNAs (Chandy, 2019; Feng et al., 2022),

or with the proposed antifibrotic proteins [e.g., sirtuins (Cappetta

et al., 2016; Maity et al., 2020)], or activate the secretion of Wnt

proteins, which induce profibrotic effects via either β-catenin or

β-catenin-independent pathway (Yousefi et al., 2020; Dzialo

et al., 2021). Finally, intracellular Ca2+ oscillations play an

important role in fibroblast action and myofibroblast

contraction as well as trigger oxidative stress or downstream

Ca2+-dependent pathways involved in pathological cardiac

remodeling (Liu et al., 2012).

Increased intracellular Ca2+ levels seem to play a key role, and

result in the activation of Ca2+-dependent proteases (e.g.,

calcineurin) and the subsequent translocation of the nuclear

factor of activated T cells (NFAT) to the nucleus (Chen et al.,

2012). However, fibroblasts lack voltage-gated Ca2+ channels and

depend on alternative Ca2+ influx pathways. The potential

pathways for Ca2+ entry in fibroblasts include those in

exchange with Na+ extrusion via the Na+-Ca2+ exchanger

operating in reverse-mode (Kamimura et al., 2012) or in

exchange with Mg2+ extrusion via the Ca2+-Mg2+ exchanger

SLC41A1 (Yu N. et al., 2014). Ca2+ entry via members of the

Ca2+ release-activated or Orai family of channels has also been

proposed (Camacho Londono et al., 2020). The other potential

Ca2+-entry pathways in fibroblasts are transient receptor

potential (TRP) ion channels, which are generally Ca2+-

permeable. These channels act as biosensors of different

physical and chemical stimuli and as mediators of

extracellular and intracellular signaling in several types of

cells, including myocardial cells (Hof et al., 2019; Inoue et al.,

2019). As such, understanding the role of TRP channels may

provide further insights into fibroblast (patho)physiology. In the

present review, we provide an overview of TRP channels and

outline their role in cardiac fibroblasts, including the possible

underlying signaling mechanisms.

2 Overview of TRP channels

TRP channels are a large family of proteins classified

according to their structural sequence homology. Historically,

the trp gene and TRP proteins were identified in a mutant

drosophila melanogaster with a defect in the Ca2+ influx

component of the visual transduction pathway (Hardie and

Minke, 1992). Since then, almost 30 TRPs have been

identified and classified into subgroups (Nilius and Owsianik,

2011; Yue and Xu, 2021): canonical (TRPC), vanilloid (TRPV),

melastatin (TRPM), ankyrin (TRPA), polycystin (TRPP),

mucolipin (TRPML), as well as the no mechanoreceptor

potential (TRPN). Many TRP channels are present in the

heart [see (Freichel et al., 2017)], in which they may

participate in the regulation of normal function or in

pathophysiological processes (Hof et al., 2019; Inoue et al., 2019).

TRP channels have special structural and functional

properties that are potentially relevant to cardiac fibroblast

physiology and pathophysiology. The majority of TRP

proteins form relatively non-selective channels, permeable to

various monovalent cations (e.g., Na+) and divalent cations (e.g.,

Ca2+ and Mg2+), except for TRPM4 and TRPM5, which are

monovalent cation-selective (Guinamard et al., 2011) and

TRPV5 and TRPV6, which are relatively Ca2+ selective [see

(Peng et al., 2018)]. Being non-excitable cells, cardiac

fibroblasts lack voltage-gated ion channels, and therefore

TRPs in fibroblasts may provide influx pathways for essential

cations such as Ca2+, Mg 2+, Na+, and trace elements. Despite the

lack of large ion fluxes via voltage-dependent channels, influxes

of cations via TRP channels may have pronounced effects on

cytosolic cation concentrations in fibroblasts given that their

surface area-to-volume ratio (10–20 μm−1) is much larger than

that of the other cardiac cells such as cardiomyocytes (4 μm−1) as

calculated using data obtained in previous studies (Squier et al.,

1990; Satoh et al., 1996; Revell et al., 2006). As such, TRPs in

fibroblasts may also mediate cellular cation overload (e.g., Ca2+

overload) or serve as influx pathways for toxic cations.

Consistent with their wide cellular expression patterns, TRPs

are activated or modulated by a variety of physical and chemical

stimuli, many of which are present in the environment of cardiac

fibroblasts. Regarding physical stimuli, mechanical stress can

modulate TRPs such as TRPC1, TRPC3, TRPC5, TRPC6,

TRPV1, TRPV2, TRPV4, TRPM3, TRPM4, TRPM7, TRPA1,

and TRPP2 (Inoue et al., 2009; Liu and Montell, 2015), although

the mechano-sensitivity of several of these TRPs has also been

questioned (Nikolaev et al., 2019). Temperature changes can also

modulate TRPV1 and TRPV2 (noxious heat) or TRPV3, TRPV4,

TRPM4 and TRPM5 (warmth), or TRPM8 and TRPA1 (cold)

(Huang et al., 2006). For chemical stimuli, several TRPC channels

are activated by membrane phospholipid breakdown by-

products such as diacylglycerol following ligand binding to

G-protein-coupled receptors (Albert, 2011), whereas

TRPM4 and TRPM5 channels are activated by intracellular

Ca2+ (Guinamard et al., 2011), and TRPM6 and TRPM7 are

inhibited by intracellular Mg2+ (Nadler et al., 2001; Voets et al.,

2004). In addition, TRPCs such as TRPC1 and TRPC3 have been

linked to Ca2+ store depletion-mediated Ca2+ entry (Cheng et al.,

2013). Besides these broad categorizations, several TRPs show
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polymodal activation as well as modulation by other factors such

as pH, membrane phospholipids, nucleotides, osmolarity, and

transmembrane voltage (Nilius and Owsianik, 2011). Given that

different types of TRP channels can be expressed in the same cell,

and that cells such as cardiac fibroblasts are exposed to a variety

of stimuli, the TRPs provide cells with mechanisms for

polymodal bio-sensation and signal transduction.

Some TRP channels have unique structural components that

may be biologically active or act as sites of protein-protein

interactions among TRPs or between TRPs and other cellular

components [see (Gaudet, 2007)]. The C-termini of some TRP

transmembrane polypeptides may contain specific structures

such as the ADP ribose-binding motif in TRPM2, kinases in

TRPM6 and TRPM7, amino acid binding (PDZ) motifs in

TRPC4 and TRPC5, coiled-coil domain in TRPV1, TRPM4,

and TRPM8, and the calmodulin binding sites in TRPC3 and

TRPC4 and drosophila TRP and TRPL. On the other hand, the

N-termini of TRPV, TRPA, and TRPN contain ankyrin-binding

motifs. Generally, the biological significance of such TRP sub-

components remains an area of active research.

3 TRP channel expression and roles in
cardiac fibroblasts

3.1 TRPC channels

3.1.1 TRPC3
TRPC3 is one of the G-protein-coupled receptor-activated

Ca2+-permeable TRPC channels that has been studied in human

isolated atrial fibroblasts (Harada et al., 2012; Han et al., 2020) or

cultured ventricular fibroblasts (Saliba et al., 2019) as well as in

wild-type or TRPC3 knockout mice (Numaga-Tomita et al.,

2016; Han et al., 2020), rat freshly isolated or cultured

fibroblasts (Numaga-Tomita et al., 2016; He et al., 2019;

Saliba et al., 2019), and canine cultured atrial fibroblasts

(Harada et al., 2012). The changes in TRPC3 mRNA or

protein expression as well as channel activity or current

observed in these studies suggest that TRPC3 contributes to

fibroblast proliferation (Harada et al., 2012; He et al., 2019),

fibroblast migration (He et al., 2019), and myofibroblast

differentiation as well as fibrinogenesis (Harada et al., 2012;

Numaga-Tomita et al., 2016; He et al., 2019; Saliba et al.,

2019; Han et al., 2020). In addition, the baseline level of

expression of TRPC3 has been shown to be higher in cultured

fibroblasts from the rat left atrium compared to the right atrium

as was evidenced by the greater TRPC3 protein expression and

larger TRPC3-like currents in left atrial fibroblasts (Chung et al.,

2021), a result that is consistent with the proposed greater

occurrence of fibrosis in the left atrium than in the right

atrium. The TRPC3-mediated profibrotic effects are linked to

cardiac disease conditions such as atrial fibrillation (Harada et al.,

2012; Han et al., 2020), hypertension (He et al., 2019), and

pressure overload (Numaga-Tomita et al., 2016), where the

disease conditions directly or indirectly upregulate the

expression of TRPC3 or activate the channels.

At the cellular level, TRPC3-mediated fibrosis can occur in

response to pathological stress due to the stimulation of

fibroblasts with the profibrotic cytokine TGF-β1, acting via its

canonical pathway signaling proteins Smad2/3 (He et al., 2019;

Han et al., 2020) or via the non-canonical pathway involving the

extracellular signal-regulated kinases 1 and 2 (ERK1/2) (Harada

et al., 2012). Furthermore, TRPC3-mediated fibrosis can be

stimulated by G-protein-coupled receptor agonists like

angiotensin II (Harada et al., 2012; Saliba et al., 2019; Han

et al., 2020) and homocysteine (Han et al., 2020). For its

other intracellular profibrotic effects on cardiac fibroblasts,

TRPC3 may act via intracellular Ca2+ or via channel

interactions with either profibrotic or antifibrotic molecules.

The activation of TRPC3 channels in fibroblasts mediates Ca2+

influx (Harada et al., 2012; Saliba et al., 2019), which in turn may

activate the Ca2+-dependent NFAT (Saliba et al., 2019), a

transcription factor involved in cardiac pathological

remodelling and cardiac hypertrophy (Chen et al., 2012; Liu

et al., 2012). TRPC3 has also been shown to induce fibrosis

through activating Rho-GTPase (Numaga-Tomita et al., 2016),

or via interactions with the membrane bound NADPH oxidase

(NOX-2) in ROS-induced fibrosis (Numaga-Tomita et al., 2017),

or via the modulation of the proposed antifibrotic factor sirtuin 1

(Cappetta et al., 2016; Han et al., 2020).

3.1.2 TRPC6
TRPC6 is the other G-protein-coupled receptor-activated

TRPC channel that has also been studied in fibroblasts of

cultured human ventricular tissue (Ikeda et al., 2013; Kapur

et al., 2014), mouse models of TRPC6 knockout or right

ventricular pressure-overload (Davis et al., 2012; Kapur et al.,

2014), and cultured rat ventricular tissue (Nishida et al., 2007). In

such studies, the TRPC6 changes in channel activity or

expression of mRNA or protein in cardiac fibroblasts suggest

that TRPC6 has mixed effects on fibroblast activity. On the one

hand, TRPC6 appears to be necessary for cardiac scar formation

post myocardial infarction, since TRPC6 null-mutant mice

demonstrate a higher incidence of cardiac rupture, a lower

recovery of function, a smaller wall scar and greater

ventricular dilatation (Davis et al., 2012). TRPC6 promotes

cardiac fibroblast proliferation, myofibroblast differentiation,

and fibroblast Ca2+ influx in response to TGF-β1 stimulation

(Davis et al., 2012; Ikeda et al., 2013; Kapur et al., 2014) via the

Smad3 pathway as well as via the ERK1/2 pathway (Davis et al.,

2012; Kapur et al., 2014). In addition, TRPC6 in cardiac

fibroblasts is proposed to mediate the Ca2+ influx that could

be induced by 1-oleoyl-2-acetyl-sn-glycerol (OAG) (Ikeda et al.,

2013), an analogue of diacylglycerol, which is a by-product of the

membrane lipid phosphatidylinositol-4,5-bisphosphate (PIP2)

breakdown. In turn, the Ca2+ influx in fibroblasts can
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modulate proliferation or alter Ca2+-dependent cardiac

remodeling molecules such as calcineurin and NFAT (Kapur

et al., 2014). In ventricular fibroblasts, TGF-β1 activation

upregulated the expression of both TRPC6 and the Ca2+-

dependent protein calcineurin, whereas TPRC6 silencing

decreased the TGF-β1-mediated upregulation of calcineurin

(Kapur et al., 2014). Similar TGF-β1-mediated profibrotic

effects of TRPC6 involving calcineurin/NFAT have also been

reported in pulmonary fibrosis (Kapur et al., 2014; Hofmann

et al., 2017). On the other hand, TRPC6 suppresses the

endothelin-1 induced activation of fibroblasts that is mediated

by Gα12/13 proteins and ROS (Nishida et al., 2007). In that study,

the over-expression of TRPC6 andNFAT decreased endothelin-1

induced myofibroblast formation, with opposite effects observed

in TRPC6-silenced and NFAT-inhibited fibroblasts (Nishida

et al., 2007). It could therefore be that TRPC6 may mediate

either profibrotic or antifibrotic effects, depending on the nature

of the stimulus on the cardiac fibroblasts.

3.1.3 Other TRPCs
It is unclear which specific type of TRPC mediates the ADP-

induced purinergic receptor (P2Y)-mediated Ca2+ influx, leading

to myofibroblast growth and fibrinogenesis in rat ventricular cells

(Certal et al., 2017). Nonetheless, such a limitation may not be

surprizing in cases where pharmacological probes are used to

identify TRPCs, given the TRPCs’ high structural sequence

homology (especially among TRPC3, TRPC6, and TRPC7),

the possible formation of hetero-multimers (e.g., TRPC1 with

TRPC4 or TRPC5), the lack of specific blockers, and the multi-

modal forms of channel activation, including G-protein-coupled

receptor modulation and possibly Ca2+ store-operated activation

[see review (Albert, 2011)]. In the study by Certal et al. (Certal

et al., 2017), the ADP effects mimicked by the diacylglycerol

analogue OAG could potentially be attributed to several OAG-

sensitive TRPCs such as C1, C3, C6, and C7. In addition, the

channel block by chemicals such as 2-APB and flufenamic acid

can also occur in several TRPCs, some TRPMs, and non-TRP

channels. However, Certal et al. (2017) ruled out the involvement

of a non-TRP channel that is also blocked by 2-APB, the Ca2+

store-operated channel called Ca2+ release-activated Ca2+

(CRAC) channel by using specific CRAC channel inhibitors,

thereby leaving TRPCs as the likely mediators of the ADP-

induced profibrotic effects.

As for TRPC7 specifically, the conformational changes

observed in the TRPC7 channel in response to angiotensin II

stimulation in rat fibroblasts imply a role for the channel in

fibrosis (Petigny et al., 2022). However, the TRPC7 protein is not

detectable in human fibroblasts (Ikeda et al., 2013) and its mRNA

is not altered in response to profibrotic endothelin-1 stimulation

in rat neonatal fibroblasts (Nishida et al., 2007), hence making

questionable the role of TRPC7. Similarly, the involvement of

TRPC1 in fibroblasts also remains uncertain. The expression of

TRPC1 (as detected using RT-PCR, western blot,

immunochemistry and functional measurements) in human

cardiac fibroblasts was upregulated by TGF-β1 stimulation

(Ikeda et al., 2013), but the role of the channel in fibroblasts

was not further explored. In addition, TRPC1/C4 proteins were

shown to be required to mediate the Ca2+ influx implicated in

pressure overload-induced cardiac interstitial fibrosis in mice

(Camacho Londono et al., 2015). In contrast, there was no

detectable TRPC1 expression measured at mRNA and protein

levels in rat cardiac fibroblasts, even under conditions in which

the channel could be detected in other cells found in the heart

such as cardiomyocytes, endothelial cells, and smooth muscle

cells (Huang et al., 2009). Finally, TRPC1, TRPC3, and

TRPC4 were shown to have no role in angiotensin II induced

Ca2+ influx in mouse fibroblasts although their mRNA could be

detected (Camacho Londono et al., 2020).

3.2 TRPM channels

3.2.1 TRPM2
The TRPM2 channel is generally considered as a metabolic

sensor in reference to the presence of its cytoplasmic ADP ribose-

binding domain. In cultured rat cardiac fibroblasts, hypoxia was

shown to upregulate TRPM2 mRNA expression and to induce a

TRPM2-like current that could be enhanced by intracellular ADP

ribose or prevented by TRPM2 RNA interference (Takahashi

et al., 2012). The results of that study suggest a role of TRPM2 as a

hypoxic sensor in fibroblasts, but the implications on the

fibroblast integrity or function during hypoxia remain unclear.

3.2.2 TRPM4
TRPM4, a Ca2+-activated, monovalent cation-permeable

channel, is expressed in cardiac fibroblasts, in which it

mediates profibrotic effects. The expression of TRPM4 protein

and the magnitude of TRPM4 current have been shown to be

upregulated in either freshly isolated or cultured human

ventricular fibroblasts of heart failure patients (Feng et al.,

2021). In addition, the TRPM4 current was upregulated upon

stimulation with the profibrotic cytokine TGF-β1 in vitro (Feng

et al., 2021). Given the pro-hypertrophy and pro-arrhythmic

roles of TRPM4 when it is expressed in cardiomyocytes

(Guinamard et al., 2006; Liu et al., 2010), the profibrotic effect

in cardiac fibroblasts makes TRPM4 a key disease substrate in

myocardial dysfunction and arrhythmogenesis.

3.2.3 TRPM7
TRPM7 is regulated by intracellular Mg2+ and nucleotides,

and possesses both channel and kinase functions (Nadler et al.,

2001; Runnels et al., 2001) (hence its designation as a chanzyme).

The channel has been studied in freshly isolated and cultured

human atrial fibroblasts (Du et al., 2010), mouse cultured

fibroblasts (Li et al., 2008; Jia T. et al., 2021), and rat isolated

and cultured fibroblasts (Yu N. et al., 2014; Guo et al., 2014; Zhou
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et al., 2015; Li et al., 2017; Lu et al., 2017; Zhong H. et al., 2018;

Wu et al., 2018; Jia X. et al., 2021). The evidence from changes in

TRPM7 channel activity and the expression of protein or mRNA

in cardiac fibroblasts indicate that, in general, the channel

promotes fibroblast proliferation and fibroblast-myofibroblast

trans-differentiation (Du et al., 2010; Guo et al., 2014; Li

et al., 2017; Lu et al., 2017; Wu et al., 2018) as well as

fibrinogenesis (Du et al., 2010; Guo et al., 2014; Zhou et al.,

2015; Li et al., 2017; Lu et al., 2017; Zhong H. et al., 2018; Wu

et al., 2018). Such TRPM7-mediated profibrotic effects occur in

cardiac disease conditions such as myocardial infarction (Li et al.,

2008), atrial fibrillation (Du et al., 2010), and sick sinus syndrome

(Zhong H. et al., 2018) as well as following receptor-mediated

cardiac stimulation with agonists like angiotensin II (Yu Y. et al.,

2014; Zhou et al., 2015; Li et al., 2017; Zhong H. et al., 2018) and

isoprenaline (Li et al., 2017; Wu et al., 2018). In addition, the

TRPM7-linked fibrinogenesis is induced or enhanced by

metabolic stress factors such as hypoxia (Li et al., 2017),

acidosis (Li et al., 2008), and hydrogen peroxide (Guo et al.,

2014).

The profibrotic effects of TRPM7 in fibroblasts are proposed

to be mediated via Ca2+ influx through the channels (Li et al.,

2008; Du et al., 2010; Guo et al., 2014; Jia T. et al., 2021), which

may be enhanced by the upregulation of TRPM7 protein

expression under various pathological conditions (Li et al.,

2008; Du et al., 2010; Yu Y. et al., 2014; Zhou et al., 2015;

Wu et al., 2018). As such, the blockade of TRPM7 channels

attenuates fibrosis (Yu Y. et al., 2014; Jia T. et al., 2021). However,

an enhanced Ca2+ influx could occur even in the absence of

upregulated TRPM7 expression, since enhanced Ca2+ influx can

occur upon channel modulation by extracellular acidosis

(Macianskiene et al., 2017; Jia T. et al., 2021). In addition to

Ca2+ influx through TRPM7 channel, Mg2+ influx has also been

shown to be required for angiotensin II induced fibrinogenesis in

rat ventricular fibroblasts (Yu Y. et al., 2014), but the mode of

action of Mg2+ is unclear since the Mg2+ extrusion by the Ca2+-

Mg2+ exchanger, rather than its influx, is implicated in

fibrinogenesis (Yu N. et al., 2014).

The cell signaling molecules involved in TRPM7-mediated

fibroblast activation include the cytokine TGF-β1 (Li et al., 2008;
Du et al., 2010; Guo et al., 2014; Jia T. et al., 2021) acting via the

Smad pathway (Zhong H. et al., 2018) or via the ERK1/2 pathway

(Guo et al., 2014). TRPM7 also acts via its interactions with

potential antifibrotic molecules like micro-RNA-135a (Wu et al.,

2018), but such mechanisms still require further clarifications.

Furthermore, in one study, the angiotensin II induced

upregulation of the TRPM7 protein expression and of the

TRPM7 current as well as the fibrinogenesis were shown be

short-lived, despite continued stimulation (Zhou et al., 2015),

indicating the possible existence of other counter-regulatory

mechanisms.

In contrast to profibrotic effects of TRPM7 when the channel

is expressed in cardiac fibroblasts, TRPM7 in cardiac

macrophages suppressed cardiac fibroblast activity during

inflammation (Rios et al., 2020). With TRPM7 being a

chanzyme, the presence of the TRPM7 kinase in macrophages

was shown to be required to prevent the macrophage stimulation

of fibroblasts during inflammation, a process that was regulated

by the TRPM7 inhibitor Mg2+ (Rios et al., 2020). This finding by

Rios et al. (Rios et al., 2020) suggests a role for the TRPM7 kinase

in cell-cell signaling and that the presence of TRPM7 in other

heart cells may, in turn, alter fibroblastic activity. Therefore,

given that TRPM7 is also present in other cells found in the heart

like atrial (Zhang et al., 2012; Andriule et al., 2021) and

ventricular myocytes (Gwanyanya et al., 2021; Alatrag et al.,

2022), it will be worth investigating whether the TRPM7 in those

cells could modulate cardiac fibroblasts under certain conditions.

3.3 TRPV channels

3.3.1 TRPV1
The capsaicin receptor TRPV1 in cardiac fibroblasts has been

characterized in wild-type mice (Horton et al., 2013) and

TRPV1 knockout mice (Huang et al., 2010; Buckley and

Stokes, 2011; Wang et al., 2014; Wang et al., 2016; Zhong B.

et al., 2018). The channel has been linked with antifibrotic cardiac

effects in most studies, but also with profibrosis in other studies.

The TRPV1 agonist capsaicin has been shown to decrease the

angiotensin II induced fibroblast proliferation as well as to

attenuate pressure-overload induced cardiac fibrosis, but not

in TRPV1 knock-out mice (Wang et al., 2014). In addition,

TRPV1 is cardio-protective against ischemia, since TRPV1 null-

mutant mice are more susceptible to myocardial infarction-

induced, TGF-β1/Smad2-mediated myofibroblast activation

and fibrinogenesis (Huang et al., 2010). Similarly, under

conditions where TRPV1 prevented hypertrophy, it also

decreased fibrosis (Horton et al., 2013; Zhong B. et al., 2018).

In the same way, the over-expression of TRPV1 in mice is

protective against isoprenaline-induced cardiac fibroblast

proliferation and collagen deposition, effects that were

mediated by Ca2+ influx and the endothelial nitric oxide

synthase [eNOS (Wang et al., 2016)]. Given that the Ca2+

influx through other TRPV channels (TRPV3 and TRPV4) is

linked to profibrotic cardiac effects (Liu et al., 2018; Ahn et al.,

2020; Jia et al., 2020), it will be important to determine how the

TRPV1 Ca2+ signaling could be unique in leading to antifibrosis

or if other factors unrelated to Ca2+ are involved, so as to identify

potential anti-fibrosis drug targets.

In contrast to the protective effects of TRPV1 described

above, deleterious effects have also been associated with the

presence/activation of these channels. Myocardial hypertrophy

with upregulation of TRPV1 expression and loss of cardiac

function as well as markers of fibrosis were found to be

higher in untreated animals compared to those where

TRPV1 was pharmacologically or genetically (TRPV1−/−)
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unfunctional (Buckley and Stokes, 2011). Similarly, Horton et al.

(2013) reported that the use of TRPV1 antagonists was associated

with reduced fibrosis. The remodeling resulting in scar formation

in the infarct border zone was shown to be attenuated by the

inactivation of TRPV1 by resiniferatoxin, and was attributed to

an effect on adrenergic afferent neurons (Yoshie et al., 2020). The

contrasting results in whole animals may be, at least in part,

because many cell types, other than cardiac fibroblasts, could be

involved in the global effect on cardiac fibrosis observed under

pathophysiological or experimental conditions.

3.3.2 TRPV3
The presence of TRPV3 in rat cardiac fibroblasts has been

demonstrated through changes in the activity of the channel (Liu

et al., 2018). The channel has been implicated in pressure

overload-induced cardiac interstitial fibrosis in vivo and in the

angiotensin II activated, TGF-β1-mediated collagen deposition

by fibroblasts in vitro (Liu et al., 2018). The in vivo and in vitro

effects could be enhanced by the agonist carvacrol, an effect

prevented by the concurrent application of the antagonist

ruthenium red, suggesting the implication of TRPV3, but

these drugs are known not to be channel specific. The

TRPV3 channel activation induces profibrotic effects through

Ca2+ influx as well as via the activation of the fibroblast cell cycle-

mediating components called cyclic-dependent kinases and

fibroblast proliferation (Liu et al., 2018). Although not many

studies have, as yet, addressed the role of TRPV3 in cardiac

fibroblasts, the channel is also linked to fibroblast-mediated

fibrosis in other tissues such as skin (Um et al., 2020).

3.3.3 TRPV4
The mechanosensitive, Ca2+-permeable TRPV4 channel has

been characterized in cultured fibroblasts of human (Ahn et al.,

2020), rat (Hatano et al., 2009; Adapala et al., 2013; Jia et al.,

2020), and porcine (Batan et al., 2022) species, with evidence

obtained at the level of channel activity and/or the expression of

mRNA or protein. TRPV4 has profibrotic effects in the

myocardium through promoting fibroblast-myofibroblast

trans-differentiation and fibrinogenesis (Adapala et al., 2013;

Ahn et al., 2020; Jia et al., 2020). Post-ischemic fibrotic

deposition and associated mechanical dysfunction observed

weeks after left anterior descending coronary artery ligation in

rats is mediated, at least in part, by TRPV4 since it was less

marked in TRPV4 knock-outs, and these effects were mediated

via TGF-β1 and Rho kinase activation (Adapala et al., 2020).

Similarly, osmotically induced increases of intracellular Ca2+ in

isolated cardiac fibroblasts were also attenuated in cells from

TRPV4 silenced models (Adapala et al., 2020). The expression of

TRPV4 is also upregulated in themyocardium of diabetic rats (Jia

et al., 2020) and in TGF-β1-stimulated human cardiac fibroblasts

(Ahn et al., 2020). In turn, the blockade of TRPV4 channel

activity down-regulates the expression of TGF-β1 and Smad3 in

both the diabetic rat heart and cultured hyperglycaemic

fibroblasts (Jia et al., 2020), suggesting that there may be a

regulatory cross-talk between TRPV4 and the TGF-β1/
Smad3 signaling pathway. Alternatively, the TGF-β1
profibrotic effects linked to TRPV4 in human fibroblast occur

via the ERK1/2 pathway (Ahn et al., 2020). Furthermore, the

activation of TRPV4 channel mediates Ca2+ influx in cardiac

fibroblasts (Hatano et al., 2009; Ahn et al., 2020) and is linked to

the induction of fibroblast-myofibroblast trans-differentiation

and diabetic cardiac fibrosis (Ahn et al., 2020; Jia et al., 2020),

whereas the inhibition of TRPV4 deactivates myofibroblasts

(Batan et al., 2022). TRPV4 also mediates the transformation

of other heart cells such as valvular interstitial cells into

myofibroblasts via the Yes-activated protein (Batan et al.,

2022), indicating a broader role of TRPV4 beyond just the

functional myocardium to include cardiac valve fibrosis.

3.4 TRPA channel

The ankyrin-like channel TRPA1 has long been identified in

human lung fibroblasts, where it is implicated in lung fibroblast

malignancy (Jaquemar et al., 1999). It has also been shown to be

expressed in cardiac fibroblasts of human at mRNA and protein

levels (Oguri et al., 2014; Oguri et al., 2021). The channel has also

been studied in TRPA1 knockout mice (Li et al., 2019) and is

proposed to mediate a TRPA1-like Ca2+ current in fibroblasts

(Oguri et al., 2021). Furthermore, TRPA1 has been shown to

promote cardiac fibroblast proliferation and myofibroblast trans-

differentiation (Oguri et al., 2014; Li et al., 2019). These

profibrotic effects of TRPA1 are mediated by Ca2+ (Oguri

et al., 2014; Oguri et al., 2021) as well as through TGF-β1 and

the activation of the Ca2+-sensitive calcineurin/NFAT signaling

pathway (Li et al., 2019).

3.5 TRPP channels

TRPP channels assemble either homometrically with

themselves or heterometrically with PDK proteins to

constitute polycystins. In contrast to the widely recognized

role of polycystins in renal structure and function (where

polycystin mutations are the cause of polycystic kidney

disease, PKD), their role in other tissues, including the

myocardium, is less clearly defined. Patients suffering from

PKD present with various cardiac abnormalities, indicating

that polycystins are also involved in cardiac physiology and

pathophysiology. Polycystin 1 (PC1) is present in mouse

fibroblasts, where it seems to be localized mainly at the

primary cilium detected in these cells, and is implicated in

fibroblasts activation (Villalobos et al., 2019). Fibrosis after

ischemia is increased under conditions where PC1 is silenced

by knockout or RNA-interference, suggesting an antifibrotic

action of PC1 (Aranguiz et al., 2021). This protective effect
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may depend not only on polycystins expressed in fibroblasts but

also on those present in cardiomyocytes since a cardiomyocyte-

targeted ablation of PC1 is effective to enhance the fibrosis

associated with ischemia/reperfusion (Aranguiz et al., 2021).

Hence, in addition to the polycystins in fibroblasts mediating

ion fluxes, intracellular signal transduction, and autocrine effects

on fibroblasts, the polycystins in cardiomyocytes may cause the

release of paracrine mediators (e.g., connective tissue growth

factor) to modulate fibroblast function.

4 TRPs and fibroblast-mediated post-
ischemic remodeling

4.1 TRPVs and possibly other channels

Given the importance of myocardial ischemia as a major

cause of morbidity, especially as related to congestive heart

failure, here we summarize the role of fibroblast TRPs in the

post-ischemic structural and functional changes (cardiac

remodeling).

Cardiac fibroblasts are unique in that they are generally

activated by ischemia, whereas the functions of the other

permanent myocardial cells such as cardiomyocytes and

endothelial cells are depressed by ischemia (Talman and

Ruskoaho, 2016). As such, several ischemia-sensitive TRPs in

fibroblasts may modulate the subsequent post-ischemic cardiac

remodeling. TRPV4 in mouse heart was shown to promote post

myocardial infarction-induced ventricular fibrosis that was

associated with cardiac dysfunction and poor survival, and

those effects were absent in TRPV4 knock-out mice (Adapala

et al., 2020). Similarly, the expression of TRPM7, assessed by

mRNA and whole-cell currents in single cells, is upregulated post

myocardial infarction in mouse cardiac fibroblasts (Li et al.,

2008). Furthermore, as a form of cross-talk between

fibroblasts and other cardiac tissue components, the presence

of TRPV1 in cardiac adrenergic afferent fibres enhanced post

myocardial infarction fibrosis in the infarct border zone as well as

disrupted connexin connectivity and promoted ventricular

arrhythmias (Yoshie et al., 2020). In contrast to profibrotic

effects, TRPV1 has also been shown to be cardioprotective

against post myocardial infarction, since TRPV1 null-mutant

mice had a reduced ejection fraction and a high mortality rate,

and were more susceptible to myofibroblast activation and

fibrinogenesis (Huang et al., 2010). In addition, TRPC6 has

been proposed to be essential for the protective scar

formation of the cardiac chamber post myocardial infarction,

given that the hearts of TRPC6 null-mutant mice had a smaller

protective wall scar and were prone to cardiac rupture and

ventricular dilatation as well as to poor functional recovery

(Davis et al., 2012). Similarly, TRPP1 was shown to attenuate

the fibroblast-myofibroblast differentiation in response to

ischemia/reperfusion injury (Aranguiz et al., 2021).

Other TRPs are also probably indirectly linked to myocardial

ischemia since ischemia creates a local microenvironment with

metabolic disturbances such as hypoxia, acidosis, and oxidative

stress, whichmodulate TRPs in fibroblasts. The evidence for such

indirect links is that the profibrotic effects of TRPM7 in cardiac

fibroblasts are sensitive to hypoxia (Li et al., 2017), acidosis (Li

et al., 2008), and hydrogen peroxide (Guo et al., 2014). Similarly,

TRPM2 in cardiac fibroblasts has been shown to be upregulated

by hypoxia (Takahashi et al., 2012). Furthermore, the role of

TRPs in ischemic remodeling could become broader when

considering the possibility of ischemia-induced inflammation.

As described above, the profibrotic effects of the pro-

inflammatory cytokine TGF-β1 are linked to TRPM7 (Li

et al., 2008; Du et al., 2010; Guo et al., 2014; Jia T. et al.,

2021) and several other TRPs such as TRPC3, TRPC6,

TRPV3, TRPM4 and TRPA1 (Ikeda et al., 2013; Kapur et al.,

2014; Liu et al., 2018; He et al., 2019; Li et al., 2019; Ahn et al.,

2020; Han et al., 2020; Feng et al., 2021). On the other hand,

TRPM7 in cardiac macrophages that are activated during

inflammation produces antifibrotic effects (Rios et al., 2020).

Therefore, depending on the type of TRP involved, the channels

could potentially enhance or attenuate post-ischemic

remodeling, but further clarifications are required.

5 Fibroblast TRPs and chronic
myocardial metal toxicity

Various forms of cardiomyopathies are related to chronic

poisoning by metals and include cobalt cardiomyopathy

(reported in beer drinkers and in patients with metal hip

prostheses) and iron overload cardiomyopathy (known to

occur in patients with thalassemia and hemochromatosis), etc.

These cardiomyopathies are characterized by metal

accumulation into cardiac cells, generally involving

cardiomyocytes but it is possible that non-cardiomyocyte cells

such as fibroblasts could also be implicated. In general, the entry

pathway for the metal is unknown. Although voltage-dependent

Ca2+ channels have been proposed as pathways for the divalent

cation iron (Oudit et al., 2003), pharmacological block of these

channels has not suppressed ion entry in some cases, implying

that other structures are involved.

Generally, TRP channels mediate the cellular entry of major

physiological ions and vital trace elements, but due to their non-

selective nature, the channels may also provide an entry pathway

for toxic elements. The latter is the case with TRPC6 and

TRPM7 channels, which have been shown to mediate cobalt

toxicity in rat hearts in vivo and in cultured cardiac fibroblasts

(Laovitthayanggoon et al., 2019). In that study

(Laovitthayanggoon et al., 2019), the cobalt toxicity was

associated with an echocardiography-detectable decrease in

cardiac contractile function and with an upregulation of the

expression of both TRPC6 and TRPM7 in cardiac fibroblasts.
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However, the cobalt permeability properties of such TRP

channels in cardiac fibroblasts have not yet been characterized.

6 Challenges

6.1 Accuracy of TRP channel identification

A key challenge in inferring the role of TRPs in cardiac

fibroblasts has to do with the accuracy of the identification of

TRP channels. Although pharmacological probes sufficiently

modulate TRPs, the precision of the probes is limited by the

general lack of specific blockers and inhibitors of TRP

channels. In addition, some TRP channels form hetero-

multimers and acquire mixed activation and permeability

properties (Cheng et al., 2010) as well as changes in

sensitivity to pharmacological probes. For molecular

probes, given that some TRPs such as TRPM7 are

constitutively active and essential for cell survival (Nadler

et al., 2001), TRP knock-out models may induce

compensatory pathways of survival that complicate the

interpretation of TRP channel effects on fibroblasts.

Similarly, the detection of changes in mRNA of TRPs do

not necessarily imply altered channel proteins, since the

translational processes could unfold differently.

Although some TRPs channels are reported to be present in

the heart (mainly in cardiomyocytes), their expression in other

non-myocyte cells like fibroblasts may not have been specified.

This could be the case with the highly Ca2+-selective TRPV5 and

TRPV6 channels, which are mainly expressed in epithelial cells,

but have also been detected at mRNA and protein levels in the

heart (Hwang et al., 2011; Jia X. et al., 2021), and their

expression levels have been shown to increase in diabetes

experimentally induced by streptozotocin in rat (Jia X. et al.,

2021). The cell distribution of TRPV5/6 within the heart, and

whether they involve non-cardiomyocyte cells, as well as their

function have not, to our knowledge, been investigated. Also,

the expression of TRPV2 (which is less investigated in the heart

compared to other TRPV channels) was shown to be

upregulated in the peri-infarct tissue in response to

ischemia, but most markedly in cardiomyocytes and in

exogenously infused macrophages (Entin-Meer et al., 2014;

Entin-Meer et al., 2017), but direct links to fibroblasts have

not been elucidated.

TABLE 1 Profibrotic and antifibrotic effects of TRP channels in cardiac fibroblasts.

TRP Profibrosis (fibroblast species,
references)

Antifibrosis (fibroblast species,
references)

TRPC3 Human (Harada et al., 2012; Saliba et al., 2019; Han et al., 2020) —

Rat (Numaga-Tomita et al., 2016; He et al., 2019; Saliba et al., 2019)

Mouse (Numaga-Tomita et al., 2016; Han et al., 2020)

Canine (Harada et al., 2012)

TRPC6 Human (Ikeda et al., 2013; Kapur et al., 2014) Rat (Nishida et al., 2007)

Mouse (Davis et al., 2012; Kapur et al., 2014)

TRPM2 Rat (Takahashi et al., 2012) —

TRPM4 Human (Feng et al., 2021) —

TRPM7 Human (Du et al., 2010) aMouse (Rios et al., 2020)

Rat (Yu Y. et al., 2014; Guo et al., 2014; Zhou et al., 2015; Li et al., 2017; Lu et al., 2017; Zhong
H. et al., 2018b; Wu et al., 2018; Jia T. et al., 2021)

Mouse (Li et al., 2008; Jia X. et al., 2021)

TRPV1 Mouse (Buckley and Stokes, 2011; Horton et al., 2013) Mouse (Huang et al., 2010; Wang et al., 2014; Wang et al., 2016;
Zhong B. et al., 2018)bPorcine (Yoshie et al., 2020)

TRPV3 Rat (Liu et al., 2018) —

TRPV4 Human (Ahn et al., 2020) —

Rat (Hatano et al., 2009; Adapala et al., 2013; Jia et al., 2020)

Porcine (Batan et al., 2022)

TRPA1 Human (Oguri et al., 2014; Oguri et al., 2021) —

Mouse (Li et al., 2019)

TRPP1 Mouse (Villalobos et al., 2019) Mouse (Aranguiz et al., 2021)

— Rat (Aranguiz et al., 2021)

aTRP, in cardiac macrophages.
bTRP, in cardiac sympathetic afferents.
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6.2 TRP structural complexity

The structural complexity of some TRPs may blur the TRP

functionality in fibroblasts. Apart from ion channel activity, some

TRPs have metabolically active domains that modulate cardiac

fibroblasts, like the kinase in TRPM7 (Rios et al., 2020) and the

ADP ribose-binding motif in TRPM2 (Takahashi et al., 2012).

These domains may act either in concert with the channel

activation or irrespective of the status of channel activation

and expression (Takahashi et al., 2012; Rios et al., 2020),

thereby making such subtle contributions of the specific TRPs

difficult to identify or quantify. Furthermore, other TRPs like

TRPV1, TRPV3, and TRPAI have ankyrin repeat domains that

are not necessarily metabolically active, but modulate the channel

activation (Cordero-Morales et al., 2011; Shi et al., 2013; Ladron-

De-Guevara et al., 2020); however, such effects have not yet been

studied in cardiac fibroblasts.

6.3 Cardiac tissue multicellular
interactions

The multicellular myocardial environment in which cardiac

fibroblasts reside also limits the understanding of the role of

TRPs in fibroblasts. Depending on the species studied and on

the type of fibroblast biomarker and quantification methods

used, the fraction of fibroblasts relative to the total number of

myocardial cells has been reported to be 64% in rats (Banerjee

et al., 2007) or 43–58% in humans (Bergmann et al., 2015), or

27% in mice (Banerjee et al., 2007). Such substantial numbers of

fibroblasts in the myocardium maximize the possible

interactions between fibroblasts and other permanent

myocardial cells such as cardiomyocytes, pericytes, and

endothelial cells as well as with non-permanent interstitial

cells such as macrophages and other immune cells. However,

several of these other myocardial cells also express TRP

channels (Hof et al., 2019), which may respond to stimuli

that are like those that modulate fibroblasts, thereby making

it difficult to attribute the contributions of TRP channels

specifically to fibroblasts or other myocardial cells. For

example, when present in macrophages, the TRPM7 kinase

suppresses cardiac fibroblast activity during inflammation

(Rios et al., 2020), yet TRPM7 expressed in cardiac

fibroblasts has profibrotic effects in other cardiac conditions

(Du et al., 2010; Guo et al., 2014; Li et al., 2017; Lu et al., 2017;

Wu et al., 2018).

7 Summary

Several types of TRPs are expressed in cardiac fibroblasts, in

which they induce fibroblast proliferation, fibroblast migration,

and myofibroblast differentiation as well as fibrinogenesis in

response to not only physiological stimuli, but even more so to

pathological stimuli, with the potential to produce cardiac

fibrosis, arrhythmias, and post-ischemic pathological cardiac

remodeling. Other TRPs have antifibrotic effects, whereas a

single type of TRP may have both profibrotic and antifibrotic

effects, indicating the complexity of the modulation. Table 1

summarizes the profibrotic and antifibrotic effects of cardiac

fibroblast TRPs. Alternatively, cellular influx of non-

physiological ions through TRP channels in cardiac fibroblasts

may lead to metal toxicity and cardiac contractile dysfunction.

Therefore, the modulation of cardiac fibroblasts by TRPs

contributes to baseline fibroblastic activity, beneficial

myocardial healing, and to cardiac disease processes.

The TRPs in fibroblasts act as sensors of various stimuli and

as pathways of entry of Ca2+ and other cations as well as modulate

either profibrotic or antifibrotic mediators (Figure 1).

Nonetheless, the molecular mechanisms involved in TRP-

mediated activation or de-activation of fibroblasts/

myofibroblasts, and the role of TRPs in cell-cell interactions

of fibroblasts with other cardiac cells still require further studies.

Therefore, the recognition of the existence of TRPs in fibroblasts

is an emerging area of cardiac pathophysiology, with the

potential to unlock the broad functionality of fibroblasts and

FIGURE 1
Transient receptor potential (TRP) ion channel modulation of
cardiac fibroblasts. Schematic drawing of a cardiac fibroblast,
external stimulants, and intracellular cascades and outcomes of
TRP channels-mediated effects. Dotted line with double
arrowheads depicts crosstalk or bi-directional modulation.
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the identification of novel therapeutic drug targets in cardiac

disease.
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