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Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB
pathway have been identified in almost every human malignancy. The E2F transcription factors
function in cell cycle control and are intimately regulated by RB. Studies of model organisms have
revealed conserved functions for E2Fs during development, suggesting that the cancer-related
proliferative roles of E2F family members represent a recent evolutionary adaptation. However,
given that some human tumours have concurrent RB1 inactivation and E2F amplification and
overexpression, we propose that there are alternative tumour-promoting activities for the E2F
family, which are independent of cell cycle regulation.

Two decades of experimentation link E2F activity to cell cycle control1–4. The E2Fs are a
large family of transcription factors containing one or more conserved DNA binding
domains (DBDs) that bind target promoters and regulate their expression1,2. The RB tumour
suppressor and the RB-related pocket proteins p107 and p130 directly associate with E2Fs
and can be co-recruited to E2F-responsive promoters to modulate gene expression5.
Functional inactivation of RB1 in various human cancers and transgenic animal models
leads to deregulated E2F activity, which has been correlated with aberrant cell proliferation
and in some instances cell death6–8. Consistent with these observations, global gene
expression profiling and promoter occupancy (chromatin immunoprecipitation (ChIP)-on-
chip and ChIP–sequencing) arrays have confirmed that many genes that are crucial for
proper cell cycle progression are bona fide E2F targets9–15, therefore establishing a direct
role for E2Fs in governing cell proliferation. In recent years, more members and isoforms of
the E2F family have been described and their functions explored in different physiological
settings unrelated to the control of cell proliferation1,2,8,10,16–21. These studies have yielded
results inconsistent with the central dogma of the RB–E2F pathway that has been defined by
in vitro and cell culture assays. The aim of this Review is to present emerging data from
mouse models of development and tumorigenesis that challenge the principles of RB–E2F
function in coordinating cell cycle progression. We present the view that in vivo E2F
functions extend beyond the control of cell proliferation, and discuss how these functions
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may be implicated in the pathogenesis of multiple human cancers independent of cell cycle
control.

E2Fs: the current paradigm
E2F function is regulated by cyclin-dependent kinases (CDKs) and RB

It was discovered nearly two decades ago that infection by DNA tumour viruses caused
excessive host cell proliferation, which was associated with the binding of specific cellular
factors – later named E2Fs – to viral gene promoters22,23. These initial observations paved
the way for the identification of an intricate signalling pathway that has been shown to
culminate in the control of E2F transcription activity (BOX 1). Since the identification of the
founding E2F family member E2F1 (Refs 24,25) two distinct genes in Drosophila
melanogaster and seven additional genes in mammals have been found to encode the
signature DBDs that give these transcription factors their DNA binding specificity1,2,8 (FIG.
1; see Supplementary information S1 (box)). The key finding that overexpression of E2F
activators could trigger quiescent cells to enter G1 phase, independent of growth factor
stimulation, linked this transcriptional module to cell cycle control26 and fuelled the initial
identification of important E2F target genes that are involved in DNA replication.
Thereafter, numerous studies focusing on how E2Fs contribute to cell proliferation
elucidated a molecular signalling network that converged on the post-translational
modifications of RB and RB-related proteins (which are mediated by cyclin–CDK
complexes) and the subsequent waves of E2F-dependent transcription activation and
repression that guarantee the timely movement of cells through all four phases of the cell
cycle27s–30 (FIG. 2). It should be emphasized that the simple classification of E2Fs as
activators and repressors is mostly based on the analysis of cells cultured in vitro and lacks
in vivo validation.

Redundancy, antagonism and feedback: the complexities of E2F function
Three obstacles have precluded a thorough analysis of the role of E2Fs in vivo. First, the
high degree of functional redundancy among activators (E2F1, E2F2, E2F3a and
E2F3b)1,2,6–8,31,32 and repressors (E2F4, E2F5, E2F6, E2F7 and E2F8)17,33 has made the
study of these proteins technically challenging and experimental results difficult to interpret.
The systematic analyses of mice with single and compound E2F mutations initially revealed
the redundant nature of E2F activity. Moreover, recent gene knock-in strategies in mice have
demonstrated that expression from the endogenous E2f3a locus of the highly related E2f3b
isoform or the more distantly related E2f1 family member suppressed most of the early
postnatal developmental phenotypes associated with the inactivation of E2f3a31.

The second obstacle impeding a complete understanding of E2F functions in vivo is the
apparent functional antagonism between E2F-mediated activation and repression in the
control of normal cell proliferation. Results from initial studies in D. melanogaster seemed
to validate the straightforward model of E2F function as an activity that promoted cell cycle
progression. Unlike in mammals, the D. melanogaster E2F family consists of a single
transcription activator (E2F) and repressor (E2F2). Both proteins require dimerization with
the transcription factor DP, which is encoded by a single gene. Loss-of-function mutations
in E2f lead to a decrease in the expression of classic E2F-regulated genes, DNA synthesis
and larval survival34,35. Surprisingly, loss of E2f2 restored cell proliferation in E2f-mutant
larvae and significantly delayed lethality until mid or late pupal stages35. These results
suggest that the net effect of E2Fs on cell proliferation is dependent on the balanced
interplay between activation and repression on a shared set of E2F-regulated genes.
However, subsequent analysis of gene expression in S2 cells lacking E2f, E2f2 or Dp (the
latter of which abrogates total E2F activity in D. melanogaster) revealed surprisingly little
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overlap in genes regulated by E2f and E2f2 (REF. 11). Consistent with this gene expression
data, a recent genetic mosaic screen found that the cell cycle defects induced by loss of E2F
could be rescued independently of functionally inactivating E2f2 and abrogating E2F2-
mediated repression36. Therefore, in addition to regulating a common set of cell cycle genes,
E2F and E2F2 seem to contribute independently to the normal proliferative potential of a
cell.

The third reason why the study of E2Fs remains a challenge is their ability to regulate the
expression of other members of the family, forming complex feedback loops to ensure a
balanced level of activators and repressors in each phase of the cell cycle. A clear example
of this was revealed by the recent molecular analysis of E2f7−/−;E2f8−/− mouse embryos17.
E2F7 and E2F8 directly repress E2f1 expression and double-knockout embryos have
increased levels of E2F1 and widespread apoptosis. The removal of E2f1 from these mutant
embryos significantly reduced the level of apoptosis. E2F7 and E2F8 are the most recently
discovered E2F family members and represent a structurally distinct arm of the repressor
subclass that interestingly is not unique to mammals. The model plant Arabidopsis thaliana
has three such ‘atypical’ E2Fs, E2FE, E2FD and E2FF37 (Supplementary information S1
(box)). The general functions of these plant E2F repressors involve the control of endocycle
onset and progression, as well as the regulation of cell size38,39. Similar to their plant
counterparts, the expression of mammalian E2F7 and E2F8 is E2F-regulated – in silico
analysis of their promoters identified consensus E2F binding motifs to which E2F1, E2F3,
E2F4 and E2F7 were shown to bind using ChIP assays40,41.

RB–E2F developmental mouse models support the canonical pathway
A considerable number of developmental studies using RB and RB–E2F compoundmutant
mice seem to reinforce the role of E2Fs in cell proliferation and apoptosis that was originally
identified in vitro42–44. Although homozygous inactivation of Rb1 in mice leads to
embryonic lethality that is accompanied by massive ectopic proliferation and apoptosis in
multiple tissues45–47, the deletion of E2F activators has been shown to partially rescue the
proliferative and/or apoptotic phenotypes. Specifically, the loss of E2f1 or E2f3a most
robustly suppressed Rb1-mutant phenotypes and extended the viability of Rb1−/− embryos
to late stages of embryogenesis42,48. The loss of E2f3b, which encodes an E2F3 isoform
thought to repress gene expression, also alleviated a subset of phenotypes that are associated
with the complete loss of Rb1 (REF.48–51). The observation that loss of the repressor E2f4
or E2f5 did not rescue Rb1-mutant phenotypes in the mouse embryo is consistent with their
role as binding partners of RB that mediate repression44. Taken together, these observations
generally support the canonical role of E2F1–E2F3 activators and E2F4 and E2F5 repressors
as effectors of RB that control cell proliferation and apoptosis.

In summary, the prevailing view has been that phenotypes associated with the inactivation
of specific E2F family members result from the loss of E2F-mediated activation or
repression of genes directly involved in DNA synthesis, mitotic progression and apoptosis.
Although the above analyses of RB–E2F compoundmutant mice support the function of E2F
activators in regulating proliferation and apoptosis, the detailed analysis of E2F-knock-in
mice31 suggests that members of this gene family have overlapping functions in the
regulation of many essential processes in addition to the cell cycle. Evidence from the model
organism D. melanogaster also contradicts the simple antagonistic nature of E2F-mediated
activation and repression, and recent knockout models in mice illustrate the existence of an
extensive E2F cross-regulatory network. Clearly, these exciting new findings reveal that we
are only beginning to understand the immense complexity of how the E2F family
participates in the control of cell proliferation and in other, as yet uncharted, biological
processes.
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Regulation of E2F target genes
E2F family members regulate overlapping and distinct subsets of genes. The specificity of
E2F-dependent activation and repression is dictated by interactions between individual
family members and various cofactors. For instance, in vitro pull-down assays showed that
E2Fs can associate with different histonemodifying enzymes that direct specific chromatin
configurations13,52 (FIG. 2b).

As changes in gene expression reflect direct and indirect functions of transcription factors,
several laboratories have expended considerable effort on ChIP-based technologies to
identify direct E2F-regulated targets10,12–15,20,53. This approach has led to the identification
of many E2F-responsive genes beyond those involved in proliferation and apoptosis,
including genes that participate in biological processes as diverse as cell differentiation,
metabolism and animal development9–12,54. Furthermore, these studies have distinguished
targets that are uniquely regulated by individual E2F family members from targets that are
co-regulated by multiple members. Work from the Farnham laboratory has also
demonstrated the recruitment of E2F1 to an unprecedented number of target promoters that
are not always restricted to consensus E2F binding sites15,20. This level of promiscuity in
E2F–chromatin associations could be due to the recruitment of E2Fs by other transcription
factors, such as nuclear factor-κβ (NF-κβ)55, MYC56 and CAAT enhancer/binding protein-
α (CEBPα)57,58, or by components of the transcriptional machinery. Although they are
undoubtedly intriguing, most of these results were obtained using cell culture systems.
Whether the newly identified transcriptional networks involving E2Fs reflect their true
physiological roles in vivo (such as the regulation of inflammatory response together with
NF-κβ55) remains to be determined.

Revealing the full range of E2F functions will require the identification of direct targets by
two synergistic approaches, global gene (including microRNA gene) expression profiling
and ChIP–sequencing. The first approach is unbiased and identifies all genes that have
deregulated expression in the absence of E2F family members. The second approach
validates these genes as direct E2F targets. The fact that both types of analysis can be carried
out with materials extracted from control and E2F knockout mouse tissues allows for a
rigorous examination of tissue-specific compared with general effects of E2F functions
throughout multiple stages of metazoan development. The ability to carry out these analyses
in normal tissue and tumour tissue ranging from pre-malignant to metastatic will also
distinguish physiological E2F functions from those that may have evolved during tumour
development. For example, a requirement for different CDKs in normal and oncogenic cell
proliferation has been reported59. This idea is supported by elegant work from the Sicinski
group that clearly demonstrated that Cdk4−/− mice develop normal mammary glands but are
resistant to Erbb2- or Hras-driven mammary tumorigenesis60,61.

Complexity of E2F functions in vivo
Studies using germline Rb1+/− and chimeric Rb1−/− mice that develop various
neuroendocrine tumours have produced unexpected phenotypes when E2Fs are inactivated.
The logic behind these studies was based on developmental studies showing that the
inactivation of Rb1 led to the deregulated function of activator E2Fs and that the subsequent
removal of these E2Fs resulted in a reversion of Rb1 mutant phenotypes. Although the
results from these studies do not dismiss a role for E2Fs in cell proliferation and apoptosis,
they have not truly furthered our understanding of the mechanisms, molecular partners and
cellular contexts that contribute to E2F-mediated activation and repression. In brief, the
following studies in mice contradict a uniform role for E2Fs in cancer.
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The role of E2F activators in cancer, as defined in the context of Rb1 mutation
Unlike humans inheriting one mutated or deleted RB1 allele who develop retinoblastomas,
germline Rb1+/− mice develop intermediate lobe pituitary and C cell thyroid tumours62,63.
The initial studies by Jacks and colleagues exploring the role of E2F activators in driving
tumour initiation showed that ablation of E2f1 in Rb1+/− mice significantly reduced the
incidence of both pituitary and thyroid tumours, prolonging the tumour-free lifespan of
Rb1+/− mice64. This was the first genetic evidence to support an oncogenic role for an E2F
family member in the context of Rb1 inactivation. The interpretation that E2F1 has a
uniform oncogenic role, however, is clouded by the observation that E2f1−/− mice develop
lymphoma or occasionally tumours of mesenchymal origin (TABLE 1). The fact that the
loss of Rb1 in T cells does not result in lymphomagenesis65 suggests that the tumour-
suppressive role of E2f1 in this context may be RB independent. The role of E2f3 as an
effector of RB action seems to be slightly more complex. Loss of E2f3 in germline Rb1+/−

mice, similar to the loss of E2f1, suppressed the development of pituitary tumours66. This is
consistent with E2f3 functioning as an oncogene downstream of Rb1. However, its loss also
promoted the development and metastasis of medullary thyroid tumours in Rb1+/− mice,
suggesting that E2f3, like E2f1, may function as a tumour suppressor66. It is possible that
E2F3 might promote proliferation in the pituitary but have additional RB-independent roles
in the thyroid. As the direct functions of E2F1 and E2F3 have not been extensively explored
in the pituitary and thyroid, the precise molecular basis for their apparent pro-tumorigenic
and anti-tumorigenic actions in these tissues remains unclear.

Further attempts to inactivate E2F function in chimeric Rb1−/− mice produced intriguing but
inconclusive results. Rb1−/− chimeras were previously shown to be fully viable and develop
pituitary tumours at a young age67,68. In more recent studies by Parisi and colleagues,
thyroid tumours and pulmonary neuroendocrine cell (PNEC) hyperplasia were also observed
in Rb1−/− chimeras69. Ablation of E2f3 in Rb1−/− chimeras suppressed PNEC, which is
thought to precede the development of small cell lung carcinoma (SCLC), but failed to
suppress the onset or development of either pituitary or thyroid tumours69. Why deletion of
E2f3 can mediate different pituitary and thyroid tumour outcomes in Rb1+/− compared with
Rb1−/− chimeric mice is not clear. It is entirely possible that the role of E2F3 in these
contexts is tumour cell non-autonomous and that loss of E2F3 in these two different
microenvironments leads to different or even opposing outcomes. Given that several cell
non-autonomous functions have been described for RB and E2F in Caenorhabditis elegans
and mice70–73, it would be prudent to caution against the over-interpretation of the above
analyses until more definitive molecular mechanisms have been provided.

Finally, loss of E2f2, but not E2f1 or E2f3, in mice increased Myc-induced T cell
lymphomagenesis, and the reintroduction of E2F2 into these tumours stimulated apoptosis
of the tumour cells74. This result implicates E2F2 as a tumour suppressor. By contrast, loss-
of-function models have also revealed that E2f2 seems to behave as an oncogene in simian
virus 40 (SV40) large T antigen-induced intestinal hyperplasia, as its ablation reduced
epithelial cell proliferation75. These findings provide another example of an E2F activator,
functioning as an oncogene or as a tumour suppressor in a tissue-specific manner. Consistent
with this, the disruption of RB and components of the RB pathway has been shown to affect
gastrointestinal but not haematopoietic malignancies, suggesting that the role of E2F2 in T
cells may be RB independent. It should be noted that the inability to identify the exact site of
gene action is a confounding characteristic of the analysis of germline knockout mice and
may underlie the observed discrepancies that mitigate a unified view of how E2F1–E2F3
activity influences cancer.
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The role of E2F repressors in cancer, as defined in the context of Rb1 mutation
The analysis of E2f4 inactivation and its effects on tumour formation in germline Rb1+/−

mice revealed tissue-specific roles for this abundantly expressed E2F repressor. The loss of
E2F4, a classic repressor known to physically bind all pocket protein family members,
extended the lifespan of Rb1+/− mice by suppressing pituitary and thyroid tumorigenesis76,
suggesting an oncogenic role for E2F4 in these tissues. This result was partially
recapitulated in chimeric Rb−/−;E2f4−/− mice, which had a reduced incidence and delayed
development of pituitary tumours77. Interestingly, as in compound Rb1−/−;E2f3−/− chimeras,
the Rb1−/−;E2f4−/− chimeras also had reduced PNEC hyperplasia. It is intriguing that the
loss of an activator (for example, E2F3) or repressor (for example, E2F4) leads to similar
outcomes in Rb1-deficient tumours. To reconcile this paradox, the authors suggested that in
the absence of E2F4, the E2F1 and E2F3 activators, which normally do not bind p107 and
p130, could now be recruited into a complex with these pocket proteins. The consequence of
this pocket protein–E2F rearrangement is the sequestration of E2F activators into a protein
complex that has a repressor function, raising the possibility that activators could
compensate for repressors and vice versa in a context-dependent manner. By contrast, the
development of ganglionic neuroendocrine neoplasms and urothelial transitional carcinomas
in Rb1−/−;E2f4−/− double chimeras, which was not observed in chimeric Rb1−/− or E2f4−/−

mice, suggests that E2F4 has tumour suppressive properties. It therefore seems that by
regulating alternative sets of genes in different tissues E2F4 can function as a tumour
suppressor or an oncogene. A full understanding of how this potential switch in target gene
specificity might occur in multiple cellular contexts is lacking.

Given the lack of clearcut in vivo data to support the classification of E2Fs as repressors or
activators, it is conceivable that these two subclasses function similarly in the animal.
Therefore, a simple explanation for why E2F3 and E2F4 can function as either oncogenes or
tumour suppressors is that both may behave as transcription activators or repressors in vivo.
Additional supporting evidence of this has been published in several recent studies. Work
from the Zubiaga group has shown that E2F2 suppresses cell cycle gene expression in T
cells and that the targeted disruption of E2f2 accelerated S phase entry and cell division78.
E2F3b, which is constitutively expressed in all phases of the cell cycle, was initially shown
to bind to the Arf promoter and to directly repress Arf transcription49. Knockin and E2f3
isoform-specific knockout studies in mice have revealed overlapping functions for E2f3a
and E2f3b in early mammalian development31,32 and indicate that both isoforms could
function as activators or repressors.

Currently, the role of the new repressor arm of the E2F family, E2F7 and E2F8, in cancer is
virtually unknown. However, given their crucial role in the control of proliferation and
apoptosis in embryonic development, it would not be surprising to find that these E2Fs are
involved in cancer. The expression of these E2Fs needs to be evaluated in clinical samples
and in the context of tumour models.

Challenges to the current RB–E2F paradigm
CDKs and E2Fs: a role in normal cell proliferation?—A seminal series of mouse
knockout studies recently revealed that most cells in the animal continue to proliferate in the
absence of CDK2, CDK4 or CDK6 (REFS 79,80). Mice individually lacking Cdk2, Cdk4 or
Cdk6 are fully viable and have developmental phenotypes that pinpoint specific roles for
these Cdks in the control of homeostatic proliferation of specialized cell types59. Strikingly,
Cdk2−/−;Cdk4−/−;Cdk6−/− triple-knockout mouse embryos develop to mid gestation and die
around embryonic day 12.5 (E12.5) from defective haematopoiesis, without obvious
disturbances in cell proliferation81. By contrast, Cdk1−/− embryos fail to develop beyond the
two-cell stage. These observations led the authors to conclude that the mitotic CDK1 is the
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only CDK required for normal cell proliferation81 and that interphase CDKs cannot
compensate for the activity of CDK1 (REF. 82). On the basis of these findings, it would
seem that factors positively regulating cell cycle progression are not as crucial for normal
cell proliferation in mammals as studies in yeast had originally implied. It has been
suggested that oncogene-stimulated proliferation may result in the need for a specific CDK
family member, as seems to occur with CDK8 in colorectal cancer83. Given that the human
CDK family consists of 13 members, it will be interesting to determine the extent of
redundancy in development and cancer among members of this diverse family of kinases.
Even though the combinations of CDKs involved in cell proliferation may change in
different cell types, it is thought that E2Fs are the crucial downstream effectors of CDK
activity that ultimately drive cell cycle progression. Although the loss of E2f1–E2f3 leads to
the complete arrest of mouse embryonic fibroblasts (mEFs) in cell culture and therefore
supports this idea84, this hypothesis remains to be validated in vivo.

The idea that E2F function is indispensable for the control of cell proliferation has
dominated several decades of experimentation. Incompatible with this view is the fact that
mice deficient for individual or a combination of E2F genes did not have widespread defects
in cell proliferation17,85–92 (TABLE 1). Recent work has shown that the combined ablation
of the entire subset of E2F activators (E2f1–E2f3) resulted in mid gestational lethality of
mouse embryos with only a negligible effect on cell proliferation in most of the tissues
examined214,215. These results seem to oppose the finding that mEFs lacking E2f1–E2f3 are
profoundly arrested at G1/S84. However, the inactivation of the p53 pathway was sufficient
to stimulate quiescent triple-knockout MEFs to re-enter the cell cycle and be transformed by
MYC and Ras93,94, indicating that conditions permissive for the proliferation of triple-
knockout cells exist in a cell type- or oncogene-dependent manner. Collectively, these
observations suggest that the redundant role of E2F activators in normal cell proliferation, as
revealed by the recent E2F-knockin studies in mice, may be restricted to a fairly narrow
period in the development of mammals and that compensatory factors exist to permit cell
growth and division in the absence of E2F activators. Similar to CDKs, many studies have
also suggested an acquired preference for specific E2F activators in oncogenic proliferation.
For instance, E2F transgenic mice develop various tumours (TABLE 2), and overexpression
and/or amplification of E2F1 and E2F3 has been observed in different human cancers
(TABLE 3). In addition, E2F activators were shown to be necessary for the unscheduled
proliferation of cells mutant for either Rb1 or components of the Hippo tumour suppressor
pathway42,43,48,95. Taken together, these results suggest a differential requirement for E2Fs
in the control of cell proliferation in normal compared with oncogenic environments.
Confirmation of this hypothesis will require a thorough evaluation of E2F function in both
normal tissues and associated tumours.

E2Fs linked to human cancer—In the current RB–E2F paradigm (FIG. 3) it is thought
that genetic alterations resulting in the loss of RB function cause cancer by unleashing E2F
activity and deregulating cell proliferation. From this traditional view of how E2F factors
control cell proliferation, clear predictions of their involvement in human cancer can be
made. As a whole, E2F repressors may be expected to behave as tumour suppressors, and
activators as oncogenes. Therefore, oncogenic alterations of repressor E2F genes would
include loss-of-function mutations, chromosomal deletions and/or epigenetic silencing.
Conversely, one would expect to observe gain-of-function mutations, amplification and/or
overexpression of the activator E2F genes.

At least in humans, a clear theme regarding the oncogenic role of E2F1–E2F3 in human
cancer has emerged. Several reports have described the amplification of the E2F1 or E2F3
gene locus as a frequent genetic event observed in hepatocellular carcinoma96–99, bladder
cancer100–104, retinoblastoma105,106, liposarcoma107,108 and many other malignancies.
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Overexpression of E2F1 or E2F3 has also been detected in glioblastoma109 and lung110–113,
ovarian114,115, breast116–118, gastric119 and colon cancer120,121. In some cases of
neuroblastoma122,123, thyroid cancer122 and pancreatic cancer124,125, large chromosomal
deletions of regions including the E2F1, E2F2 or E2F3 genes have been detected. Generally,
however, the levels of E2F activators are increased in most cancer types and are presumed to
mediate the uncontrolled proliferation of cancer cells.

Inconsistent with the prediction of an involvement in tumour suppression, E2F repressors
have not frequently been found to be mutated, deleted or silenced in human cancers. Instead,
current data support a role for E2F repressors in tumour promotion. For example, the E2F4–
p130 complex was shown to mediate the repression of the DNA repair genes RAD51 and
BRCA1 in response to hypoxic stress in vitro126,127. Additionally, an increased gene copy
number of E2F5 was detected in two independent cohorts of patients with breast
cancer128,129. In one of these studies, there was a positive association of E2F5 amplification
with a basal-like phenotype (an oestrogen receptor-, progesterone receptor- and ERBB2-
negative phenotype) and worse clinical outcome129. Finally, the evaluation of E2F7 in
human cancer has yielded conflicting results130–132 and further investigation will be
required to understand its function in cancer.

In summary, deregulated expression of E2F family members is common in human cancer,
but whether this contributes to the genesis of these cancers has not been unequivocally
established. Future studies will need to determine whether their potential contribution to the
tumorigenic process involves deregulation of cell cycle progression or extends beyond the
framework of RB and cell cycle control.

E2Fs: beyond proliferation
Generally, cell transformation results from the accumulation of stochastic mutations or ‘hits’
that confer a selection advantage over neighbouring cells, and so mutations affecting
multiple components in the same pathway that yield a similar outcome are rarely found in
cancer. However, a close examination of the genetics of RB1-mutant human cancers reveals
a pervasive association between RB and E2F expression that is inconsistent with the current
view of how deregulation of the RB–E2F pathway leads to cancer.

RB1 is mutated in essentially all patients with hereditary or sporadic retinoblastoma.
Amplification of 6p22, which contains the E2F3 locus, has been reported in more than 50%
of cases of retinoblastoma and leads to increased expression of E2F3 mRNA and
protein105,106,133. This trend has also been observed in other types of cancers, including
bladder cancer. Loss of heterozygosity (LOH) at the RB1 locus is found in 29% of patients
with bladder cancer and is associated with 6p22 amplification, E2F3 over expression and
advanced tumour stage100–104. In human SCLC, RB1 is mutated in more than 90% of
cases110,134, and most SCLCs also have E2F1 or E2F3 overexpression112–113. A similar but
less pronounced relationship between RB1 and E2F1 was reported for non-small-cell lung
cancer111,113,135. Finally, the Tlsty laboratory recently unmasked a strict inverse correlation
between RB1 and E2F3 expression in the basal-like subtype of human breast cancer118. In
their study, global gene expression profiling revealed low expression of either CCND1 or
RB1, consistent with their mutually exclusive association in many cancers, but high levels of
E2F3. This overlap between RB1 inactivation and E2F3 hyperactivity in retinoblastoma and
bladder, lung and breast cancer is not readily explained by current paradigms of RB–E2F
action.

Why do RB1 inactivation and E2F amplification and/or overexpression coexist in tumour
cells? In several knockout-mouse models the inactivation of Rb1 resulted in unrestrained
E2F3 activity and cell proliferation, and the concomitant loss of Rb1 and E2f3 suppressed
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most of this ectopic cell proliferation43,48. This demonstrates that the levels of E2F3 activity
achieved by RB inactivation are sufficient to promote uninhibited cell proliferation. We
propose, therefore, that in cancers such as retinoblastoma and bladder cancer the
deregulation of E2F3 activity (as might occur through the loss of RB function) and the
further increase in E2F3 expression (as might occur through the amplification of 6p22) may
represent separate molecular events with different physiological outcomes. In this context,
RB1 mutation would provide a proliferative advantage to tumour cells, whereas E2F3
hyperactivity would provide functions that extend beyond the traditional control of the cell
cycle. A preliminary example of such a function is evident in mice in which the targeted
ablation of E2f3 from tumour cells overexpressing the oncogene Erbb2 is associated with an
infiltration of innate and adaptive immune cells in the tumour microenvironment, leading to
tumour regression (G.L., unpublished observations). Several developmental studies in mice,
flies and worms also support a role for E2Fs that is independent of cell cycle control. For
instance, loss-of-function studies have identified roles for lin-35 (an RB1 orthologue) and
efl-1 (an E2F orthologue) in epidermal growth factor-mediated cell fate determination in C.
elegans70,71 and for mammalian E2Fs in angiogenesis136, adipogenesis31,137 and cell
migration21. On the basis of these examples, it can be argued that the role of E2Fs in cell
cycle control might be a recent evolutionary adaptation and that the role of E2Fs in cancer
might also include more evolutionarily ancient functions.

The observations outlined above suggest that the tight control of E2F1, and E2F3 in
particular, is crucial for tissue homeostasis and that disruption of their expression may have
a causative relationship with cancer development. A thorough molecular analysis of mice
that either lack or have misregulated E2F1 and E2F3 should begin to clarify the mechanisms
underlying their link with cancer. Genetic and gene expression profiling studies of human
tumour samples, together with the analysis of mice deficient for multiple E2Fs, have begun
to reveal functions of E2Fs beyond the control of the cell cycle and apoptosis. The extent to
which these poorly defined functions contribute to the cancer phenotype will need to be
evaluated in the coming years, with the promise that they might represent events that could
be targeted by therapeutic regimens.

Conclusions and future perspectives
The prevailing view is that E2F repressors and activators cooperate to orchestrate proper cell
cycle progression and that disruption of this carefully coordinated network contributes to
cancer. However, recent clinical and mouse studies have begun to challenge this view. We
suggest that the simple paradigm of proliferation control by E2F repressors and activators
does not correlate with the complexity of E2F function observed during development and
tumorigenesis.

As factors that control the cell cycle, apoptosis, differentiation and stress responses, the E2F
family of transcription factors has earned the status of master regulators of cell proliferation.
We have learned that many signals can regulate the activity of E2F family members and that
E2Fs can in turn regulate many different targets that affect a wide range of biological
processes that are intertwined with the control of cell proliferation. Given that E2Fs have the
capacity to determine whether cells proliferate or not, what more could be learnt about E2Fs
other than the finer details of their work ethic in specific contexts and cell types? Quite a bit
we think, and we could begin by asking whether E2Fs are necessary for the proliferation of
all cell types in mammals and other organisms. If not, then identifying the crucial
accomplices that function in concert with E2Fs, and how their activities are coordinated to
commit cells to proliferation, would be important. It might be that E2F functions are not
required in some cell types. Second, are the biological roles of E2Fs strictly dependent on
their activation or repression functions and when are such activities relevant during the
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developmental life of a cell? We should further address why different levels of E2F-
dependent activation and repression induce such complex outcomes in mammalian cells.
The combined use of new genetic mouse models and molecular techniques such as ChIP–
sequencing, gene expression arrays and proteomics could help us map and elucidate the
mechanism of E2F action in intact tissues. From a pessimistic standpoint, the complexity of
E2F activities might simply represent an imperfect evolutionary adaptation to perform the
vital task of cell proliferation in multicellular organisms. Once these normal functions of
E2Fs have been fully understood, we could then ask whether the classic cell proliferation
functions long ascribed to E2Fs are relevant to the development of cancer. If so, for which
cancers and at what point in their malignant evolution might they be especially crucial? If
not, then what additional pro-oncogenic or anti-oncogenic roles might they have?

So, despite xs~3,500 scientific publications focusing on E2Fs since the first family member
was discovered two decades ago, we know embarrassingly little about what E2Fs do in vivo
or how they do it. We have certainly garnered volumes of data relating to how E2F activities
can be controlled and which targets and biological processes E2Fs can in turn potentially
regulate. But from this bulk of information, we have yet to identify a single physiological
circumstance in which a defined signal elicits the E2F programme to exert its powers on a
specific biological outcome. Perhaps by studying these factors in whole animals, we may
finally have the opportunity to discover the extent to which E2Fs function in specific
capacities or as versatile modulators poised at biological crossroads that can be
commandeered to execute diverse processes in health and disease.
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Glossary

Endocycle A specialized type of cell cycle, consisting of alternating S and G phases,
that is widely used by both plants and animals. For example, mammalian
cells using the endocycle include trophoblast giant cells, hepatocytes and
megakaryocytes. Cells achieve greater than 2N genomes by uncoupling
DNA replication from mitosis.

Chimera An animal produced by mixing wild-type cells with mutant cells at the pre-
implantation stages of embryonic development to overcome embryonic lethal
mutations and facilitate the identification of the primary site of action or the
function of a gene in later lineages.
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At a glance

• A long-standing paradigm has been that E2F activity is tightly regulated by the
RB tumour suppressor and that the disruption of this regulation leads to
unscheduled progression through the cell cycle.

• Based on structure–function studies in vitro, the mammalian E2F family of
transcription factors has been artificially subdivided into activators (E2F1–
E2F3) and repressors (E2F4–E2F8).

• E2F1–E2F3 activators are highly redundant during development.

• Tumour models using RB–E2F compound-mutant mice and E2F-transgenic
mice show dual roles for E2Fs in tumour promotion and suppression. These
results suggest tissue-specific functions and argue against a uniform role for
E2Fs in cancer.

• Mice lacking E2F1, E2F2 or E2F3 survive to mid gestation without global
defects in the cell cycle, suggesting that the activators are not essential for
normal mammalian cell proliferation. We propose that under normal conditions
E2Fs do not substantially contribute to the proliferative potential of a cell.

• Deregulated expression or activity of most members of the E2F family has been
detected in many human cancers. We propose that the requirement for certain
E2F family members in proliferation under oncogenic conditions represents a
recent evolutionary adaptation.

• RB inactivation and E2F amplification coexist in cancer. RB inactivation leads
to inappropriate cell cycle progression through the deregulation of E2F function.
We propose that the additional increase in E2F activity caused by amplification
has cell proliferation-independent functions in cancer.

Chen et al. Page 21

Nat Rev Cancer. Author manuscript; available in PMC 2013 April 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Box 1

Alterations of the CDK–RB–E2F pathway in human cancer

Uncontrolled cell growth is an invariable characteristic of human cancer138. The
proliferation of cancer cells is sustained in the absence of growth factors and is
insensitive to growth-inhibitory signals138. Members of the human epidermal growth
factor receptor family of receptor tyrosine kinases are deregulated in many types of
human cancer139. Overexpression or mutation of these receptors leads to the constitutive
activation of downstream signalling pathways140,141.

On mitogenic stimulation, intracellular levels of D-type cyclins (D1, D2 and D3)
increase, resulting in the formation and nuclear localization of cyclin D–cyclin-dependent
kinase 4 (CDK4) and cyclin D–CDK6 complexes that phosphorylate RB early in G1
phase142. Subsequently, levels of mitogen-independent E-type cyclins accumulate and
these cyclins associate with CDK2 to further phosphorylate RB in preparation for
progression into S phase142. Genetic alterations of G1/S regulators have been extensively
documented in human cancers (see the figure)29,59,143. The G1 cyclins, in particular D1
and E1, and their catalytic partners CDK4 and CDK6, are overexpressed, mutated or their
genomic loci amplified in a wide variety of tumours29,59,143. The activity of CDKs is
regulated by two families of CDK inhibitors (CDKIs), with the first family comprised of
the INK4 proteins (INK4A, INK4B, INK4C and INK4D). The second family consists of
p21, p27 and p57. Decreased expression of these negative G1/S regulators in human
cancer has been attributed to genetic and epigenetic changes3–5,29,59,143. In short,
deregulation of factors that control the G1/S transition, which ultimately relies on the
engagement of E2F activity in the current view of cell cycle regulation, seems to be a
universal theme in the process of neoplastic transformation. LOH, loss of heterozygosity.
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Figure 1. The mammalian E2F family of transcription factors
This family is defined by their signature winged-helix DNA binding domain (DBD), and all
members are expressed from eight chromosomal loci that encode nine distinct gene
products. Based predominantly on results from in vitro studies, the E2F family has been
traditionally divided into activator (E2F1–E2F3) and repressor (E2F4–E2F8) subclasses.
Most E2F family members (E2F1–E2F6) bind DNA as heterodimers with one of three
dimerization partner (DP) proteins, TFDP1, TFDP2 and TFDP3, and heterodimerization is
mediated by the leuzine zipper (LZ) and marked box (MB) domains. RB binds within the
transactivation domain (RB) of E2F1–E2F3. Alternative promoters at the E2F3 locus drive
the expression of two highly related isoforms, E2F3a and E2F3b51. Unlike the activating
E2F1–E2F3, E2F4 associates with all three pocket protein family members and E2F5
associates predominantly with p130 (REFS 1,2,8). Ectopically expressed E2F activators are
localized to the nucleus owing to their amino-terminal nuclear localization signal (NLS)
sequence143,144, which is adjacent to the cyclin A-binding site (CycA). E2F4 and E2F5 have
bipartite nuclear export signals (NES) that mediate their export to the cytoplasm145,146.
Repressors E2F6–E2F8 do not possess the canonical carboxy-terminal features of E2F4 and
E2F5 and so are presumed to repress E2F-responsive genes independently of RB and related
pocket proteins40,41,147,148. Indeed, E2F6 can repress E2F target expression when
overexpressed in cell culture147–149. The structurally unique and most recently identified
E2Fs, E2F7 and E2F8, comprise a separate and highly evolutionarily conserved repressor
arm in the E2F family. Unlike the E2F3 isoforms that are transcribed from distinct
promoters, E2F7a and E2F7b isoforms are produced by alternative splicing of the primary
transcript41.
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Figure 2. The expression and activity of mammalian E2F family members during the cell cycle
a| In quiescent (G0) cells, the ubiquitously expressed E2F4 and E2F5 associate with pocket
proteins and other co-repressors to maintain repression of E2F-responsive genes (line
labelled E2F target) that promote entry into the G1 phase of the cell cycle. On mitogenic
stimulation, the sequential phosphorylation of RB by activated cyclin-dependent kinases
results in the loss of RB function, release of E2F repressors142 and the accumulation of
newly synthesized free E2F1, E2F2 and E2F3 late in G1 phase. Together, these events
initiate a transcriptional programme driving cells into S phase150 (dashed line labelled DNA
replication). This G1/S-specific transcriptome is then attenuated on completion of S phase in
G2 by the action of the repressors E2F6, E2F7 and E2F8, which are thought to function
independently of RB and RB-related proteins40,41,151. E2F7 and E2F8 can also specifically
mediate the repression of E2F activators such as E2f1 (REFS 17,41). Heterodimeric or
homodimeric E2F7 and E2F8 complexes directly bind the E2f1 promoter and repress its
expression throughout S phase to restrain activator E2F function. Without this brake, E2F1
proteins would persist inappropriately and continue the activation of genes encoding
components of the transcriptional machinery, resulting in ectopic DNA replication. b| In
quiescent or differentiated cells, pocket protein-bound E2F4 and E2F5 have been found to
associate with various co-repressors (CoRs), such as histone deacetylases, the DNA
methyltransferase DNMT1 and C-terminal binding protein (CtBP), leading to chromatin
compaction and transcription inhibition152–155. Conversely, during cell proliferation, when
RB is hyperphosphorylated, E2F activators recruit the basal transcription factor TFIID and
other co-activators (CoA), such as histone acetyltransferases, p300 and CBP, GCN5 and
TIP60, to specific gene promoters156–158, leading to an open chromatin configuration and
transcription initiation. The more recently identified repressors E2F6–E2F8 mediate
repression of E2F-responsive genes independent of pocket protein binding. Although E2F6,
through interaction with the polycomb complex149, still requires dimerization with a
dimerization partner protein to function in transcription repression, E2F7 and E2F8 are
unique in that they form homodimers (E2F7–E2F7 and E2F8–E2F8) or heterodimers
(E2F7–E2F8) to repress transcription of cell cycle-related genes17,40,41. The co-repressors
that associate with E2F7 and E2F8 are currently unknown.
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Figure 3. The paradigm of RB–E2F function in human cancer
a | In the nuclei of non-proliferating cells, RB remains hypophosphorylated and forms RB–
E2F repressor complexes to inhibit the expression of genes that promote S phase entry.
Hypophosphorylated RB also directly binds to and inhibits the activity of E2F activators
(E2F1–E2F3). RB is inactivated in most types of human cancer and this occurs through the
direct mutation of RB1, located on the long arm of chromosome 13 (13q14.3), or through a
disruption in the regulatory components of the RB–E2F pathway. For instance, CCND1 is
overexpressed or amplified in cancer143, an event that leads to deregulated E2F function by
activating cyclin-dependent kinase 4 (CDK4) and CDK6 and by stimulating RB
hyperphosphorylation. CDK4 and CDK6 are also overexpressed, amplified and mutated in
cancers29,59,143, leading to the loss of RB function. Many types of tumours exhibit
decreased expression or mutations of CDK inhibitors, such as INK4A, p21 and p27, which
normally antagonize RB phosphorylation29,59,143. In human cancer, it is the prevailing view
that the inactivation of RB leads to the disassembly of RB–E2F co-repressor complexes,
lifting the repression of genes that are necessary for progression through the cell cycle.
Furthermore, the dissociation of hyperphosphorylated RB from E2F activators leads to the
inappropriate accumulation of free E2F1, E2F2 and E2F3 with unmasked transactivation
domains, resulting in additional transactivation of these genes. b | Amplification of the
genomic locus 6p22 harbouring E2F3 is detected in more than 50% of cases of
retinoblastoma105,106,133, as well as in bladder tumours that have complete loss of RB
function100–104. RB1 is mutated in more than 90% of small-cell lung cancer cases, many of
which also exhibit overexpression of E2F1 or E2F3 (REF. 110). The inactivation of RB in
these cancers leads to increased proliferation of tumour cells as a result of deregulated E2F
function and increased expression of classic E2F target genes. The additional increase in the
level of E2F activators might contribute to the activation of genes important for tumour
initiation or progression that function independently of cell cycle control. CoA, co-activator;
CoR, co-repressor.
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