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Emerging roles for lipids in non-apoptotic cell death
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Non-apoptotic regulated cell death (RCD) is essential to maintain organismal homeostasis and may be aberrantly activated during

certain pathological states. Lipids are emerging as key components of several non-apoptotic RCD pathways. For example, a direct

interaction between membrane phospholipids and the pore-forming protein mixed lineage kinase domain-like (MLKL) is needed for

the execution of necroptosis, while the oxidative destruction of membrane polyunsaturated fatty acids (PUFAs), following the

inactivation of glutathione peroxidase 4 (GPX4), is a requisite gateway to ferroptosis. Here, we review the roles of lipids in the

initiation and execution of these and other forms of non-apoptotic cell death. We also consider new technologies that are allowing

for the roles of lipids and lipid metabolism in RCD to be probed in increasingly sophisticated ways. In certain cases, this new

knowledge may enable the development of therapies that target lipids and lipid metabolic processes to enhance or suppress

specific non-apoptotic RCD pathways.
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Facts

� Emerging evidence suggests important roles for lipids and

lipid metabolism in several non-apoptotic cell death

pathways.

� Non-apoptotic cell death can be triggered by specific

fatty acids.

� Specific lipids in the plasmamembrane are essential for the

execution of non-apoptotic cell death.

� Depletion of specific lipids is required for at least one form of

non-apoptotic RCD.

Open Questions

� What molecular mechanisms link the accumulation of

specific lipids to the induction of non-apoptotic RCD?

� Do lipids or the disruption of lipid metabolic pathways

trigger non-apoptotic RCD pathways in unusual ways, or

perhaps cause new types of non-apoptotic RCD?

� Can diseases of lipid metabolism teach us anything about

how lipids trigger or mediate non-apoptotic cell death?

� Can we specifically target lipid-dependent aspects of non-

apoptotic RCD to treat disease?

Regulated cell death (RCD) is crucial for development and the

maintenance of homeostasis.1,2 In addition to apoptosis, in

recent years many non-apoptotic RCD pathways have been

described, including necroptosis, pyroptosis, parthanatos,

ferroptosis and several others.2–7 These pathways are known

or thought to contribute to cell death following viral infection,

bacterial infection, neurodegeneration, ischemia-reperfusion

injury to various tissues and other pathological processes, and

therefore present new targets for therapeutic intervention.8,9

Understanding the regulation of non-apoptotic RCD pathways

is therefore of great biomedical interest.

Lipids and lipid metabolism are emerging as key regulators

of cell survival,10 proliferation,11 stress responses,12 and as

described in this review, cell death. Six categories of lipids,

each with distinguishing structural features, are normally

present in mammalian cells: fatty acids (FAs), sphingolipids,

glycerolipids, glycerophospholipids, prenol lipids, and sterol

lipids (Figure 1a).13 Each category of lipids encompasses

diverse molecular species. For example, glycerophospholi-

pids, a major constituent of biological membranes, can be

subdivided into those containing choline (phosphatidylcholine,

PC), inositol (phosphatidylinositol, PI), serine (phosphatidyl-

serine, PS), and other head groups, some of which can be
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further modified (e.g., phosphorylation of PI to generate

phosphatidylinositol phosphates (PIPs))(Figure 1b). Further-

more, each glycerophospholipid can contain esterified FAs

with different chain lengths and degrees of unsaturation

(corresponding to the number of double bonds in the FA

chain), ultimately generating incredible structural diversity

(Figure 1b). Indeed, it is likely that several thousand

structurally distinct lipid species exist in mammalian cells

(see lipidmaps.org).13,14 Together, these lipids have many

roles in RCD, as triggers of cell death, as essential

components needed for the operation of multi-step RCD

pathways, and ultimately, as components of lipid membranes

that are physically disrupted (i.e., breached) in various ways

during cell death.

The roles of lipids in apoptotic cell death have been studied

for some time, and provide a framework for understanding the

various roles that lipids can play in non-apoptotic RCD. First,

lipids can serve as a signal to initiate apoptosis or transduce

an apoptotic signal. Thus, treatment of cells with the saturated

fatty acid (SFA) palmitate (16 : 0, annotations herein refer to

the number of carbon atoms and points of unsaturation)

can trigger apoptosis by causing endoplasmic reticulum

(ER) stress,15 while ceramide (a sphingolipid; Figure 1a)

accumulates in cancer cells exposed to pro-apoptotic signals

(e.g., ultraviolet irradiation, the small molecule staurosporine)

and has an enigmatic role in transducing this signal,

perhaps by damaging intracellular membranes or the plasma

membrane.16–18 Second, lipids have important accessory

roles in the execution of apoptosis. For example, in the intrinsic

apoptosis pathway, oligomerization of the pore-forming BH3

family members BCL2-associated X protein (BAX) and BCL2-

antagonist/killer 1 (BAK) on the mitochondrial outer

Figure 1 Overview of lipids and lipid diversity. (a) Six categories of lipids important for mammalian cell function (see also lipidmaps.org for more information). (b) An example
of structural diversity in the glycerophospholipid class. Glycerophospholipids can be esterified at two positions (R1 and R2, respectively) with distinct FAs. SFAs and MUFAs can be
synthesized de novo or taken up from the environment. PUFAs are taken up from the environment or synthesized from essential PUFA precursors like linoleic acid (LA, 18:2n-6).
The head group conjugated to the phosphate can be one of the several molecules (ethan.: ethanolamine). Inositol can be further modified by phosphorylation, generating
additional diversity. The example molecule shows a PC conjugated to an SFA, stearic acid (R1= 18:0), and a PUFA, arachidonic acid (R2= 20:4n-6)
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membrane requires the lipids sphingosine-1-phosphate and

hexadecenal as specific cofactors.19 Furthermore, down-

stream of BAX and BAK insertion into the mitochondrial outer

membrane, oxidization of PUFA-rich mitochondrial cardioli-

pins (a class of glycerophospholipids synthesized in the

mitochondrion) on the outer leaflet of the mitochondrial inner

membrane promotes the release of cytochrome C and other

key apoptotic effectors from the mitochondria into the

cytosol.20,21 Third, lipid-containingmembranes are key targets

for modification and destruction during apoptosis. As noted

above, mitochondrial outer membrane permeabilization is an

essential step during the intrinsic apoptotic cascade,22 while

caspase-mediated cleavage of lipid flippases and scram-

blases at the plasma membrane leads to enrichment of PS on

the outer leaflet of the plasmamembrane, a signal essential for

the recognition and phagocytosis of apoptotic cells.23–27

These examples highlight the multitude of important roles

played by lipids and lipid metabolism in apoptotic RCD.

What roles do lipids play in non-apoptotic RCD? Recent

studies suggest important roles for lipids and lipid metabolism

in both triggering and executing non-apoptotic RCD. These

roles are distinct from those observed during apoptosis but

involve similar themes, including a role for certain lipids as

triggers of cell death and the centrality of membrane lipid

damage to the final lethal process. In this review, we highlight a

selection of these emerging links between lipids and non-

apoptotic RCD in mammalian cells. We also highlight several

areas where our knowledge of the connection between lipids

and non-apoptotic RCD iswanting andwhere new technologies

may be useful in studying the roles of lipids in RCD.

Triggering of non-apoptotic cell death by FAs

FAs are simple lipids composed of elongated hydrocarbon

chains with a terminal carboxylic acid (Figure 1a). FAs can be

synthesized de novo (conjugated to coenzyme A (CoA) as an

acyl-CoA), liberated from existing lipids, such as glycerolipids

and glycerophospholipids, by lipases (e.g., phospholipases),

or taken up by the cell from extracellular sources. In de novo

FA synthesis, the rate-limiting step is the conversion of acetyl-

CoA to malonyl-CoA, the essential unit of FA elongation, by

acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2). Fatty

acid synthase (FASN) utilizes malonyl-CoA, acetyl-CoA, and

NADPH to synthesize the saturated acyl-CoA palmitoyl-CoA

(16 : 0). Palmitoyl-CoA can be further elongated by ER-

resident enzymes and desaturated by stearoyl-CoA desa-

turases (SCDs), for example converting stearoyl-CoA (18 : 0)

to oleoyl-CoA (18:1n-9, where n-x refers to the position of the

first carbon-carbon double bond counting from the methyl end

of the carbon chain). Acyl-CoAs can then be incorporated into

existing lipids by a large family of acyl transferase enzymes.

Acyl-CoAs can also be catabolized in mitochondria and

peroxisomes through β-oxidation. Mitochondrial β-oxidation

requires carnitine palmitoyltransferase 1 (CPT1)-mediated

fatty acyl-CoA uptake into the mitochondria. Subsequent

catabolism produces acetyl-CoA, FADH2, and NADH, which

can fuel the tricarboxylic acid cycle and ATP synthesis.

Inhibition of de novo FA synthesis and catabolism is thought to

trigger apoptosis, at least in cancer cells, where this has been

studied most extensively.28 Roles for these processes in non-

apoptotic RCD are also now emerging.

Oleic acid as a trigger for cell death in mammary

epithelial cells. An intriguing connection is emerging

between the monounsaturated fatty acid (MUFA) oleic acid

(OA), lysosomal membrane permeability (LMP) and non-

apoptotic RCD (Figure 2a). Lysosomes are intracellular

organelles with an enigmatic connection to cell death, being

linked to both apoptotic and non-apoptotic cell death in

different cells and contexts.29,30 However, following preg-

nancy and weaning, a lysosome-mediated, non-apoptotic

pathway is activated to return the milk-producing mammary

epithelium to its pre-pregnancy state (i.e., post-lactational

regression, also called involution).31,32 The transcription

factor Stat3 is a key regulator of involution that promotes

the physical expansion of the lysosome, upregulation of

the lysosomal-resident protease cathepsins B and L, and

downregulation of serine protease inhibitor 2a (Spi2a), an

endogenous serpin-family cathepsin inhibitor. Stat3 also

controls a switch from a secretory state (during lactation) to

a phagocytic state (during involution). In the phagocytic state,

mammary cells phagocytize milk fat globules (MFGs) that

contain high levels of OA-containing triacylglycerides. OA

liberated from triacylglycerides in the lysosome triggers

permeabilization of lysosomes and leakage of intralysosomal

Figure 2 Lipids as triggers of non-apoptotic cell death. (a) During the process of
post-lactational regression, mammary epithelial cells take up MFGs, a type of storage
lipid. MFGs containing OA (18:1n-9) can damage lysosomal membranes, leading to
the release of cathepsins and induction of non-apoptotic cell death. It is unclear
whether lysosomal damage is triggered by OA conjugated to the glycerol backbone or
OA liberated from the glycerol backbone by a lysosomal lipase. Stat3 promotes this
process in several ways, including enhancing the size (and potentially the sensitivity
to damage) of the lysosomal membrane, upregulating the expression of cathepsins,
and inhibiting the expression of the cathepsin inhibitor Spi2a. (b) In macrophages,
LPS together with palmitate triggers lysosomal damage and non-apoptotic cell death.
(c) A synthetic small molecule, CIL56, can trigger caspase-independent cell death
that is suppressed by deleting ACACA, which encodes ACC1, or inhibiting ACC
activity using TOFA. The lethal mechanism is unclear, but may involve the
accumulation of malonyl-CoA and inhibition of mitochondrial β-oxidation, leading to
the simultaneous accumulation of multiple FAs to toxic levels and/or depletion of the
products of β-oxidation (NADH, FADH2, ATP)
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cathepsins B and L into the cytosol where they initiate

caspase-independent cell death. How OA released from

MFGs triggers lysosomal cathepsin leakage is not clear, but

insertion of the OA chain, which is ‘kinked’ by a single point of

unsaturation, into the lysosomal membrane may physically

disrupt its integrity and help to open pores through which

cathepsins can exit. How cathepsin release causes non-

apoptotic cell death remains to be characterized.

Palmitate as a trigger for cell death in macrophages. A

different interaction between lipids and the lysosome can

trigger non-apoptotic RCD in macrophages. When these cells

are exposed to palmitate in combination with lipopolysac-

charide (LPS, a lipid-modified sugar found on the surface of

Gram-negative bacteria), cells undergo an unusual form of

non-apoptotic cell death that is not blocked by broad-

spectrum caspase inhibitors or the necroptosis inhibitor

necrostatin-1 (Nec-1; Figure 2b).33,34 This pathway requires

the LPS receptor Toll-like receptor 4 (TLR4) and the down-

stream component TIR-domain-containing adapter-inducing

interferon-β (TRIF), which primes lysosomes in an unknown

way for palmitate-induced damage and cathepsin release. In

the absence of LPS treatment, palmitate causes only minimal

levels of cell death in these cells, and the link between

palmitate, the TLR4-TRIF pathway, lysosomes, and cell death

is obscure. It is known that palmitate, in complex with BAX,

can induce LMP;35 it is therefore possible that TLR4-TRIF

signaling could enhance BAX expression or deplete the cell

of an endogenous BAX inhibitor, allowing a palmitate–BAX

complex to cause lysosomal damage.

Generalized FA accumulation as a trigger for non-

apoptotic cell death. Recently, an unusual example of

how lipid accumulation can trigger non-apoptotic RCD has

emerged from the study of a synthetic small molecule named

CIL56 (Figure 2c). Treatment of human HT-1080 fibrosar-

coma cells with CIL56 causes the accumulation of numerous

SFAs, MUFAs, and PUFAs, and results in caspase-

independent RCD.36 Genetic screening identified ACACA

(encoding ACC1) as a gene essential for CIL56-induced

cell death.36 Moreover, a small molecule ACC inhibitor,

5-(tetradecyloxy)-2-furoic acid (TOFA), prevents both CIL56-

induced cell death and the observed changes in SFA, MUFA,

and PUFA levels within the cell.36 One model is that CIL56

stimulates ACC activity, leading to the accumulation of

malonyl-CoA. Malonyl-CoA is an endogenous negative

regulator of CPT128 and inhibition of CPT1-dependent

mitochondrial FA β-oxidation activity could account for the

accumulation of multiple FA species in CIL56-treated cells.

The accumulation of one or more FAs may be directly toxic

itself, through direct effects on membrane-enclosed orga-

nelles or the plasma membrane. Alternatively or in parallel,

the inhibition of mitochondrial β-oxidation may lead to the

depletion of metabolites needed for cell survival (e.g., ATP).37

Although the precise target and mechanism of action of this

lethal compound remains to be resolved, these results

suggest that small molecule-mediated perturbations of FA

metabolism can cause non-apoptotic RCD.

Essential roles for lipids in the execution of

non-apoptotic cell death

The examples presented above suggest that FAs can in some

contexts trigger non-apoptotic RCD. In this section, we

consider examples where lipids are required for the execution

of non-apoptotic RCD by acting as signaling molecules,

modulators of lethal pathways, or essential nodes in the lethal

pathways themselves.

Necroptosis. Necroptosis is a non-apoptotic form of RCD

that is implicated in homeostatic and pathological cell death

in the immune system, brain, and other tissues.38 Necropto-

sis can be induced by cytokines such as tumor necrosis

factor-alpha (TNF-α). In the presence of caspase inhibitors,

TNF-α induces the formation of a multiprotein complex, called

the necrosome, that promotes necroptosis.4 In this pathway,

receptor-interacting serine/threonine-protein kinases 1 and 3

(RIPK1 and RIPK3) heterodimerize, leading to the recruit-

ment of MLKL and its subsequent phosphorylation on T387

and S358 (in the human protein) by RIPK3.39 Once

phosphorylated, MLKL translocates to the plasma membrane

(as well as intracellular membranes), oligomerizes, and

causes cell death (Figure 3a).40–43 Lipids are essential for

this terminal process: charged amino acids in the N-terminal

coiled-coil domain/4-helical bundle of phosphorylated

MLKL bind specifically to membrane PIPs (Figure 1b).41–43

Based on studies performed using liposomes, MLKL oligo-

merization at the membrane is necessary and sufficient to

cause membrane leakage, suggesting that in vivo

MLKL oligomers may form a pore in the plasma membrane

to cause the release of intracellular contents, loss of ionic

homeostasis, and cellular rupture.41 PIPs, including PI(5)P

and PI(4,5)P2, are required for MLKL membrane targeting, as

liposomes containing only PIs, but not PIPs, do not exhibit

MLKL-dependent leakage.41 Interestingly, specific MLKL

mutants can be used to dissociate membrane binding from

membrane permeabilization, suggesting that these pro-

cesses are independent.43 Imaging studies in human cells

reveal phosphorylated MLKL in discrete puncta, possibly

indicating that membrane permeabilization is initiated at

specific sites on the plasma membrane.41 Small molecule

inhibitors that putatively block the formation of PI(5)P by

phosphoinositide kinase, FYVE finger containing (PIKfyve)

protein, or the formation of PI(4,5)P2 from PI(3,4,5)P3 by

phosphatase and tensin homolog (PTEN), partially suppress

and delay TNF-α-induced necroptosis in mouse L929 cells,42

indicating that PI(5)P and PI(4,5)P2 may be the most potent

MLKL-binding lipids. These results highlight lipid composition

and phosphorylation status of specific membrane glycero-

phospholipids as key mediators of necroptosis.

Pyroptosis. Pyroptosis is a highly inflammatory form of non-

apoptotic RCD triggered in immune cells in response to

various pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs), includ-

ing bacterial proteins, cholesterol crystals, silica, asbestos,

and extracellular ATP.44 PAMPs and DAMPs trigger the

formation of multiprotein ‘inflammasome’ complexes that

activate caspase-1 or caspase-4/5 (caspase-11 in mouse),45

Emerging roles for lipids in non-apoptotic cell death
L Magtanong et al

1102

Cell Death and Differentiation



which in turn can promote the formation of membrane pores,

loss of ionic balance, cell rupture, and release of intracellular

contents, including inflammatory cytokines such as

interleukin-1β.46 Gasdermin D was recently identified as a

caspase-1/4/5/11 substrate that is essential for pyropto-

sis.47,48 The cleaved N-terminal domain of gasdermin D is

sufficient to trigger death, and one possibility is that this

fragment acts at the membrane in a manner analogous to

MLKL in necroptosis to form a membrane pore itself or to

cause the oligomerization of other pore-forming proteins. If so,

one prediction is that the interaction of the N-terminal

gasdermin D domain with membrane lipids would be essential

for membrane permeation.

Although a role for lipids in the execution of pyroptosis

remains speculative, stronger evidence exists to suggest a

role for specific lipids as modulators of this process. For

example, in mouse macrophages primed to undergo pyrop-

tosis, inhibition of FASN-mediated de novo FA synthesis using

the small molecule inhibitors cerulenin and C75 attenuates the

assembly of the nucleotide-binding oligomerization domain

(NOD)-like receptor 3 (NLRP3) inflammasome and caspase-1

activation.49 Conversely, exposure to exogenous palmitate

can enhance NLRP3-dependent caspase-1 activation.50

Mechanistically, palmitate may promote inflammasome

assembly and caspase-1 activation indirectly, by serving as

a substrate for CPT1-dependent mitochondrial β-oxidation,

a process that leads to enhanced reactive oxygen species

(ROS) production (a known inducer of inflammasomes).50,51 If

this mechanism is important, then any change in intracellular

FA metabolism that enhances β-oxidation may serve to

promote inflammasome activation and cell death, while

conditions that suppress FA production or catabolism would

inhibit this mechanism.

Ferroptosis. Ferroptosis is an iron-dependent, oxidative

form of non-apoptotic RCD that has been implicated in

pathological cell death in brain, kidney, and heart

tissues.6,52–56 Ferroptosis can be triggered by the depletion

of intracellular glutathione or inhibition of the essential

glutathione (GSH)-dependent lipid hydroperoxide detoxifying

enzyme GPX4.57 Normally, GSH-dependent GPX4 activity

reduces potentially toxic lipid peroxides (L-OOH) to non-toxic

lipid alcohols (L-OH). The current working model is that once

GPX4 is inactivated, L-OOHs accumulate and interact with

iron, resulting in iron-catalyzed formation of lipid radicals

(L-O•) that are lethal to the cell (Figure 3b).52,57 Indeed,

depletion of GSH or direct inhibition of GPX4 results

in the iron-dependent accumulation of ROS, accumulation

Figure 3 Role for lipids as executioners of non-apoptotic cell death. (a) Necroptosis involves the activation of RIPK1, which phosphorylates RIPK3 (denoted by the circled P),
which then in turn phosphorylates MLKL. MLKL interacts with specific PIPs on lipid bilayers within the cell, including PI(5)P and PI(4,5)P2. The formation of PIPs from PIs requires
various PI kinases such as PIKfyve. Phosphorylated MLKL undergoes a confirmational change that allows it to bind PIPs on the plasma membrane and, presumably, form a lethal
membrane pore. The stoichiomety of the pore-forming MLKL oligomer is debated. (b) Ferroptosis requires membrane-resident PUFAs, depicted as pink chains, such as
arachidonic acid (AA, 20:4n-6). For death to proceed, PUFAs must be acylated by acyl-CoA synthetase long-chain family member 4 (ACSL4) and inserted into lysophospholipids
by lysophosphatidylcholine acyltransferase 3 (LPCAT3). Ferroptosis involves oxidation (orange dots) of membrane PUFAs. It is thought that this leads to fragmentation of these
oxidized species, generating toxic aldehydes like 4-hydroxynonenal (4-HNE). Cell death is due to physical destruction of the membrane. Death can be prevented by synthetic or
natural lipophilic antioxidants such as ferrostatin-1 (Fer-1) or vitamin E (Vit. E), respectively.
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of lysophospholipids (i.e., glycerophophospholipids lacking

one fatty acyl chain), and depletion of several PUFAs such as

arachidonic acid (AA, 20:4n-6).52,54,57 The accumulation of

lysophospholipids and the depletion of specific PUFAs

suggest that specific oxidized PUFAs are cleaved from the

glycerophospholipid backbones (e.g., possibly by phospho-

lipase A254) and subsequently degraded or destroyed.

Strikingly, deletion of ACSL4 or LPCAT3, which encode

enzymes required for the reacylation of membrane lysolipids

with AA and other PUFAs, prevents ferroptosis induced by

GPX4 inactivation (Figure 3b).36 Thus, to proceed, ferroptosis

requires AA and likely other PUFAs prepositioned in the

membrane to serve as targets for O2-mediated oxidation and

iron-catalyzed free radical production. As would be predicted

from this model, cells are protected from ferroptosis by

exogenous small molecules that neutralize toxic lipid ROS or

block the formation of lipid peroxyl radicals. This includes

small molecule lipophilic antioxidants (trolox, butylated

hydroxytoluene, ferrostatin-1) and iron chelators (deferoxa-

mine, ciclopirox).6,58,59 Supplementation with the prenol lipid

antioxidant vitamin E (α-tocopherol) (Figure 1a) can prevent

ferroptosis in cell culture58 and the endogenous levels of this

lipid also presumably impacts the ability of the cell to undergo

ferroptosis following GPX4 inactivation in vivo (e.g., Wort-

mann et al.60 and Saito et al.61).

A major question concerns how PUFA oxidation leads to

ferroptotic cell death. To date, there is no evidence that

ferroptosis involves formation of a protein-based pore,

although this possibility cannot currently be excluded.

Oxidative destruction of plasma membrane PUFAs may lead

to the formation of gaps in the plasma membrane, resulting in

loss of ionic homeostasis. Alternatively or in parallel, the

accumulation of highly oxidized PUFAs (or derivative frag-

ments thereof, such as 4-hydroxynonenal (4-HNE)) could

directly inactivate essential intracellular proteins or trigger

additional death-promoting events.62Consistent with this latter

possibility, high expression of three enzymes (AKR1C1,

AKR1C2, and AKR1C3) that can detoxify reactive aldehydes

such as 4-HNE63 is associated with resistance to ferroptosis.62

A recent report demonstrates that expression of the tumor

suppressor protein p53 can modulate the sensitivity to

ferroptosis in vitro and in vivo.64 Wild-type p53 can enhance

the expression of numerous lipid metabolic enzymes, includ-

ing CPT1 and acyl-CoA dehydrogenase family member 11

(ACAD11), to promote FA oxidation,65,66while mutant p53 can

upregulate de novo FA synthesis genes including FASN, SCD,

and multiple genes in the mevalonate pathway that contribute

to the synthesis of cholesterol and various prenol lipids.67

While speculative, one possibility is that p53-dependent

effects on lipid metabolism could modulate ferroptosis

sensitivity by altering lipid metabolism or membrane lipid

composition.

Challenges and open questions

Lipids have important and diverse roles as triggers and

executioners of non-apoptotic RCD. There are a number of

areas where significant gaps exist in our understanding of the

link between lipids and non-apoptotic cell death, which we

discuss below. Additionally, new technologies to manipulate,

image and quantify lipids should help better understand the

roles of specific lipids, lipid metabolic enzymes and lipid

metabolic pathways in RCD (Box 1).

Understanding lethal pathways triggered by lipid accu-

mulation. In most cases, how certain lipids activate specific

non-apoptotic RCD pathways is not clear. For example, as

noted above, the precise non-apoptotic RCD pathway that is

activated by stimuli such as OA release from MFGs in

mammary epithelial cells, or exposure to LPS+palmitate in

macrophages, remains unclear. Likewise, glycerolipids with a

single fatty acyl substituent (lysophosphatidylcholine and

lysophosphatidic acid) trigger pyroptosis in human aortic

endothelial cells though an unknown molecular mechanism.68

In a related vein, some stimuli trigger non-apoptotic death

involving recognizable components of a specific pathway, but

in an unusual or unexpected way. Thus, in human umbilical

endothelial cells, palmitic acid induces a form of necroptosis

that is RIPK3 dependent but RIPK1 independent,69 implying

that this treatment can bypass the need for RIPK1 activation.

Conversely, treatment of SH-SY5Y neuroblastoma cells and

Jurkat cells with the oxysterol 24(S)-hydroxycholesterol (24S-

OHC) leads to cell death that is RIPK1 dependent, but RIPK3

and MLKL independent.70–72 Further studies of these exam-

ples should help determine whether certain lipids engage truly

novel lethal pathways or activate known non-apoptotic RCD

pathways, but in unusual or cell type-specific ways.

Understanding context specificity and crosstalk.

Depending on the context, the same lipid can have different

roles in cell death. As described above, OA triggers

lysosome-dependent non-apoptotic RCD in mammary

epithelial cells,32 but acts to prevent apoptotic RCD in

cells treated with high levels of palmitate or when mechanistic

target of rapamycin (mTOR) signaling is aberrantly

activated.73,74 Palmitate together with LPS induces a

predominantly non-apoptotic cell death phenotype in macro-

phages,33 while in pancreatic cells, palmitate triggers

apoptosis.75 Understanding how the same lipid can have

opposing roles in different cell types is an important unsolved

problem.

Disruption of lipid homeostasis may also connect two

different lethal processes. In mouse erythroid precursor cells

inactivation of GPX4, a canonical trigger for ferroptosis,57

leads to the accumulation of toxic lipid intermediates that

covalently modify caspase-8 and trigger necroptosis in the

absence of death receptor stimulation.76 This suggests the

existence of lipid-mediated crosstalk between the ferroptosis

and necroptosis pathways. This link is likely cell-type specific,

as canonical inhibitors of necroptosis do not block ferroptosis

in a variety of cell lines6,54 and mouse embryonic fibroblasts

lacking Ripk1, or mouse L929 fibrosarcoma cells where Ripk3

is depleted, are fully competent to undergo ferroptosis.54 In a

related example, GPX4 inhibition can sensitize cancer cells to

apoptosis induced by second mitochondrial-derived activator

of caspases (SMAC) mimetics,77 connecting ferroptosis to

apoptotic cell death pathways. Although more work is required

to define these links, given the possibility that cells in vivomay

be exposed to more than one lethal stimulus simultaneously, it

will be important to investigate whether two lethal pathways
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Box 1 New tools and technologies for analyzing the role of lipids in cell death

Compared with proteins and nucleic acids, the tools to investigate and manipulate lipids in the cell are historically less

accurate, less sophisticated and less accessible. However, new tools and technologies are emerging that should help study

the roles of lipids and lipid metabolism in RCD. Here, we provide four examples of how specific technologies could be used.

(a) Pooled CRISPR/Cas9 genetic screening technology105 could be used to search for new modulators (enhancers or

suppressors) of lipid-triggered non-apoptotic RCD (e.g., Condition A= control and condition B= lipid stimulation). (b)

Computational reconstruction and modeling of metabolic networks in mammalian cells (e.g., using Recon 2,

humanmetabolism.org)106 could be used to predict the metabolic consequences of exogenous lipid addition or the effects

of enzyme inactivation on the levels of various endogenous lipids in the cell. (c) The localization and fate of specific lipids or

lipid-rich organelles (e.g., lipid droplets, LDs) in live versus dying cells could be interrogated kinetically in live cells using

methods such as linear Raman imaging spectroscopy,107 coherent anti-StokesRaman scatteringmicroscopy, and stimulated

Raman scattering (SRS) microscopy.108 For example, cells fed an alkyne-labeled fatty acid (17-octadececynoic acid) can

incorporate this molecule into LDs and membrane phospholipids (PLs). The abundance and localization of labeled LDs and

PLs can then be monitored inside the cell using SRS.108 (d) Advances in mass spectrometry-based lipidomics109–112 are

enabling the identification of individual lipid species whose levels are perturbed in dying versus live cells.36,52,57 A related

approach to monitor the relative abundance of different fatty acids (FAs) between samples involves post-lysis labeling of FAs

with unique stable isotope tags (free fatty acid stable isotope tagging (FFAST)) whose mass differences can be resolved by

LC-MS/MS.111 This advance could help improve the precision of comparative lipidomics comparing live and dying cells.
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can operate in parallel, whether lethal pathways are organized

in some kind of hierarchy or whether activation of multiple

pathways simultaneously generate new hybrid lethal

pathways.

Understanding the role of lipid membrane repair. Mem-

brane breaching occurs in all forms of RCD. In at least some

cases, death-promoting stimuli activate both lethal and

protective responses targeting the membrane. For example,

bacterial pore-forming toxins (PFTs) such as aerolysin or

Staphylococcus α-toxin cause K+ efflux from the cell, which

ultimately leads to inflammasome-dependent caspase-1-

dependent processing and nuclear translocation of the

cholesterol and lipid biosynthetic master regulators sterol-

regulatory element-binding proteins 1 and 2 (SREBP1/2).78

SREBP1/2 upregulates transcription of FASN and HMGCR

(encoding 3-hydroxy-3-methylglutaryl-CoA reductase, the

rate-limiting enzyme required for cholesterol synthesis),

resulting in the accumulation of cholesterol and other

lipids.78 When SREBP1/2 processing is inhibited, cells are

hypersensitized to PFT-induced cell death.78 Although it is not

known how cholesterol and other lipids help the cell resist

death, a plausible mechanism is that newly synthesized lipids

are used to help stabilize or repair damaged membranes.

Such a response would help ensure that cell death only

proceeds in cells receiving a strong lethal stimulus, allowing

damage due to ‘accidental’ exposures to be repaired.

Ultimately, to ensure cell death, processes that promote the

stability and function of the membrane must be overcome.

Different forms of acute membrane damage associated with

non-apoptotic RCD, from mechanical damage to the insertion

of bacterial PFTs into the membrane, are repaired by

spontaneous membrane resealing for small diameter lesions

(o2 nm) or Ca2+ influx-triggered repair for larger injuries.79

Ca2+-dependent repair involves a number of membrane-linked

changes, including fusion with intracellular vesicles

and organelles (e.g., lysosomes), endocytosis, protrusion

or ‘blebbing’ of the membrane and exocytosis.79–81 These

responses occur within seconds to minutes of membrane

damage and represent the immediate attempt to prevent

widespread loss of membrane homeostasis and eject

damaged portions of the membrane (such as those containing

bacterial PFTs or oxidatively damaged lipids) from the cell

surface. One intriguing possibility is that non-apoptotic path-

ways subvert these immediate responses to membrane

damage, thereby promoting death.

Understanding how modulation of lipid metabolism by

other metabolic processes impacts cell death. An impor-

tant goal is to better understand the links between non-

apoptotic RCD and specific lipid metabolic pathways and

processes.82 The execution of ferroptosis, in particular,

requires the uptake of glutamine and the production of

citrate, processes that may support high rates of de novo lipid

synthesis.6,55,83 More broadly, lipid storage organelles such

as lipid droplets (LDs) and key lipid-modifying pathways such

as autophagy may have roles as modulators of non-apoptotic

RCD. LDs are dynamic structures that comprise a single

membrane enclosing a core containing mostly neutral lipids

(e.g., triacylglycerides, Figure 1a) and cholesterol esters.

Apoptosis-inducing agents, such as etoposide, inhibit mito-

chondrial β-oxidation and promote FA incorporation in LDs.84

Whether these organelles are linked to non-apoptotic RCD is

unclear. However, in one example cited above, the treatment

of SH-SY5Y neuroblastoma cells and Jurkat cells with

24S-OHC leads to the acyl-CoA:cholesterol acyltransferase

1 (ACAT1)-dependent formation of LDs and toxic accumula-

tion of esterified 24S-OHC derivatives, presumably in

LDs.70–72

Autophagy is a process of cellular ‘self-digestion’ that

involves the formation of double-membrane intracellular

vesicles that can fuse with lysosomes to degrade intracellular

contents (i.e., protein and lipids). While controversial, in

mammalian cells autophagy is generally thought to be

protective rather than lethal.85,86 However, in human umbilical

endothelial cells, treatment with palmitic acid is lethal and cell

death is partially suppressed by inhibition of the autophagy

genes VPS34 and ATG7.69 This suggests that autophagy may

promote death in this context. Conversely, since the process

of autophagy can consume lipids (i.e., lipophagy),87 it is

intriguing to speculate that this process could prevent non-

apoptotic RCD. For example, lipophagy could help maintain

ATP levels under conditions that would normally lead to ATP

depletion and necrotic cell death.88 Another possibility is that

high levels of lipophagy could block non-apoptotic RCD by

consuming key lipids or FAs that would otherwise trigger

cell death.

Understanding cell non-autonomous effects. In addition

to cell-autonomous roles in non-apoptotic RCD, lipids also

have systemic roles in mediating cell death in vivo. For

example, treatment of peritoneal macrophages with a

chimeric toxin activates the NAIP5/NLRC4 inflammasome

and leads to an eicosanoid storm, independent of cytokine

production, that is acutely lethal to mice.89 Eicosanoids are

paracrine signaling molecules, including prostaglandins and

leukotrienes, derived from the oxidation of AA by the

cyclooxygenase and lipoxygenase pathways.90,91 Production

of these molecules is highly upregulated during infection and

eicosanoids act as both pro- and anti-inflammatory non-cell

autonomous signals.92 During ferroptosis, oxidized deriva-

tives of AA, including 5-hydroxyeicosatetraenoic acid

(5-HETE), 11-HETE, and 15-HETE, are released into the

surrounding medium of dying cells.54 If ferroptosis also

occurs in the body, then these molecules could likewise have

important signaling roles, such as attracting immune cells to

sites of tissue damage.93 In this manner, the release of

oxidized lipid derivatives could have an analogous role to the

externalization of PS during apoptosis, facilitating non-cell

autonomous processes essential for the proper disposal of

dead and dying cells.

Understanding the causes of pathological cell death. A

number of inherited genetic disorders, including Niemann-Pick

disease, cerebrotendinous xanthomatosis, hereditary spastic

paraparesis type 5, and a spectrum of peroxisomal β-oxidation

disorders, are caused by mutations in specific lipid metabolic

genes. These inborn errors of metabolism (IEMs) result in the

accumulation of particular lipids and cell type-specific cell

death, typically in the nervous system (Table 1).94–101 How
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lipid accumulation (or depletion) triggers death in these cells,

and whether this involves apoptotic or non-apoptotic path-

ways, is generally not well understood. Additional studies of

these disorders could unveil new mechanisms of lipid-

triggered or lipid-mediated non-apoptotic RCD. For example,

in a mouse model of Niemann-Pick disease Type C, a disease

characterized by the aberrant accumulation of cholesterol and

other lipids in endosomes and lysosomes due to mutations in

Npc1, neuronal cell death is not prevented by transgenic

expression of the anti-apoptotic protein Bcl-2, suggesting that

death could involve activation of a non-apoptotic pathway.102

Failure to repair oxidatively damaged lipids, due to mutations

that impair the function of the GSH-GPX4 pathway, is another

example of how disruption of normal lipid metabolism can

impair organismal function61 and further study of these

disorders could lead to additional insights into the regulation

of ferroptotic cell death in vivo.

Treating disease. It may be possible to treat disease by

modulating (enhancing or suppressing) specific non-

apoptotic RCD pathways. Targeting the lipid-dependent

aspects of these processes may provide novel routes to do

so. For example, certain lung cancer cells can be induced to

die via necroptosis by the sphingosine analog drug FTY720

(fingolimod) through a mechanism involving protein phos-

phatase 2A-dependent activation of RIPK1.103 One interest-

ing prediction consistent with this result is that FTY720 might

mimic the function of an endogenous lipid that normally

promotes necroptosis to limit tumor formation. Drug repur-

posing may also open avenues to the manipulation of lipid-

dependent non-apoptotic RCD in humans. Two reports have

suggested that it may be possible to induce ferroptosis, at

least in some cells, using the multikinase inhibitor sorafenib

and the antineoplastic agent altretamine.62,104 Although

sorafenib appears to trigger ferroptosis by blocking GSH

synthesis, altretamine can directly inhibit GPX4.62,104 It

remains to be seen whether evidence of ferroptosis can be

found in patients receiving these drugs.

In addition to inducing cell death through modulation of lipid

metabolism, inhibiting lipid-dependent processes may be

useful in some contexts. For example, synthetic lipophilic

antioxidants that inhibit ferroptosis have been shown to block

pathological cell death in brain and kidney tissues.52,53

A better understanding of how lipids and lipid metabolism

impact non-apoptotic RCD should allow for the development

of improved therapies targeting these processes in the future.

Quarato et al (Molecular Cell, Feb 18;61(4): 589-601) report

that membrane PI(4,5)P2 is the preferred binding partner for

MLKL in cells undergoing necroptosis.
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