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Abstract

Liver cancer has become the sixth most diagnosed cancer and the fourth leading cause of cancer death worldwide.

Hepatocellular carcinoma (HCC) is responsible for up to 75–85% of primary liver cancers, and sorafenib is the first

targeted drug for advanced HCC treatment. However, sorafenib resistance is common because of the resultant

enhancement of aerobic glycolysis and other molecular mechanisms. Aerobic glycolysis was firstly found in HCC,

acts as a hallmark of liver cancer and is responsible for the regulation of proliferation, immune evasion, invasion,

metastasis, angiogenesis, and drug resistance in HCC. The three rate-limiting enzymes in the glycolytic pathway,

including hexokinase 2 (HK2), phosphofructokinase 1 (PFK1), and pyruvate kinases type M2 (PKM2) play an

important role in the regulation of aerobic glycolysis in HCC and can be regulated by many mechanisms, such as

the AMPK, PI3K/Akt pathway, HIF-1α, c-Myc and noncoding RNAs. Because of the importance of aerobic glycolysis

in the progression of HCC, targeting key factors in its pathway such as the inhibition of HK2, PFK or PKM2,

represent potential new therapeutic approaches for the treatment of HCC.
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Background
According to the latest global cancer statistics (2018),

liver cancer has become the sixth most commonly diag-

nosed cancer and the fourth leading cause of cancer

death worldwide in 2018 [1]. Because of the high infec-

tion rates of hepatitis B virus (HBV) and hepatitis C

virus (HCV), the morbidity and mortality due to liver

cancer is increasing in China [2]. Primary liver cancer is

composed of hepatocellular carcinoma (HCC) (75–85%)

and intrahepatic cholangiocarcinoma (10–15%), as well

as other rare types [3]. The risk factors associated with

primary HCC includes chronic HBV/HCV infection, af-

latoxin intake, alcohol abuse, smoking, obesity, and

others [4]. Since the early-stage HCC is often asymp-

tomatic, patients with HCC are usually diagnosed at

intermediate or advanced stages, and miss the opportun-

ity for curative treatment (hepatic resection or liver

transplantation) [5].

For patients with advanced HCC, treatment options

include local ablation, radiotherapy, chemotherapy and

molecular targeted therapies [6]. Among them, sorafe-

nib, a multi-target tyrosine kinase inhibitor, is the first

line drug approved for the treatment of advanced HCC

by the Food and Drug Administration (FDA) in 2005 [7,

8]. The famous Sorafenib Hepatocellular Carcinoma As-

sessment Randomized Protocol (SHARP) trial demon-

strated that sorafenib improved patient overall survival

for an extra 2.8 months [9]. However, the efficacy of so-

rafenib is limited owing to the development of drug re-

sistance within 6 months [10]. The mechanisms

responsible for sorafenib resistance are complex, but
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includes the activation of epidermal growth factor recep-

tor (EGFR), c-Jun and the Akt pathway, as well as in-

creases in cancer stem cells, and enhancement of

epithelial-mesenchymal transition (EMT) [11].

There are six hallmarks of cancer, including sustained

proliferative signaling, evasion of growth suppression, re-

sistance to cell death, replicative immortality, inducing

angiogenesis, and activation of invasion and metastasis

[12], all of which contribute to the malignant biological

properties of cancer. Recently, new theories are emer-

ging that energy metabolism reprogramming may be an-

other hallmark of cancer [13]. In the 1920s, Otto

Warburg firstly showed that unlike normal cells that ca-

tabolize glucose by oxidative phosphorylation in the

mitochondria, tumor cells tend to convert glucose into

lactate even in conditions of sufficient oxygen [14]. This

phenomenon was termed as aerobic glycolysis or the

Warburg effect, and is characterized by enhanced glu-

cose uptake and lactate production. Although the adeno-

sine triphosphate (ATP) production efficiency is low

during aerobic glycolysis, it still takes up to 50–70% of

the ATP supply in different tumors [15]. Furthermore,

the metabolic intermediates generated during aerobic

glycolysis can be used for the biosynthesis of biomacro-

molecules used by the tumor to meet the demands for

rapid growth [16]. The production of lactate also pro-

vides an acidic environment to aid the invasion and me-

tastasis of cancer [17]. Moreover, some researchers have

found that increases in aerobic glycolysis are also in-

volved in sorafenib resistance [18].

Aerobic glycolysis plays an important role in the pro-

liferation, growth, invasion and treatment of cancer. A

better understanding of aerobic glycolysis in HCC will

help to reveal the pathogenesis and potential treatment

paths for HCC, as well as the mechanism of sorafenib

resistance [19]. Therefore, this review aimed to review

the characteristics and regulatory mechanisms of aerobic

glycolysis in HCC, and to identify potential new thera-

peutic targets for its treatment.

Characteristics of aerobic glycolysis in HCC
Enhancement of aerobic glycolysis in HCC

The Warburg effect was firstly reported in rat liver car-

cinoma in the 1920s. Warburg and his co-workers found

that rat liver carcinoma did not consume more oxy-

gen(O2) than normal liver tissue; but instead, even in the

presence of sufficient O2, liver carcinoma tissue also

converted glucose and pyruvate into lactate, rather than

transferred pyruvate into the mitochondria for use in the

citric acid cycle. Moreover, Cori C. F. and Cori G. T. fur-

ther reported that the blood drawn from a Rous sarcoma

tumor containing veins showed significantly less glucose

and more lactate than normal tissues [14]. After these

initial findings, this enhancement of aerobic glycolysis

has been found in many other cancer types, including

breast cancer [20], renal cell carcinoma [21], pancreatic

cancer [22], lung cancer [23], gastric cancer [24], and

prostate cancer [25]. The existence of aerobic glycolysis

in HCC has also been proved by Li S [26], Beyoğlu D

[27] and Bustamante E [28], which found that the aer-

obic glycolysis was enhanced in HCC as well as

hepatoma.

Warburg originally hypothesized that the mitochon-

drial respiration (also known as oxidative phosphoryl-

ation, OXPHOS) must be damaged in cancer cells

because they used high levels of O2, and found that they

were unable to suppress lactate production in cancer

cells. However, Chance and Weinhouse in 1950s firstly

found that there were no mitochondrial defects in can-

cers, opposing to Warburg’s conception [14]. Currently,

many researches still believe that the mitochondria are

not injured in cancers and OXPHOS remains functional

for the supply of O2 [29]. However, there have also been

studies reporting mutations in mitochondrial DNA

(mtDNA), specifically those genes coding for proteins in-

volved in OXPHOS, such as point mutation (52% of

HCC patients), gene deletions or insertions, and copy

number changes [30, 31], and there exists a dysfunction in

coenzyme Q10 [32] and other components of the mito-

chondrial electron transport chain [33]. Drugs targeting

mitochondria, such as oligomycin, combined with anti-

glycolysis drugs, such as 2-deoxyglucose (2-DG), showed a

synergic effect in triggering cancer cells death [34].

Although aerobic glycolysis has been observed in many

cancers, most cancer cells do not utilize aerobic glycoly-

sis alone. Instead, they consume ATP from both the

mitochondria OXPHOS and the aerobic glycolysis. In

most normal cells, the ATP produced from mitochon-

dria OXPHOS and glycolysis is approximately 90 and

10%, respectively. Whereas cancer cells rely on aerobic

glycolysis to provide as much as 60% of the ATP con-

sumption [35]. It’s well known that the mitochondrial

OXPHOS can produce 36 molecules of ATP, while the

use of glycolysis to synthesis lactate can just produce

only 2 molecules of ATP. Although the aerobic glycoly-

sis seems to be energetically inefficient in the production

of ATP, this is compensated for by the fact that the aer-

obic glycolysis process is more rapid and it also gener-

ates further downstream biomacromolecules required

for cell proliferation [36]. Rapid glucose fermentation by

glycolysis also causes cancer cells to take up more glu-

cose than normal cells [37]. These findings suggest that

the use of aerobic glycolysis in HCC provides advantages

during cancer progression.

Key enzymes in aerobic glycolysis in HCC

There are three rate-limiting enzymes in aerobic glycoly-

sis, including hexokinase (HK), phosphofructokinase
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(PFK), and pyruvate kinases (PKs) (Fig. 1). The expres-

sion changes of these enzymes can largely influence the

progression of HCC.

Hexokinase 2 (HK2)

Hexokinase (HK) is the first rate-limiting enzyme in aer-

obic glycolysis and can catalyze the conversion of glu-

cose to glucose-6-phosphate (G-6-P) [38]. The enzymes

have four isoforms (HK1, HK2, HK3 and HK4), but

most normal tissues express only HK1. However, HK2 is

highly expressed in HCC tissues and it is directly linked

to pathological stage and patient prognosis [39].

HK2 is more efficient at promoting aerobic glycolysis

than the other isoforms [40], and the mechanisms by

which HK2 promotes glycolysis has been investigated by

many researchers. Firstly, HK2 interacts and binds to the

voltage-dependent anion-selective channel protein 1

(VDAC1) in the mitochondrial outer membrane, then

facilitates the activation of ATP synthesis-related en-

zymes to enhance the production of ATP and the inhib-

ition of apoptosis (Fig. 1) [41]. Secondly, when HK2 is

bound to VDAC1, it is protected from the inhibitory ef-

fects of its downstream products, such as G-6-P, thereby

enhancing the glycolysis process and the rate of ATP

production [15]. The expression of HK2 is controlled by

several signaling pathways and transcription factors, in-

cluding the PI3K/Akt/HIF-1α axis, β-catenin/c-Myc sig-

naling pathway, STAT3, and miR-199a [42–45].

Recently, a novel isoform has been found termed

hexokinase domain containing 1 (HKDC1). Normally,

HKDC1 is upregulated in pregnant women at 24–28

weeks of gestation and regulates the whole-body glucose

homeostasis during pregnancy through its role in glu-

cose use [46]. However, Zhang et al. reported in 2016

that HKDC1 is also overexpressed in HCC and is associ-

ated with a lower overall survival, possibly through the

upregulation of the Wnt/β-catenin pathway, causing in-

creased HCC cell proliferation and migration [47].

It has been reported that genetic liver-specific knock-

out of HK2 decreases the proliferation and the formation

of HCC induced by diethylnitrosamine. HK2 depletion

inhibits glycolysis flux and induced OXPHOS, enhancing

the sensitivity of HCC to drugs, such as metformin.

Moreover, HK2 silencing can synergistically enhance the

sensitivity of HCC to sorafenib, thereby inhibiting tumor

growth in mice [39]. Based on the key role of HKs in

HCC, HK2 is considered to be a highly promising meta-

bolic target for the development of new treatments for

HCC.

Phosphofructokinase-1 (PFK1)

Phosphofructokinase-1 (PFK1) is the second rate-

limiting enzymes involved in glycolysis, and can catalyze

fructose 6-phosphate(F-6-P) to fructose 1,6-bisphosphate

(F-1,6-BP) using ATP [48]. There are three isoforms of

PFK1 in mammals, which are PFK-M (found in muscle),

Fig. 1 Aerobic glycolysis process and its three rate-limiting enzymes. Aerobic glycolysis was originally found in HCC and is the process that

converts glucose into pyruvate and lactate instead of using OXPHOS even in sufficient O2 supply. HK2, PFK1 and PKM2 are the three rate-limiting

enzymes involved in glycolysis. HK2 catalyzes glucose to G-6-P, and can interact and bind with VDAC1 in the mitochondrial outer membrane to

facilitate the production of ATP and the inhibition of apoptosis. PFK1 can catalyze F-6-P to F-1,6-BP, and its activity can be regulated by PFKFB3

catalyzed products F-2,6-BP. PKM2 not only catalyzes PEP to pyruvate, but can also translocate into the nucleus and act as a co-activator for some

transcription factors, such as HIF-1α, β-catenin/c-Myc, NF-κB and STAT3, to promote the transcription of relevant target genes
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PFK-P (found in plasma) and PFK-L (found in liver),

and the proportion of these isoforms may vary in differ-

ent tissues depending on their specific energy metabol-

ism requirements [49]. In liver, it has been reported that

expression levels of PFK-L, PFK-M, and PFK-P subunits

are expressed in this descending order in humans and in

rats [48].

PFK1 is primarily synthesized as an unstable and in-

active monomer, which can then rapidly form dimers,

which maintains the minimal catalytic activity for F-6-P

[50]. However, the fully activated PFK1 is present as a

tetramer, and the formation and stabilization of PFK1

tetramers largely influences the glycolytic flux rate

largely [51]. However, the downstream products of PFK1

enzymes, including ATP, phosphoenolpyruvate (PEP),

citric acid and lactate, can induce the dissociation of

PFK1 tetramers to dimers, leading to the inhibition of

PFK enzymatic activity and providing a negative feed-

back to the glycolytic process [52]. However, increased

PFK-1 activity has been found to promote glycolysis and

proliferation in cancer cells [53]. For example, fructose -

2,6 - bisphosphate (F-2,6-BP), which is also the product

of F6P catalyzed by PFKFB3 (Fig. 1), is considered to be

the most potent allosteric activator of PFK1, and can in-

crease PFK1 activity even in the presence of ATP [51].

As mentioned above, the enzymes 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase-3 (PFK2/PFKFB-3)

play a significant role in the regulation of glycolysis in

HCC, as well as in tumor growth and metastasis [52,

54]. PFKFB3 can translocate into the nucleus to regulate

the activity of cyclin-dependent kinase (CDKs), resulting

in the arrest of the cell cycle and the inhibition of cell

death (Fig. 1) [55]. Moreover, overexpression of PFKFB3

can increase the expression of VEGF-A, thereby promot-

ing angiogenesis and facilitating metastasis in breast can-

cer [56]. By inhibiting PFKPB3, aspirin in combination

with sorafenib, overcomes sorafenib resistance by indu-

cing apoptosis in HCC [54]. The expression of PFKFB3

can also be regulated by hypoxia inducible factor-1α

(HIF-1α) mediated transcription, AKT, and PTEN [57].

In many cancer types, high levels of PFKFB3 are corre-

lated with poor prognosis with lymph node metastasis or

poor survival [58, 59]. Therefore, targeting PFKFB3 can

also be a new therapeutic approach for the treatment of

HCC.

Pyruvate kinases, type M2 (PKM2)

The last rate-limiting enzymes in glycolysis process are

pyruvate kinases (PKs), which catalyze PEP to produce

ATP and pyruvate. There are also four isoforms of PKs,

including liver-type PK (PKL), red blood cell PK (PKR),

and PK muscle isozymes M1 and M2 (PKM1 and

PKM2, respectively) [60]. Unlike other forms of PKs,

PKM2 is highly up-regulated in cancer cells, and is asso-

ciated with a poor prognosis [35].

The activity of PKM2 is mainly controlled by its

oligomerization states (Fig. 2). There are two forms of

PKM2, one is a tetramer, with higher catalytic activity,

and is located in the cytoplasm and can transform PEP

to pyruvate rapidly, the glycolytic flux and the produc-

tion of more ATP [61]. However, the other isoform is a

monomer or dimer, with lower catalytic activity, and can

translocate into the nucleus to act as a co-activator of

several transcription factors, such as HIF-1α, β-catenin/

c-Myc, NF-κB and STAT3 [60, 62]. Once in the nucleus,

PKM2 can promote the transcription of target genes,

such as HIF-1α targeted expression of GLUTs, PKM2,

LDH-A, and VEGF-A, leading to the promotion of

growth, positive feedback regulated-glycolysis and angio-

genesis in cancer cells [63].

The activity of PKM2 can also be regulated by numer-

ous allosteric effectors and post-translational modifica-

tions. For example, the upstream metabolic

intermediates F-1,6-BP can act as an allosteric activator

to increase the activity of PKM2; while the downstream

products such as ATP and L-cysteine can inhibit PKM2

activity [64–66]. PKM2 can also be post-translationally

modified. The phosphorylation at Tyr105, Tyr 328,

Thr328 or Pro403/408 sites, or the succinylation at K498

site, or acetylation at K433 site of PKM2 has been dem-

onstrated to inhibit the tetramer formation and activity

of PKM2, but promotes its nuclear translocation [64, 65,

67, 68]. Moreover, PKM2 can also interact and bind with

some oncogenic proteins, including pp60v-src, to in-

crease dimer formation [69]. Heterogeneous ribonucleo-

protein (hnRNP) also influences the alternative

splicing of PKM genes, giving rise to differences in

the PKM1/PKM2 ratio [70]. Some signaling pathways,

such as HIF-1α, PI3K/mTOR and PPAR-γ, also up-

regulate the expression of PKM2 to promote the

growth of cancer cells [71].

Since its discovery in HCC, and the over-expression of

PKM2 has been found in many other cancer types, in-

cluding cervical cancer, lung cancer, breast cancer, colo-

rectal cancer, and prostate cancer, especially the lower

activity dimer form of PKM2 [72]. Recently, it has been

reported that the expression levels of PKM2 are associ-

ated with the clinicopathological features of HCC, such

as the size, the number and the clinical stages of tumors.

HCC patients with higher levels of PKM2 expression ex-

hibit a higher cumulative recurrence rate than those

with lower PKM2 levels [73]. By switching from PKL to

PKM2, HCC cells can elevate glucose uptake levels and

increase the oxidative stress [74]. There are also some

specific inhibitors, such as compound 3 k and shikonin,

which have the ability to inhibit the formation of PKM2

tetramers, thereby inhibiting the growth of HCC, and

Feng et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:126 Page 4 of 19



making PKM2 another therapeutic target for the treat-

ment of HCC [75, 76].

Role of enhanced aerobic glycolysis in HCC

Proliferation, growth and immune evasion in HCC

As a new hallmark of HCC, aerobic glycolysis is believed

to promote the proliferation, growth, and induce im-

mune evasion in HCC through the following evidence:

(1) there is rapid ATP production during aerobic gly-

colysis, enabling the tumor to adapt to its microenviron-

ment which is short of energy resources [41]. (2) The

enhanced aerobic metabolism is accompanied by

activated glycolytic flux, with increased amounts of

metabolic intermediates production, such as dihydroxy-

acetone phosphate (DHAP, which can be used for the

synthesis of triglycerides and phospholipids), 3-

phosphoglycerate (3-PG, which can be used for the

synthesis of amino acids). These can then enter other

metabolic pathways for the synthesis of nucleotides,

lipids, and proteins, enabling cancer cell proliferation

[77]. Cancer cells also elevated the aerobic glycolysis to

promote glutaminolysis to satisfy the precursor needs re-

quired for nucleic acids biosynthesis [78]. (3) The pro-

duction of lactate, as well as the hydrogen ions (H+)

produced during these processes, cause the acidification

of the extracellular environment, which inhibits the

function of immunosuppressive cells, including M2 type

macrophages and lymphocytes, further facilitating the

survival of cancer cells [36].

Many studies have found that the pro-survival effect of

aerobic glycolysis in HCC is caused by the inhibition of

enzymes involved in glycolysis. For example, in xeno-

graft models, HK2 knockdown by shRNA can reduce the

growth rates of Hep3B liver tumors by approximately

50% [26]. Furthermore, inhibition of PFKFB3 using spe-

cific inhibitors or shRNA, suppresses the growth of

HCC both in vivo and in vitro [54]. Knockdown of

PKM2 by siRNA also inhibits the proliferation of HCC

cell lines [79], and the downregulation of LDH-A can

also induce apoptosis and growth arrest in a HCC xeno-

graft mouse model [80].

Invasion and metastasis in HCC

The malignant and aggressive nature of cancers can be

reflected by the extent of metastasis and invasion. Many

studies have found that the metastasis and invasion of

HCC are correlated with the enhanced aerobic glycolysis

in HCC. For example, Li et al. found that in different

HCC cell lines, those that exhibited the greatest invasion

capability, including MHCC-97H, HCC-LM3, showed a

high level of aerobic glycolysis when compared to less

invasive cell lines such as HepG2 [54, 75, 81]. These

Fig. 2 The activity of PKM2 is dependent upon its oligomerization states. The PKM2 tetramer exhibits high levels of pyruvate kinase activity and

can accelerate the transformation of PEP to pyruvate, thereby increasing the glycolytic flux and ATP production rates. Whereas PKM2 in dimeric

form exhibits lower levels of pyruvate kinase activity, and can be phosphorylated at Tyr105, Tyr 328, Thr328 or Pro403/408 sites and then

translocate into nucleus to act as a co-activator for some transcription factors, such as HIF-1α, β-catenin/c-Myc, NF-κB and STAT3, leading to

tumor progression

Feng et al. Journal of Experimental & Clinical Cancer Research          (2020) 39:126 Page 5 of 19



phenomenon were also common in breast cancer, pros-

tate cancer, cervical and head and neck cancers [82].

Because of the hypoxic nature of tumor tissues, cancer

cells tend to metastasize to additional sites to enhance

energy and blood supplies, thereby enabling its survival.

The glycolytic phenotype aids this metastasis and inva-

sion in HCC mainly through lactate and H+ mediated

acidification of the extracellular environment, which in-

cludes the following aspects: (1) the low pH in extracel-

lular environment causes destruction of the normal

tissue through caspase-mediated or p53-dependent

apoptosis [83]. (2) Acidification of the extracellular

matrix (ECM) promotes the secretion of proteolytic en-

zymes such as cathepsin B or metalloproteinases, so as

to help the degradation of ECM and facilitate metastasis

[82]. (3) The immunosuppression caused by low pH

levels also enables metastatic cancer cells to escape the

surveillance of immune system, leading to the sustained

metastasis [84]. As a result, aerobic glycolysis is respon-

sible for the extracellular structure and immunosuppres-

sion, making it easy for cancer cells to metastasize and

invade.

Angiogenesis in HCC

Angiogenesis, also known as neovascularization, is a

pathologically abnormal vessels formation in HCC,

which supply the necessary requirement for rapid tumor

growth and initiation of metastasis [85]. Angiogenesis in

HCC is also driven by hypoxia. As mentioned above,

HCC is a solid tumor, and its structure consists of a

tumor surrounding stroma, basal membrane, tumor tis-

sues, and central necrosis [82]. Therefore, there is hyp-

oxia in tumor tissues due to its specific tumor tissues

structures. However, though the angiogenic factors, such

as vascular endothelial growth factor (VEGF) and the

angiopoietin families (Angs), can be released by hypoxia

in cancer cells, the new vessels remain physically sepa-

rated from cancer cells due to the existence of basement

membranes. Therefore, although HCC is largely

dependent on angiogenesis for its energy supply during

invasion and metastasis, the metastasis and invasion pro-

cesses also favor the angiogenesis by destroying the

ECM structures [86].

In fact, it’s believed that the ‘glycolytic switch’ occurs

before the angiogenesis [82]. Aerobic glycolysis also

causes angiogenesis process in HCC through many path-

ways. For example, the acidification of the extracellular

environments by lactate and H+ can promote the secre-

tion of VEGF and interleukin 8, which are both angio-

genic factors and can induce angiogenesis [87, 88].

Moreover, the production of pyruvate by glycolysis can

also induce the expression of HIF-1α and accelerate the

angiogenesis process by mediating the transcription of

VEGF and plasminogen activator inhibitor-1 (PAI-1) in

HepG2 cells. HIF-1α can also promote the expression of

the glycolytic enzymes, such as PKM2, HK2 and LDHA

to promote glycolysis in tumors, which forms a positive

feedback loop for tumor progression [88].

Drug resistance in HCC

The enhancement of aerobic glycolysis can also contrib-

ute to drug resistance in HCC. It has been reported that

high glycolysis levels were significantly associated with

poor prognosis in cancer chemotherapy in combination

with bevacizumab [89]. Furthermore, Li et al. and Feng

et al. found that the aerobic glycolysis was enhanced in

different HCC cell lines, and was associated with sorafe-

nib resistance. By downregulating PFKFB3 or PKM2, the

sorafenib resistance seen in HCC can also be improved

[54, 75, 90]. Moreover, combined treatment with sorafe-

nib and 2-DG, which is a HK2 inhibitor, can synergistic-

ally suppress the proliferation of sorafenib resistant HCC

cells by inhibiting ATP production [91].

The mechanisms by which aerobic glycolysis influ-

ences drug sensitivity in HCC can be concluded as: (1)

HK2 can enter the mitochondria and interact with

VDAC, inhibiting the release of cytochrome c and subse-

quent apoptosis, leading to the inhibition of cell death

[92]. (2) Some signaling pathways, such as the PI3K/

Akt/mTOR pathway, can activate HK2 and PKM2 in

cancer cells and promote their survival and drug resist-

ance [93]. (3) The pyruvate dehydrogenase (PDH), which

catalyze pyruvate into acetyl coenzyme A, can be inacti-

vated by PDH kinase and then promote the synthesis of

lactate. The decreased level of PDH has been reported to

be responsible for sorafenib-acquired resistance in HCC,

and this effect can be reversed by using a PDH kinase

inhibitor [94]. (4) PKM1 is also reported to promote aer-

obic glycolysis through autophagy and cause cancer che-

moresistance [95]. (5) HIF-1α and c-Myc also participate

in chemoresistance in HCC, as there is elevated expres-

sion of HIF-1α and c-Myc in HCC tissues, and these

have been found to target the multi-drug resistance

(MDR) gene MDR1 [96]. (6) Besides, the immunosup-

pression caused by acidification of the extracellular en-

vironment also contributes to drug resistance [97].

Regulatory mechanisms of aerobic glycolysis in
HCC
AMP-activated protein kinase (AMPK)

The AMPK is a highly conserved Ser/Thr kinase consist-

ing of catalytic α, regulatory β, and γ subunits, and acts

as a key energy status sensor and energy homeostasis

regulator, including glucose, protein and lipid metabol-

ism and autophagy [52]. During energetic stress, AMPK

inhibits the ATP consuming processes, such as lipid and

protein biosynthesis and cell proliferation, while promot-

ing the ATP conserving process, such as autophagy and
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glycolysis [98]. AMPK is usually activated by the serine/

threonine kinase liver-kinase-B1 (LKB1) with Thr172

phosphorylation during energy stress [99]. It has been

found that the phosphorylation of AMPK by non-

canonical upstream kinases can also affect AMPK activ-

ity. For example, the phosphorylation of Ser485 in

AMPKα1 and Ser491 in AMPKα2 by PKA, and phos-

phorylation of Ser491 in AMPKα2 by p70S6 kinase

(S6K) can suppress AMPK activity [100, 101].

AMPK plays important roles in the growth, prolifera-

tion, autophagy, angiogenesis, metastasis and invasion,

and stress response in HCC. For example, Fang et al. re-

ported that the activation of AMPK/mTOR pathway can

suppress the HCC malignant phenotype by inhibiting

glycolysis [102]; whereas loss of AMPK activation was

associated a poor prognosis in HCC patients [103]. Fau-

bert B et al. also reported that genetic ablation of

AMPKα1 can accelerate Myc-induced lymphomagenesis

and elevate the aerobic glycolysis level, which was

through the stabilization of HIF-1α [104, 105]. On the

contrary, emerging evidence suggested that AMPK can

protect cancer cells from metabolic stress to promote

tumor progression [106]. Furthermore, it has been found

that the activation of AMPK/mTOR pathway in HCC

cells was associated with bile acid induced invasion and

migration of HCC [107].

AMPK is a crucial link between metabolism and sig-

naling pathways. The mechanisms by which the activa-

tion of AMPK during energetic stress can regulate

glycolysis can be concluded as follows. Firstly, AMPK

can promote glucose uptake by enhancing the expression

of GLUT4 and GLUT1 in cell membrane through the

PI3K pathway (Fig. 3) [52, 108, 109]. Secondly, under hyp-

oxia status, AMPK can mediate the activation of PFK2

(PFKFB3) to enhance glycolysis in myocardia. By AMPK-

dependent phosphorylation of PFKFB3, the metabolic pat-

tern in tumor cells is switched from oxidative respiration

to glycolysis [110]. Thirdly, AMPK has been reported to

increase the expression levels of PFKFB3 [108].

AMPK also plays a vital role in autophagy to affect the

malignance of HCC. Conventionally, autophagy is acti-

vated by mitochondrial depolarization, nutrient starva-

tion, toxic proteins aggregation and infection, leading to

deregulation of biomacromolecules for energy supply

[111]. However, autophagy is constitutively activated in

HCC, and participates in tumorigenesis, metastasis, gly-

colysis, targeted therapy and drug resistance of HCC

through AMPK dependent or independent pathways

[112]. Recently, more and more studies have shown that

autophagy plays a dual role in HCC. In tumor cells, au-

tophagy protects the survival of tumor cells via the

following mechanisms: (1) promotion of metabolite

turnover and energy production; (2) inhibition of apop-

tosis and reactive oxygen species production; and (3) in-

ducing drug resistance [113]. Except for the tumor

promotion effect of autophagy, it has also been found

that autophagy also has a tumor suppressive effect dur-

ing the progress of liver cancer. These can be reflected

by Qu et al. that knockout of autophagy gene BECLIN1

could induce HCC tumorigenesis in mice [114].

Fig. 3 Regulatory mechanisms involved in aerobic glycolysis in HCC. Aerobic glycolysis can be regulated by various transcriptional factors, such as

HIF-1α and c-Myc, and many signaling pathways, such as AMPK and PI3K/Akt, as well as noncoding RNAs. The regulatory mechanisms include the

regulation of enzymes activity and the relative gene expression levels, and both mechanisms are tightly intertwined
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Typically, after the activation of AMPK, mTOR is fur-

ther inhibited, and then results in the inhibition of au-

tophagy process. Kim et al. reported that under glucose

starvation, AMPK promoted autophagy by directly acti-

vating ULK1 (an ATG1 homologue) through phosphor-

ylation of Ser 317 and Ser 777. And under nutrient

sufficiency, high mTOR activity prevents ULK1 activa-

tion by phosphorylating ULK1 Ser 757 and disrupting

the interaction between ULK1 and AMPK [115]. Besides,

phosphorylation of AMPK suppresses mTORC1 medi-

ated inactivation of Raptor or activation of TSC2 [111].

On the other hand, autophagy can be activated

through various AMPK independent pathway, such as

the PI3K/AKT/mTOR pathway, MAPK/ERK signaling

pathway, transcription factors including c-Myc and

p53 [116, 117].

Collectively, these findings provide a further prospect

that AMPK is a promising target in the treatment for

HCC.

PI3K/Akt pathway

The phosphoinositide 3-kinases (PI3Ks) signaling path-

way play important roles in both growth control and

glucose metabolism of cancer cells. The PI3Ks include

three major classes of lipid kinases, termed class I (in-

cluding Ia and Ib), class II, class III, and a distantly re-

lated Class IV [118]. Akt (also known as protein kinase

B) is a serine/threonine protein kinase directly activated

by PI3K [119]. The PI3K/Akt pathway regulates a broad

range of normal cellular processes. However, many stud-

ies have shown that this pathway is altered in cancer

cells and promotes the survival, proliferation, growth,

metabolism, angiogenesis and metastasis of cancer [120].

For example, in HCC, the PI3K/Akt pathway activation

promotes angiogenesis and EMT via exosomes and

microRNA-32-5p [121]. The PI3K/Akt pathway activa-

tion also accounts for sorafenib resistance and induces

multidrug resistance in HCC [122]. Using LY294002, a

PI3K inhibitor, sorafenib resistance can be reversed in

HCC [123].

The PI3K/Akt signaling pathway can regulate the gly-

colysis in HCC through the following mechanisms.

Firstly, activation of the PI3K/Akt signaling pathway can

induce the expression of GLUT1 and GLUT4 to increase

the glucose uptake rate in cancer cells (Fig. 3) [124, 125].

It has been reported that the PI3K/Akt pathway can also

promote the translocation of GLUT1 and GLLUT4 from

the cytoplasm to the cell membrane [126, 127]. Sec-

ondly, the PI3K/Akt pathway can regulate the activity or

the expression of some glycolytic enzymes, such as HK2,

PFK1 and PFK2. For example, activation of PI3K/Akt

pathway can promote the binding of HK2 to VDAC in

mitochondria and increase HK2 activity directly [128].

PI3K/Akt activation can also directly cause the

phosphorylation and activation of PFK2, leading to in-

creased production of F-2, 6-BP to further enhance

PFK1 activity [129]. Thirdly, PI3K/Akt can indirectly

regulate the expression of glycolytic enzymes by

interacting and regulating the expression of AMPK and

HIF-1α [14, 35]. Fourthly, PI3K/Akt also activates the

downstream regulator of the mammalian target of

rapamycin (mTOR) to further activate HIF-1α, so as to

promote aerobic glycolysis, angiogenesis and neo-

vascularization in cancer cells [18].

HIF-1α

As mentioned above, because of the rapid proliferation

and expansion of cancer cells, hypoxia is present in the

core of tumor tissues. In 1992, Semenza et al. first re-

ported the nuclear transcription factor induced by hyp-

oxia in Hep3B HCC cell line, which was termed as HIF-

1α and acted as an enhancer of erythropoietin (EPO)

gene [130]. HIF-1α can be stabilized by hypoxia and

then can bind to the hypoxia responsive elements (HRE)

of target genes’ promoters, resulting in the transcription

of related genes involved in overcoming hypoxic effects

[49]. HIF-1α plays a key role in the regulation of prolifera-

tion, glucose metabolism, angiogenesis, invasion and

metastasis, and multidrug resistance in cancer cells [9].

HIF-1α is commonly overexpressed in HCC patients, and

the higher expression levels of HIF-1α are correlated to

poor prognosis. It has been reported that HIF-1α can con-

trol the transcriptional expression of over 80 genes that

are involved in glucose metabolism, cell survival, angio-

genesis, invasion and metastasis [131, 132]. By inhibiting

or interfering with the expression of HIF-1α, it is effective

to inhibit the energy metabolism and growth of HCC.

As a key regulator of glycolytic metabolism in HCC,

HIF-1α activation also contributes to the regulation of the

Warburg effect, mostly at the transcriptional level as fol-

lows. Firstly, as a transcription factor, HIF-1α can promote

the transcription of GLUT-1, thereby enhancing the glu-

cose uptake for glycolysis [133]. Secondly, HIF-1α can

control the transcription of several glycolytic enzymes, in-

cluding HK2, PFK1, PKM2, LDHA and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). By upregulating the

expression of these genes, the glycolysis level is further en-

hanced [134]. Thirdly, HIF-1α can promote the expression

of pyruvate dehydrogenase kinase (PDK) to inhibits PDH

activity, leading to the conversion of pyruvate into lactate

[135]. Moreover, except for hypoxic stress, HIF-1α can

also be regulated by various signaling pathways, including

PI3K/Akt/mTOR, Raf/MAPK and AMPK, causing gly-

colysis levels to accelerate (Fig. 3) [136].

C-Myc

c-Myc is the most common oncogene involved in hu-

man carcinogenesis, and takes part in the regulation of
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cell cycle, cellular survival, proliferation and metabolic

reprogramming [137]. Genetic analyses have demon-

strated that c-Myc over-expression is seen in up to 70%

of viral and alcohol-related HCC [138]. Moreover, c-

Myc overexpression has been reported to cause liver tu-

mors generation in mice with enhanced glycolysis levels

[139]. Like HIF-1α, c-Myc is another vital oncogene in-

volved in the Warburg effect in HCC.

The oncogene c-Myc is known to positively regulate

the Warburg effect through the following mechanisms.

Firstly, as a key transcription factor, c-Myc was first

linked to glycolysis because it can transactivate and pro-

mote the expression of LDH just like HIF-1α [140]. Sec-

ondly, c-Myc can also promote the expression of

GLUT1, PKM2 and HK2 to promote the glycolysis flux

[135, 141]. When bound to the PKM2 promoter, c-Myc

can not only induce PKM2 expression, but also promote

the PKM2/PKM1 ratio to promote the survival of cancer

cells. Besides, the nuclear PKM2 can also act as a coacti-

vator of β-catenin to induce c-Myc expression in turn,

resulting in a positive feedback loop to promote the sus-

tained expression of glycolytic genes sustaining [142].

Thirdly, c-Myc can activate PDK1 in collaboration with

HIF-1α, causing increased lactate production and the

acidity of the extracellular environment [143]. Fourthly,

c-Myc has been suggested to mediate the elevation of

glutaminolysis in cancer cells by promoting both the

glutamine uptake and glutamine catabolism, thereby

maintaining the integrity in mitochondrial TCA cycle to

promote the survival of cancer cells [144]. In addition,

there is also close interaction between c-Myc and other

signaling pathways and transcription factors, such as

HIF-1α, β-catenin, JAK/STAT3 signaling pathway and

ERK signaling pathway (Fig. 3) [141, 143, 144].

Based on the critical role of c-Myc in HCC carcino-

genesis, it is obvious that c-Myc is another attractive tar-

get for the development of a novel therapy. Lin et al.

used a small molecule inhibitor of c-Myc, which was 10,

058-F4, to treat HCC cell lines, and the results showed

that this molecule could inhibit the proliferation and en-

hance chemosensitivity of HCC cells to low-dose doxo-

rubicin, 5-fluorouracil and cisplatin [145]. There is

another small molecule compound CX3543 (also called

Quarfloxin), which targets and inhibits Myc G-

quadruplexes, is currently in phase II clinical trials for

the treatment of neuroendocrine carcinomas [146].

Noncoding RNAs

Noncoding RNAs are groups of functional RNAs that

cannot be transcribed into proteins, but instead take part

in various biological processes to regulate gene tran-

scription and translation. Noncoding RNAs are respon-

sible for up to 98% of the whole genome’s transcripts,

and they includes microRNAs (miRNAs), long non-

coding RNAs (Lnc-RNAs), small interfering RNAs (siR-

NAs) and small nuclear RNAs (snRNAs) [147]. Noncod-

ing RNAs, especially miRNAs and Lnc-RNAs, have been

found to regulate the Warburg effect, and mainly

through the regulation of glycolytic enzymes expression

or glycolysis related pathways [35].

The three rate-limiting enzymes in the glycolysis path-

way can all be regulated by various noncoding RNAs

(Table 1). The miR-34a for example is downregulated in

metastatic HCC tissues, and has been reported to inhibit

HCC glycolysis by directly targeting HK1, HK2, and

glucose-6-phosphate isomerase (GPI) [153]. The miR-

199a-5p is also down-regulated in HCC tissues, and is

associated with the tumor size and prognosis of patient.

The miR-199a-5p can be inhibited by HIF-1α, leading to

the inhibition of HK2 expression and the disruption of

liver metabolism [157]. The miR-139-5p was found to

regulate HK1 and PFKFB3 expression to regulate gly-

colysis, proliferation, migration and invasion of HCC

[152]. Moreover, by directly targeting HK2, miR-125b

was found to downregulate glucose metabolism so as to

relieve 5-FU resistance in HCC cells [154]. Some Lnc-

RNAs, such as Lnc-TUG1, have also been demonstrated

to regulate HK2 expression through the TUG1/miR-

455-3p/AMPKb2 axis [156]. Furthermore, miR-520 can

inhibit the expression of PFK1 through Tat-activating

regulatory DNA-binding protein (TARDBP)-mediated

regulation of glycolysis in HCC [160]. PKM2 can also be

regulated by miRNAs and Lnc-RNAs, for example, miR-

122 is down-regulated in HCC tissues, therefore,

overexpression of miR-122 in HCC cells can inhibit the

expression of PKM2 to promote apoptosis and inhibit

migration and invasion of Hep3B cells [161]. The miR-

491–5p also functions as a tumor suppressor in HCC by

reducing PKM2 expression [164]. The miR-374b is also

involved in reducing the expression of PKM2 by

inhibiting the expression of hnRNPA1, which causes re-

sensitization of sorafenib HCC cells [165]. The Lnc-

RNA LINC01554 is often downregulated in HCC, and

it’s revealed that LINC01554 promotes the degradation

of PKM2 through Akt/mTOR signaling pathway [163].

Moreover, a circular RNA, circMAT2B can also increase

the expression levels of PKM2 through the regulation of

the miR-338-3p [162].

Other key proteins, such as GLUT1 and LDHA are

also regulated by noncoding RNAs in HCC, leading to

changes of glucose uptake and lactate production levels.

For example, miR-342-3p, miR-455-5p and miR-505 are

all down-regulated in HCC tissues, and they have been

reported to be able to decrease glycolysis by inhibiting

GLUT1 expression through insulin growth factor recep-

tor 1 (IGF-1R) or the PI3K/AKT pathway [148–150].

Whereas Lnc- HOTAIR was found to promote glycolysis

by upregulating GLUT1 expression through mTOR
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mediated pathway [151]. Furthermore, miR-142-3p

and miR-34a have been found to target LDHA to

suppress aerobic glycolysis and cell proliferation in

HCC [166–168].

Noncoding RNAs can also regulate glycolysis levels in

HCC by targeting various signaling pathways involved in

glycolysis. For example, HIF-1α, the key regulator in re-

sponse to hypoxia, can be directly regulated by miR-

199ab-5p and miR-3662 to inhibit the Warburg effect in

HCC [169, 170]. While the miR-125a and miR-7 can

suppress HCC progression by inhibiting the PI3K/Akt

pathway [171, 172]. The c-Myc is the target of miR-129-

5p and miR-23a [174, 178], and mTOR is the target of

lncRNA MALAT1 [177], and PPAR-γ is the target of

lncRNA Ftx [176]. Through the interaction with the

STAT3 pathway, miR-196a or miR-196b is able to sup-

press cell proliferation and glycolysis, and induced apop-

tosis in HCC cells [175].

Discussions and expectations
The metabolic shift from OXPHOS to aerobic glycolysis

is not only a hallmark of HCC, but also provides many

potential targets for exploitation in in HCC therapy.

After an appreciation of the important roles of aerobic

glycolysis in HCC, an understanding of the regulatory

mechanisms involved will enable researchers the oppor-

tunity to develop novel therapeutic methods. These may

include: (1) targeting the three rate-limiting enzymes in

glycolysis to inhibit the aerobic glycolysis process dir-

ectly. (2) Targeting the GLUTs or LDHA to inhibit the

glucose uptake or lactate levels. (3) Targeting the regula-

tory factors and signaling pathways involved in glycolysis

to regulate glycolysis indirectly. Moreover, sorafenib as a

target drug for HCC, was found to induce drug re-

sistance which includes the participance of enhanced

glycolysis. If combined with glycolysis targeting drugs,

such as 2-DG, the anti-cancer effect of sorafenib may

Table 1 Noncoding RNAs and their targets in aerobic glycolysis in HCC

Target ncRNA In vivo or in vitro Involvement of other factors Reference

GLUT miR-342-3p both PI3K/AKT [148]

miR-505 both IGF-1R [149]

miR-455-5p both IGF-1R/AKT [150]

lncRNA HOTAIR both mTOR [151]

HK2、HK1 miR-139-5p both ETS1 [152]

miR-34a in vitro p53 [153]

miR-125b both – [154, 155]

Lnc-TUG1 in vitro TUG1/miR-455-3p/AMPKβ2 [156]

miR-199a-5p both PKM2 [157, 158]

miR-885-5p both HIF-1α [159]

PFK1、PFKFB3 miR-139-5p both ETS1 [152]

miR-520 both TARDBP [160]

PKM2 miR-122 both – [161]

circMAT2B both miR-338-3p [162]

lncRNA LINC01554 both Akt/mTOR [163]

miR-491–5p both – [164]

MiR-374b in vitro hnRNPA1 [165]

LDHA miR-142-3p both – [166]

miR-34a both – [167, 168]

HIF-1A miR-199a-5p both – [169]

miR-3662 both ERK/JNK [170]

PI3K/Akt/mTOR miR-125a in vitro – [171]

miR-7 both – [172]

c-myc/STAT3 miR-23a in vitro PEPCK [173]

miR-129-5p both PDK4 [174]

JAK/STAT miR-196a /b both SOCS2 [175]

PPARγ lncRNA Ftx both – [176]

mTOR/TCF7L2 lncRNA MALAT1 in vitro mTOR [177]
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be enhanced, and sorafenib resistance can also be re-

versed [91].

Therapeutic agents that target glycolysis

Currently, there are some widely-used agents that can

target on HK2, PFK1 or PKM2 to inhibit glycolysis. For

example, 2-DG is an analog of glucose, and it can be

catalyzed by HK2 into 2-deoxy-D-glucose-6-phosphate

(2-DG-6P), which is different from G-6-P and can non-

competitively inhibit the activity of HK2 [5, 35]. When

2-DG was given alone in HCC, it was reported to

suppress the growth, metastasis and invasion of HCC

cells, and the combination treatment of 2-DG and other

chemotherapy drugs, such as sorafenib, 2-

aminophenoxazine-3-one (Phx-3), and metformin, can

also enhance the anticancer effect of them on HCC

[179–181]. The 3-bromopyruvate (3-BP) is a different

type of HK2 inhibitor with the ability to inhibit HK2 ac-

tivity directly, so as to strongly suppress the glycolysis

process. Many in vitro and in vivo studies have verified

the anti-HCC effects of 3-BP, and recently it has been

approved by the FDA to treat HCC and intrahepatic

cholangiocarcinoma [182]. The 3-(3-pyridinyl)-1-(4-pyri-

dinyl)-2-propen-1-one (3-PO) is a selective PFKFB3 in-

hibitor and has been found to inhibit the growth and

glycolysis of lung cancer and breast cancer both in vivo

and in vitro [183]. Moreover, there are also some effect-

ive inhibitors of PKM2, such as TT-232(CAP-232) and

shikonin, that can inhibit the growth and induce apop-

tosis of cancer cells [184–186].

However, although some of these drugs targeting gly-

colysis are currently undergoing phase I or II clinical tri-

als, their clinical application is far from secure. Besides,

the design of metabolic targeted therapeutic strategies

should also evaluate the tumor heterogeneity and inter-

action with the micro-environment carefully, giving rise

to the difficulties in development of effective drugs.

Therefore, the exploration of new agents, especially trad-

itional Chinese medicine monomers, such as genistein,

15d-PGJ2, quercetin, and oleanolic acid, to test for anti-

glycolysis effects are urgently needed with the help of

proteomics and metabolomics analyses and genome-

scale metabolic models [26, 187–190].

Anti-VEGFR or anti-PD-1/PD-L1 agents

As mentioned above, the inducing of sorafenib resist-

ance in HCC treatment is correlated with the enhanced

aerobic glycolysis levels, which limits the application and

availability of sorafenib. Therefore, recently, there are

some other agents, which are also receptor tyrosine kin-

ase (RTK) inhibitors as sorafenib that can inhibit VEGFR

activities and angiogenesis of HCC, having been used in

several phase III trials as first-line or second-line chemo-

therapy for HCC to determine whether these agents are

superior to sorafenib. For example, lenvatinib has been

tested as first line treatment in the REFLECT trial, and

was shown to be non-inferior to sorafenib (overall sur-

vival) [191]. While regorafenib, cabozantinib, and ramu-

cirumab were shown to be superior to placebo in HCC

patients failing sorafenib treatment [192, 193]. A phase

II trial that combined bevacizumab (VEGFR inhibitor)

and erlotinib (EGFR inhibitor) was also designed to

compare the effect as first-line treatment for advanced

HCC patients to sorafenib alone, and the results showed

that there was no difference in efficacy between the bev-

acizumab + erlotinib group and sorafenib alone, while

bevacizumab + erlotinib showed a better safety and tol-

erability [194]. Therefore, these anti-VEGFR agents are

considered as “preferred regimens” as first line treatment

for advanced HCC [195].

The programmed death-1 (PD-1) is a famous immune

checkpoint, which can be activated by its ligands, such

as PD-L1, leading to the suppression of immune re-

sponse. During carcinogenesis, cancer cells take advan-

tage of the PD-L1/PD-1 system to evade immune

supervision. It has been reported that compared with

PD-L1-negative HCC patients, PD-L1-positive HCC pa-

tients showed significantly worse overall survival [196].

Blocking PD-1 or PD-L1 has become a therapeutic

method for HCC treatment, such as atezolizumab,

pembrolizumab and nivolumab. Most recently, Finn and

his colleagues conducted a phase III IMbrave150 trial,

which compared the combination of bevacizumab and

atezolizumab (targeting programmed cell death ligand 1,

PD-L1) against standard sorafenib treatment in first line

treatment for advanced HCC. The current results

showed that the combination can increase the

progression-free survival and overall survival than pa-

tients who received sorafenib alone [197–199]. There-

fore, the NCCN guideline (2020) also included the

combination of bevacizumab and atezolizumab as an-

other first-line standard treatment for unresectable HCC

just as sorafenib.

Role of androgen receptors and induction of glycolysis in

HCC

HCC is a considered as a male-dominant cancer. Zhang

et al. reported in 2018 that androgen receptor (AR) was

overexpressed in the nucleus of 37% of HCC tumors,

which may be correlated to the advanced disease stage

and poor survival of HCC patients [200]. The role of AR

expression in HCC has been investigated by many re-

searchers. Wang et al. found that AR can promote HBV

viral RNA expression, which favors HBV-driven hepato-

carcinogenesis [201]. Ma et al. found that AR knockout

reduced liver tumors number and burden in mice, sug-

gesting that AR is necessary for full cancer development.

The activation of AR may lead to the activation of
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androgen response elements, and then the transcription

of target genes, including Src, EGFR, ERK, HIF-1α, and

CREB [202].

AR has also been found to induce glycolysis in HCC.

Sun et al. found that AR expression is positively corre-

lated with HK2 levels, and then promoted HCC growth

by enhancing HK2-mediated glycolysis through the

regulation of PKA/CREB [203]. Moreover, Zhang et al.

demonstrated that AR can crosstalk with mTOR, which

may also help the activation of glycolysis through mTOR

mediated pathway [200].

Antiandrogen and anti-AR agents, such as bicaluta-

mide and enzalutamide, are therefore considered as

therapeutic methods for HCC treatment as well.

Unfortunately, early clinical trials on anti-androgen and

bicalutamide therapies in liver cancer met with disap-

pointing results, producing no apparent clinical benefits

[204, 205]. But, the combination of anti-AR and other

chemotherapy agents, such as sorafenib, may be a new

approach for HCC treatment. For example, Xiao et al.

reported that found that AR can re-sensitize HCC to so-

rafenib through AR/miR-520f-3p/SOX9 signaling [206].

Jiang et al. observed that sorafenib-induced apoptosis

can be enhanced by AR inhibition in HCC cell lines

[207]. Wang et al. also reported that sorafenib inhibited

AR activation induced by HBx [208]. Taken together,

based on the role of AR on HCC growth and glycolysis,

AR is still a promising target for HCC treatment.

Effects of fasting on glycolysis regulating genes and

apoptosis

Recently years, fasting/starvation (16–60 h) has also been

tested in some clinical trials for cancer treatment

because it has been found that fasting can reduce the

side effects associated to high dose chemotherapy in

various cancer patients, and protect normal cells from

injuries (NCT01304251, NCT01175837, NCT00936364,

NCT01175837) [209]. However, the molecular mecha-

nisms how fasting suppresses cancer cells remain

unknown.

Liver is the primary organ for glucose metabolism.

During fasting, approximately 80% of endogenous glu-

cose is produced through gluconeogenesis, which is ac-

tually a reverse pathway of glycolysis, to adapt to stress

conditions [210]. Valentina Sukonina et al. found that

16 h of fasting could induce the elevation of glycolysis in

mice, with enhanced glucose uptake levels and impaired

OXPHOS, mainly through FOXK1 and FOXK2 medi-

ated glycolytic gene expression, including HK2, PFKM,

PKM2 and LDHA [211]. However, in cancer cells, which

are highly depended on glucose for energy supply, the

situation is totally opposite. It has been reported that

deprivation of glucose (fasting) impairs glycolysis and

the pentose phosphate pathway, induces oxidative stress

because of enhanced production of reactive oxygen spe-

cies (ROS), resulting in the redox imbalance and then

cancer cell death [106]. Moreover, Bianchi et al. reported

that fasting could induce anti-Warburg effect in colon

cancer models, including the downregulation of HK2,

PFK, PKM2, and LDH expression. Moreover, they also

found that because of the increase in mitochondrial res-

piration, fasting can also promote apoptosis in colon

cancer cell [212]. Grasl-Kraupp have also reported in

1994 that fasting could eliminate preneoplastic cells

through apoptosis, thereby inhibiting the carcinogenesis

in rat liver [213]. The mechanisms how fasting induces

apoptosis in HCC cells may include: (1) fasting improves

OXPHOS in mitochondria, which then enhances the

electron transport chain function and the production of

ROS, leading to the induction of apoptosis [212]. (2)

Fasting induces inducible nitric oxide synthase and

interferon-γ production, so as to increase ROS produc-

tion and induce apoptosis [214].

In conclusion, owing to the functional role of fasting

on HCC glycolysis and apoptosis, fasting is also a poten-

tial therapeutic approach for HCC treatment, and we

can pay more attention to it.

Role of EMT in HCC

As mentioned above, EMT is responsible for sorafenib

resistance, as well as HCC angiogenesis and metastasis.

EMT of cancer cells indicates that epithelial cells lose

their cell-cell adhesions and apicobasal polarity, and ac-

quire more mesenchymal and invasive/metastatic pheno-

type [215]. EMT also plays important role in the aerobic

process in HCC. Zhang et al. found that the depletion of

mitochondrial fusion protein mitofusin-1 (MFN1) trig-

gered the EMT of HCC and modulated HCC metastasis

by metabolic shift from aerobic glycolysis to oxidative

phosphorylation [216]. EMT also contributes to the in-

creased population of cancer stem-like cells (CSCs) asso-

ciated with Wnt/β-catenin activation, and can lead to

tumor heterogeneity and therapeutic resistance [217]. In

liver tissues, hepatocytes generally harbor the rapid

cellular proliferation under both normal and inflam-

matory conditions. It still remains unknown whether

the origin of HCC is from the CSCs or differentiated

hepatocytes [215].

The hepatic stellate cells (HSCs) are kinds of mesen-

chymal cells in liver tissues, and can transdifferentiate

into myofibroblasts in response to stimulus. Duran et al.

reported that p62/SQSTM1, which can interact with the

components of the mTORC1 complex during autophagy

process, can negatively control HSCs activation through

binding to the vitamin D receptor (VDR) [218]. Through

acting as carcinoma-associated fibroblasts (CAFs), HSCs

undergo EMT both in liver fibrosis, cirrhosis and HCC,

leading to the tumor formation and development [219].
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Taken together, the EMT process and the myofibroblasts

in liver tissues are another therapeutic target for HCC

treatment.

Conclusions
In conclusion, the aerobic glycolysis plays important

roles in the progression of HCC, including proliferation,

immune evasion, invasion and metastasis, angiogenesis,

and drug resistance. Via targeting key factors included in

aerobic glycolysis, such as the inhibition of enzymes

HK2, PFK or PKM2, and the regulatory pathways. Rep-

resent potential new therapeutic approaches for the

treatment of HCC.
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