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Exosomes are membrane-enriched extracellular vesicles with a proposed diameter in the range of 30–100 nm. They are released

during both normal homeostasis as well as under pathological conditions by most cell types. In recent years, there has been

robust interest in the study of these vesicles as conduits for the delivery of information between cells in both analogous as well as

disparate tissues. Their ability to transport specialized cargo including signaling mediators, proteins, messenger RNA and miRNAs

characterizes these vesicles as primary facilitators of cell-to-cell communication and regulation. Exosomes have also been

demonstrated to have important roles in the field of cancer biology and metastasis. More recently, their role in several

neurodegenerative disorders has been gaining increased momentum as these particles have been shown to promote the spread of

toxic factors such as amyloid beta and prions, adding further validity to their role as important regulators of disease pathogenesis.

This review briefly summarizes current findings and thoughts on exosome biology in the context of neurodegenerative disorders

and the manipulation of these particles for the development of potential therapeutic strategies.
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Facts

� Exosomes are globular, membrane-bound extracellular

nanovesicles (30–100 nm in diameter) that are released

by almost all types of cells.

� ARF6 and PLD2 have important roles in extracellular

vesicle release through the regulation of the budding of

ILVs into MVBs.

� Extracellular vesicular molecules (including ADAM17,

TNFα and Nef) released from HIV-infected cells induce

activation, apoptosis and HIV susceptibility in the

recipient cells.

� Extracellular vesicles released from CD8+ T cells contain

antiviral membrane-bound factors that inhibit HIV-1

transcription.

Open questions

� Are HIV proteins such as Tat /gp120 released in the

extracellular vesicles and if so, do they disseminate CNS

toxicity?

� What is the role of EVs in propagation of pathogenic

proteins in the neurodegenerative disorders?

� How can extracellular vesicle therapeutics be applied in the

context of neurodegenerative diseases?

Cellular cross talk underlies most pathological conditions

including those within the central nervous system (CNS).

Although various factors have been identified as instigators of

disease pathogenesis, it is now becoming clear that unrest-

rained neuroinflammation and, subsequent cellular toxicity are

the key hallmark features of various neurological disorders. In

this light, the notion that disease pathogenesis may be

accelerated or mediated by exosomes and their associated

cargos is recently gaining momentum. Exosomes are globu-

lar; membrane-bound extracellular nanovesicles (30–100 nm

in diameter) that are released by almost all types of cells

during normal cellular functioning and specifically, in response

to cellular stressors. These small vesicles originally thought to

contain 'junk' cellular debris were first described by Trams

et al.1 when they observed smaller membrane-bound vesicles

within the larger endosomes (later termed multi-vesicular

bodies (MVBs). An electron micrographic study related the
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exosomes to sheep reticulocytes.2 The release of these small

vesicles into the extracellular environment was proposed as a

mechanism by which reticulocytes could secrete transferrin

receptor. This proposed mechanism was further supported by

in vitro analysis of sheep reticulocytes, which demonstrated

the selective loss of certain proteins from maturing cells.3 An

understanding of the role of exosomes in various cell types has

evolved greatly. They are no longer viewed as waste bags;

instead, exosomes are thought to have an important role as

cargo-carrying vesicles mediating communication among

different cells and tissues including the CNS.4 Exosomes are

known to carry nucleic acids (RNA, microRNAs (miRNA) and

DNA), functional proteins (including those of viral origin) and

other cellular products. In the literature extracellular vesicle

(EV) subtypes have often been given names such as

exosomes, microvesicles, ectosomes or microparticles based

on their biogenesis, physical characteristics (such as size), or

function.

A growing body of evidence suggests the involvement

of exosomes in many neuroinflammatory diseases. These

small vesicles are important in CNS communication as

most CNS cells secrete these particles.4 Cell–cell commu-

nication via exosomes can be envisioned to have an

important role in pathogenesis through their ability to transmit

disease-causing agents from one cell to the other. Indeed,

exosomes have been associated with numerous neuro-

inflammatory diseases including Parkinson’s, Alzheimer’s

and Creutzfeldt–Jakob diseases. Further research into the

role of these vesicles in disease progression is important for

the development of effective preventative and therapeutic

options. The focus of this review is to examine the role of

exosomes in the progression of various neurodegenerative

disorders.

Exosome Cargo

Exosomes are generated via inward budding of the late

endosomal membrane with the newly formed intraluminal

vesicles (ILVs) destined for one of the two outcomes: either

the late endosome merges with a lysosome, which degrades

the ILVs along with their cytoplasmically derived cargo or

the late endosome binds to the plasma membrane and

releases the ILVs as exosomes with their cargo into the

extracellular environment. Specifically, lysosome-directed

vesicle formation occurs via the endosomal sorting complexes

required for transport (ESCRT) machinery, whereas exosome

budding is directed by the sphingolipid ceramide on the

membrane of the endosome.5Recent studies have shown that

the small GTPase ADP ribosylation factor 6 (ARF6) and its

effector phospholipase D2 (PLD2) regulate exosome

release.6 ARF6 and PLD2 function together to regulate the

budding of ILVs into MVBs.6 After formation of ILVs, exosomes

are released from the cell upon fusion of the late endosome

with the plasma membrane. These vesicles are then free to

carry their cargo throughout the surrounding environment and

are associated with juxtacrine, paracrine and endocrine

uptake in the host tissue (see the detailed reviews discussing

exosome biogenesis:7,8 (Figure 1a). The specific composition

of an exosome largely depends upon the originating cell and

can vary widely depending on the cellular and environmental

factors. Large-scale proteomic and phosphoproteomic

studies of exosomes derived from various cell types suggest

that these vesicles shuttle a wide array of biologically rele-

vant molecules, including lipids, carbohydrates, RNAs and

proteins.9 For example, the study from Knepper’s group

identified 1132 proteins contained within exosomes isolated

from urine. In addition, unique phosphorylation sites have

also been identified on exosomal proteins.10 Interestingly,

miRNAs are abundantly present in the exosomes.11 MiRNAs

regulate gene expression at the post-transcriptional level

by binding to the 3’-UTR and/or the coding regions of their

target mRNAs.12 In fact, hundreds of miRNAs have been

found in exosomes.13 Many cell types, including reticulo-

cytes, epithelial cells, neurons and tumor cells, have been

reported to deliver exosomal miRNAs to recipient cells.14,15

In addition, Epstein–Barr virus (EBV)-infected cells have

been shown to secrete exosomes containing EBV-encoded

miRNAs.16 Importantly, exosomal miRNAs can repress

mRNAs in target cells and subsequently influence target

cell function. Furthermore, these exosomal miRNAs

have been implicated in a number of cellular processes and

human diseases including cell migration, cell differentiation,

cell viability, aging, neurodegeneration, cancer and immune

disorders.8 These studies support the notion that exosomes

obtained from body fluids have the potential to serve as

biomarkers of disease development and/or progression. In

this regard, Witwer et al.17 have suggested the need for

standardization of specimen handling, appropriate normative

controls, and isolation and analysis techniques for EVs/

exosomes to facilitate comparison of results.

Mechanism(s) of Exosome Interactions with Recipient

Cells

A primary function of exosomes is their ability to deposit their

cargo inside a recipient cell. Althoughmany roles of exosomes

have been extensively reported in the literature, detailed

interactions between target cells and exosomes remain to be

elucidated. Currently, it is hypothesized that the uptake of

exosomes into a target cell occurs by one of the three

mechanisms: phagocytosis, receptor-mediated endocytosis

(RME) or direct fusion of exosomes with the plasma

membrane of the recipient cell15,18,19 (Figure 1b). The latter

mechanism involves the release of exosomal cargo directly

into a cell following the fusion of the exosomeswith the plasma

membrane of the recipient cell. RME, on the other hand,

consists of binding of exosomal surface proteins to proteins on

the plasmamembrane of recipient cells, thereby facilitating the

targeting of exosomes to distinct cell types. The exosomes can

then either fuse directly with the plasma membrane or follow a

different endocytic pathway consisting of fusing with the

delimiting membrane of an endocytic compartment (i.e.,

endosome, lysosome, etc.).20,21

The uptake of exosomes by RME in any given cell is

largely dependent on the exosomal surface protein and lipid

composition, which in turn, is primarily based on the type and

condition of the secreting cell. The types of exosomal surface

proteins and the kinds of receptors on the target cell determine

the interaction between the exosome and the recipient cell.

In addition, it has been hypothesized that lipid receptors could
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also have a vital role in exosome recognition by the target

cells. For example, phosphatidylserine (PS) on exosomal

outer surface can interact with PS receptors, TIM1 and

TIM4,22 inducing accumulation of neutral lipids in the recipient

cells.23 In regard to the role of proteins in this uptake, an

elegant study by Escrevente et al.
24 has shown that pretreat-

ment of exosomes and recipient cells with a broad specificity

protease K significantly decreased exosomal uptake effi-

ciency. This study concluded that proteins from both exo-

somes and cells were required for uptake.24 It has also been

shown that heat-shock proteins such as Hsp90/Hsp70, which

are chaperone proteins enriched in exosomes can interact

with receptors such as low-density lipoprotein receptor-related

protein 1 (LRP1), and that this interaction is critical

for recognition of exosomes by target cells.25 These findings

further validated the notion that the interaction between

exosomal membrane proteins and recipient cell-surface

proteins is fundamental for the uptake of exosomes via

RME. Upon further inquiry, it was shown that blocking CD9

and CD81 tetraspanins, which are commonly expressed on

exosomes, resulted in a significant decrease in the exosomal

uptake efficiency by dendritic cells.26

It has been demonstrated that phagocytic cells including

RAW 264.7 macrophages and U937 monocyte-derived

macrophages (MDM) internalize exosomes via phago-

cytosis.27 More specifically, Feng et al.
27 demonstrated that

macrophages internalized exosomes more efficiently than

other non-phagocytic cells. Using electron microscopy, it was

observed that exosomes remained localized on the surface of

non-phagocytic cells, whereas exosomes in the vicinity of

phagocytic cells were enveloped into large cellular extensions.

Furthermore, the colocalization of fluorescent phagocytic

tracers and the PKH26-dyed exosomes further confirmed that

phagocytosis was the primary exosomal uptake mechanism

employed by the macrophages. Furthermore, actin poly-

merization, which is necessary for phagocytosis, when

inhibited by either cytochalasin D or latrunculin B, resulted

in significantly reduced efficiency of exosomal uptake. This

Figure 1 (a) Exosomes delivery via various signaling pathways. Exosomes can deliver molecules to distant cells (paracrine), adjacent cells (juxtacrine) or neighboring cells
(autocrine). (b) The uptake of exosomes into a target cell occurs by one of the three mechanisms: phagocytosis, receptor-mediated endocytosis (RME) or direct fusion of
exosomes with the plasma membrane of the recipient cell
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further reinforced the idea that phagocytosis is an important

mechanism for exosome internalization in the macrophages

and likely also in other phagocytic cell types.

It has also been documented that oligodendroglia-derived

exosomes can be taken up by microglia via macropino-

cytosis.28 Furthermore, the authors also demonstrated that

oligodendroglia-derived exosomes colocalized with Lamp1,

a lysosome or late endosome marker, indicating thereby that

an endocytic pathway was involved in the uptake of these

exosomes. In order to deduce that macropinocytosis was

indeed the mechanism in question, the microglia were treated

with several reagents that interfered with specific steps in the

macropinocytosis pathway. Following inhibition of macropino-

cytosis, microglial uptake of exosomes was inhibited, thereby

underscoring the role of macropinocytosis in internalization of

exosomes by microglia.28

HIV Budding and Exosome Biogenesis

HIVacquires its envelope and propagates infection by budding

through the limiting membranes of infected cells. HIVusurps a

cellular pathway – that of formation of ILVs into MVB, to

facilitate budding, indicating thereby that HIV budding and

exosome release share a common mechanism. Indeed,

published data on HIV-infected macrophages demonstrate

the presence of HIV-containing vacuoles in macrophages that

are reminiscent of MVBs.29 Using human MDMs, the study by

Nguyen et al.30 revealed that the host protein profile of

macrophage-derived exosomes and that of the HIV particles

have a strong concordance, supporting the hypothesis that

retroviral budding results from the exploitation of a pre-existing

cellular pathway of intercellular vesicle trafficking. Proteomic

analyses revealed that MDM-derived HIV virions contained

26 of 37 cellular proteins previously found in exosomes,

consistent with the idea that HIVuses the late endosome/MVB

pathway during virion budding from macrophages.21 In

addition, Bieniasz et al.
31 demonstrated that ESCRT compo-

nents are recruited byHIV gag at the plasmamembrane site of

HIV budding. Nabhan et al.
32 revealed a role for ESCRT

components in ectosomes budding at the plasma membrane.

It is thus speculated that the budding of virus and EVs could

utilize similar cellular pathways at the plasma membrane and

inside the MVBs. An excellent review on the similarities

between EVs and viral entry has been published and could

provide further insights on this phenomenon.33 Furthermore,

it is also interesting to note that the HIV-1 virion has a similar

size to that of the exosomes, an evidence supporting a similar

origin of the two. This, however, also poses a potential

confound for the isolation of exosomes from HIV-1-infected

materials.34 In addition, studies on T cells and exosomes

have been inconsistent and confounding. For example, some

studies implicate that HIV-1 budding does not involve either

endosomes or exosomes,34–36 whereas other reports have

shown that HIV-1 budding from T cells is closely associated

with exosomes.37 In this regard, Park and He34 have shown

that high-speed centrifugation with 20% sucrose cushion

during the last step can yield exosome-free HIV-1 virions

compared with centrifugation only. Herein the authors pro-

vided a technical platform that could be employed to define the

relationship between exosome biogenesis and budding of

HIV-1.34 Though the small GTPase ARF6 and its effector

PLD2 have an important role in exosome release, ARF6 is not

involved in HIV-1 budding.6 Early studies on HIV budding

demonstrated that loss of the viral envelope Gag p6 domain

caused a severe defect in virus budding.38 However, recent

studies showed that the N-terminal 433 amino acids of HIV

Gag-Pol were sufficient to cause budding from cells, support-

ing the hypothesis that HIV budding was mediated by the

exosome/microvesicle biogenesis pathway.39 In other cell

types such as the dendritic cells, exosomes can be inter-

nalized and transfer signaling molecules to the recipient cells.

HIV-1 particles exploit this exosome-dissemination pathway to

spread infection to the dendritic cells, thereby underscoring a

potentially new viral dissemination pathway (Figure 2 and

Table 1). Taken together, it remains an exciting question of

whether HIV-1 budding and exosomal biogenesis are closely

related processes and/or whether they mutually influence the

respective processes.

HIV Infection Alters Exosomal Release and Composition

Both exosome release as well as exosomal composition are

regulated through cell signaling pathways that are activated by

many factors, including but not limited to, HIV infection and

subsequent immune activation. For example, it has been

shown by Kadiu et al. that exosome numbers are increased in

MDMs following HIV-1 infection.40 Furthermore, HIV-1 was

shown to accelerate infection and viral dissemination by

surrounding itself with exosomes.40 HIV infection not only

affects exosome release, but also impacts exosomal cargo.

Indeed, large-scale proteomics studies have revealed that

compared with uninfected cells, exosomes released from

HIV-1-infected cells harbor distinct regulatory molecules and

are composed of a unique and quantitatively different protein

signature.41,42 Fourteen proteins out of 770 were identified

to be differentially expressed in the exosomal fractions of

HIV-1-infected cells compared with the uninfected cells. Three

immunomodulatorymolecules included ADP-ribosyl cyclase 1

(CD38), L-lactate dehydrogenase B chain and Annexin A5.41

Recent studies have found that HIV-1 RNAs, such as HIV

miRNATAR, can also be incorporated into exosomes released

from HIV-infected cells.43,44 Furthermore, TAR RNA is sorted

into exosomes in a chromosome region maintenance

1-dependent manner.44 Importantly, exosomal TAR inhibited

apoptosis by downregulating Bim and Cdk9 protein levels in

recipient cells,44 and stimulated proinflammatory cytokines,

including IL-6 and TNF-β in primary macrophages.45 In a

separate study, it was also shown that specific miRs such as

miR-29b are transported via the EVs from HIV Tat and

morphine-treated astrocytes to neurons and that, this transfer

resulted in downregulation of PDGF-B (miR-29b target) in

neurons, leading to neuronal apoptosis46 (Figure 3). A recent

study by Yelamanchili et al.47 has also suggested increased

expression of miR-21 in EVs derived from SIV-infected

brains compared with the uninfected controls. Herein the

authors demonstrated that in the brains of macaques with

SIV-encephalitis, EV-miR-21 from donor macrophages/

microglia resulted in neurotoxicity via activation of a TLR7-

dependent downstream cell death pathway47 (Figure 3). HIV-1

infection of MDMs resulted in significant upregulation of a
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distinct class of miRNAs in exosomes isolated from the

infected cells.48 Secretion of various HIV proteins has also

been reported in the exosomes from infected cells. Specifi-

cally, the viral proteins Nef and Gag have also been found in

released exosomes.37,49–54 It was also shown that Nef-

containing exosomes were able to fuse with HIV-1 virions

and deliver functional Nef to the virions as well as fuse with

bystander cells to induce apoptosis in these cells.50 In

addition, it has been shown that HIV Tat is also secreted and

is present in exosomes derived from Tat-expressing astro-

cytes, and HIV-infected cells, and can be taken up by the

neurons, leading to neuronal injury and death.55 A recent

study demonstrated that exosomes are also enriched in

cytokines in the plasma of HIV-positive individuals relative to

the negative controls.56 These studies provide a basis for

exosomes as biomarkers for HIV infection. Elegant work from

the study by Sampey et al.137 using hydrogel nanotrap

particles as affinity baits, has demonstrated the capture of

HIV-1 virions, HIV proteins and exosomes-containing TAR-

RNA in the patient serum. This could have ramifications for the

future development of HIV diagnostics.57,58 Further studies

aimed at exploring the role of exosomes in the potentiation of

HIV-associated complications are important for the develop-

ment of effective therapies against these disorders.

Functional Effects of EVs in the Context of HIV Infection

It has been reported that the release of exosomes from HIV-1-

infected lymphocytes is associated with HIV-1 replication in

co-cultured quiescent CD4+ T lymphocytes.59 Exosomes from

HIV-1-infected cells expressing a functionally defective viral

mutant can still induce cell activation and lead to HIV-1

susceptibility in unstimulated CD4+ T lymphocytes.60 A Nef

domain, 62EEEE65 acidic cluster, has been identified as a

contributor of these effects.59,60 Furthermore, active ADAM17

associates with exosomes from HIV-1-infected cells and

induces HIV-1 replication in resting CD4+ T lymphocytes,

thus stimulating viral spread.59,60 (Figure 4a). In addition,

exosomes released from HIV-1-infected cells can also impact

many cellular processes in the recipient cells including

proliferation and apoptosis.41 Specifically, exosomal Nef can

enter the target cells and cause activation-induced cell death

in resting CD4+ T lymphocytes.51 This is not surprising since

Nef itself has been shown to induce dramatic dysregulation of

cellular and exosomal miRNAs in human monocytic

cells.61 Interestingly, exosomes purified from a transformed

CD8+ T-cell line have been shown to an antiviral membrane-

bound factor that inhibits HIV-1 transcription in both acute and

chronic models of infection62,63 (Figure 4b). Furthermore, a

recent study demonstrating the association of cytokines with

exosomes in the plasma of HIV-seropositive individuals

suggests the role of exosomes in inflammation and viral

propagation via bystander cell activation.56 In summary,

alterations in exosomal cargo, following HIV infection

contribute to HIV pathogenesis via multiple mechanisms

including viral dissemination, cell apoptosis and inflammation.

Alzheimer’s Disease and EVs

Alzheimer disease (AD) is the most common neurodegenera-

tive disorder with 46.8 million people affected worldwide,

clinically characterized as an ongoing cognitive impairment.64

Aggregation of hyperphosphorylated tau in the neurofibrillary

tangles and accumulation of amyloid beta (Aβ) plaques are the

two salient pathological features of AD.65 Accumulating

evidence suggests the involvement of EVs in the pathogen-

esis of AD.66–68 Many reports also implicate spread of the

pathogenic AD proteins via the EV cargo.67,69,70 For example,

Figure 2 HIV budding is mediated by the exosome/microvesicle biogenesis pathway. HIV budding (left) and exosome release (right) share similar pathways. HIV Gag binds
the viral RNA and drags it into the cytoplasmic face of intracellular vesicles, then the virus particles bud into the MVB. Subsequently, the virus-containing vesicles traffic to and fuse
with the cell membrane, resulting in the release of virus particles
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exosomal proteins such as Alix and flotillins have been

reported to be localized within the amyloid plaques in the

brains of the Tg2576 mice (AD model) as well as in the

postmortem tissues of human AD patients.69,70 In support of

this is also another clinical report indicating upregulation of AD

pathogenic proteins including P-T181-tau, P-S396-tau and

Aβ1–42 in the plasma exosomes isolated from AD patients,

compared with cognitively normal-matched healthy

individuals.67 Furthermore, mechanistic studies have also

implicated that both cleavage and endocytic transportation of

amyloid precursor protein (APP) have cardinal roles in

packaging Aβ into exosomes for dispersion.70–72 Aβ is a

cleaved product resulting from the cleavage of APP by the

β- and γ-secretases.73 A finding by Rajendran et al.
70

demonstrated that Aβ was sorted into MVBs in both HeLa

and N2a cells following β-cleavage in the early endosomes.

Interestingly, Sharples et al.
72 also reported that inhibition of

γ-secretase stimulated α- and β-cleavage, leading in turn, to

C-terminal fragments of APP (APP-CTFs) in the exosomes.

Furthermore, γ-secretase has also been shown to be required

for the clearance of APP-CTFs from the endocytic recycling

compartments, which constitute a series of perinuclear tubular

and vesicular membranes, that regulate recycling of APP-

CTFs to the plasma membrane.74,75 In addition, deficits in

retromer, a multimeric complex that mediates retrograde

protein transportation from endosome to the trans-Golgi

network, has also been shown to promote amyloidogenic

APP processing by enhancing interactions between APP and

secretase enzymes in the late endosomes.71 As endocytic

trafficking is becoming increasingly recognized as a possible

mechanism(s) of AD pathogenesis, examining the role of other

endocytic trafficking regulators such as diacylglycerol kinase,

Eps15 homology domain and molecules interacting with

CasL-like1 (MICAL-L1) in both processing and release of

APP via the exosomes can be developed as future areas of

research that will provide valuable insights into the pathogen-

esis of AD.76–78 Interestingly, aggregated tau protein has also

been found to be present in the exosomes in both the in vitro

taupathy models as well as in the cerebrospinal fluids of early

Alzheimer’s patients.68 It is worth noting that microglia have an

important role in spreading both Aβ and tau through the

EVs.79,80 The advent and widespread application of new

imaging techniques such as super-resolution microscopy and

quantitative methodology are also avenues that continue to

contribute in our understanding of the molecular mechanism

(s) involved in the processing of APP and tau and their roles in

the pathogenesis of AD.75,81

Parkinson’s Disease and EVs

Parkinson’s disease (PD), clinically characterized by hypoki-

nesia, rigidity and tremor, is the second most common

neurodegenerative disorder. The pathological features of PD

comprise of widespread degeneration of dopaminergic neu-

rons and aggregation of Lewy bodies and cytoplasm inclusion

bodies of α-synuclein.82 Interestingly, similar to the spread of

pathogenic tau and Aβ proteins, EVs also have crucial roles in

the aggregation and the spread of α-synuclein, thereby

propagating disease pathogenesis in PD.83–85T
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Increased levels of α-synuclein have been reported in the

exosomes isolated from both plasma and CSF of PD

patients with a significant correlation observed between

disease severity and plasma exosomal α-synuclein levels.85

It has been reported that spread of α-synuclein between

neurons via the exosome route confers cytotoxicity to the

recipient cells, leading to increased accumulation of Lewy

body throughout the various brain regions.84 Although it is not

well understood how this process is regulated, both

Tsunemi et al.86 and Kong et al.
87 suggest the role of P-type

ATPase ion pump (PARK9/ATP13A2) in regulating both the

biogenesis of exosomes, as well as secretion of exosomal

α-synuclein. In case of juvenile-onset PD, that is attributed

to loss-of-function mutations in PARK9, it was demonstrated

that knocking down of PARK9 resulted in the inhibition of

exosomal secretion of α-synuclein, and that, reciprocally,

overexpression of PARK9 resulted in localization of PARK9 in

MVBs and was associated with release of α-synuclein from

the exosomes.86,87

Another molecular mechanism regulating the exosomal

release of α-synuclein is the autophagy-lysosomal pathway

(ALP) that degrades the enclosed cargo in the lysosome.88–90

It can be speculated that exosomal release of α-synuclein is

likely an adaptive response to insufficient autophagic activity

needed for the elimination of α-synuclein.89 Using bafilomycin

A1, a pharmacological inhibitor that disrupts ALP by blocking

fusion between autophagosomes and lysosomes, Alvarez-

Erviti et al.
91 demonstrated that disruption of lysosomal

functions resulted in enhanced exosomal release and uptake

of α-synuclein in SH-SY5Y cells. In line with this, Poehler

et al.
88 also observed that ameliorating cytosolic accumulation

of α-synuclein in bafilomycin A1-treated α-synuclein-trans-

genic mice, resulted in enhanced exosomal release of

α-synuclein, which in turn, resulted in neuroinflammation and

cellular damage. It is also worth noting that there is evidence

suggesting that the gangliosides present in the exosomes can

contribute to a catalytic environment leading to increased

aggregation of α-synuclein.83

The role of glial cells in mediating neuroinflammatory

responses leading to neurodegenerative disorders has been

well documented.92–94 It is not surprising, therefore, that

microglial/monocytes also have a role in the PD through the

regulation of exosomal activities.95 For example, Chang

et al.
95 found that exosomes derived from α-synuclein-

exposed BV-2 microglia contained high levels of MHC class

II and membrane TNF-α and, that treatment of rat cortical

neurons with these activated exosomes resulted in the

neuronal apoptosis.

Amyotrophic Lateral Sclerosis and EVs

Amyotrophic lateral sclerosis (ALS) is a progressive neurode-

generative disorder often accompanied with frontotemporal

dementia.96 In the United States ALS affects ~ 3.9 cases per

100 000 individuals, with increased prevalence in persons

aged 60–69 years.97 Loss of spinal cord motor neurons is the

prominent pathological feature of ALS that manifests as

muscle weakness and respiratory failure.98,99 Several genes

have been found to be associated with ALS including

superoxide dismutase-1 protein (SOD1), RNA-binding

protein fused in sarcoma and TAR DNA-binding protein 43

(TARDBP).100,101

Similar to Aβ, mutations of SOD1 in ALS result in

aggregation of intracellular misfolded SOD1 protein and its

spread.102Both mutant and wild-type SOD1 have been shown

to be transmitted through both micropinocytosis of the

released protein aggregates from dying cells as well as by

uptake of SOD1 in the EVs by the recipient cells.102 Secretion

Figure 3 Exosome released from astrocytes treated with morphine and Tat carry miR-29b, which can be taken up by neurons, resulting in neuronal death. MiR-21 in EVs
leads to neurotoxicity via the TLR7 signaling pathway
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of exosomal SOD1 has also been observed in a widely used

in vitromodel of ALS that of mouse motor neuron-like NSC-34

cells overexpressing the mutant human SOD1 (G93A).103,104

Moreover, it has also been reported that mutant

SOD1-containing exosomes released from the astrocytes

exerted neurotoxicicty.105 Mechanisms by which SOD1 is

packaged into the exosomes, however, remain elusive.

Intriguingly, the expression of mutant SOD1 (G127X, G85R)

has been reported on the surface of exosomes,104 whereas

that of the wild-type SOD1 is in the lumen of the

exosomes.106,107 Upon uptake by recipient cells, mutant

SOD1 proteins function as templates for further misfolding

and aggregation of the natively folded counterparts.102

Studies by Grad et al.
104 reported inhibition of the conversion

of SOD1 into its misfolded form in the recipient cells via the

treatment of exosomes with antibodies specific for mutant

SOD1, indicating thereby the therapeutic potential of drug

delivery by exosomes.

Similarly, TDP-43 aggregates have also implicated to be

released in the EVs and to initiate the intracellular aggregation

of TDP-43 in the recipient cells.108 Although TDP-43

aggregates are present in both microvesicles and exosomes,

microvesicular TDP-43 has been shown to be the favored

source for uptake by the recipient cells, leading in turn, to

increased toxicity compared with the free TDP-43.109 In the

same study it has also been suggested that TDP-43 could also

spread trans-synaptically in both the anterograde and retro-

grade manner. In addition, it was also shown that neurons

exposed to either TDP-43-containing media (derived from

cultured cells) or to brain lysates from ALS patients did take up

TDP-43.

Prion Disease and EVs

Prion diseases are a spectrum of transmissible lethal

neurodegenerative diseases characterized by cognitive

impairment, motor dysfunction, spongiosis, astrogliosis and

cerebral deposition of insoluble PRNP (prion protein).110,111

In prion diseases, the native form of prion protein PRNPC is

converted into PRNPSC, a pathogenic form that is protease-

resistant and prone to aggregation.112

PRNP has been identified in the EVs derived from both

CSF113 and blood.114 Accumulating evidence further sug-

gests a key role of EVs in both the pathogenesis and

propagation of prion diseases.115–117 One of the initial studies

has demonstrated that PRNP-expressing cell line (RK13)

robustly secreted PRNP through exosomes.118 Vella et al.
119

further showed that exosomes released from PRNP-infected

neuronal cell line (GT1-7) also induced prion propagation in

both neuronal aswell as non-neuronal cells. Guo et al.120 have

shown that inhibiting exosome release reduces the intercel-

lular transmission of PRNP in different PRNP-expressing cell

lines in vitro. Taking advantage of pharmacological inhibitors

and genetic approaches, the same group also demonstrated

that neutral sphingomyelinase pathway has a crucial role in

regulating the packaging of PRNP into exosomes.121 Con-

sistent with these in vitro findings, it has also been shown that

EVs derived from plasma of mice infected with variant

Creutzfeldt–Jakob disease (vCJD), one of the prion diseases,

contains PRNP.122 Due to the fact that transmission of vCJD

has also been clinically reported to be associated with blood

transfusion,123 it is plausible to hypothesize that EVs might

have a significant role in the transmission of prion diseases.

Interestingly, upregulated miRNAs including let-7b, miR-146a,

miR-103, miR-125a-5p and miR-342-3p were found to be

present in the EVs isolated from human tissue samples

affected with prion diseases,124 suggesting thereby that

PRNP-infected EVs also mediate the pathogenesis of prion

disease through their contents in addition to spreading

of PRNP.

However, much still remains to be discovered about the role

of exosomes in prion diseases. It has been demonstrated that

different strains of PRNP are secreted differentially from RK13

cell line possibly through various disparate cellular

mechanisms.125 A better understanding of the role of EVs in

prion diseases is thus critical in dissecting mechanism(s)

Figure 4 The exosome response to HIV infection. (a) Exosomes from HIV-infected cells contain various molecules including ADAM17, TNFα, Nef and so on. These
molecules upon entering the recipient cells then induce the target cell activation, apoptosis and HIV susceptibility. (b) Exosomes released from CD8+ T cells contain an antiviral
membrane-bound factor that inhibits HIV-1 transcription

Emerging roles of extracellular vesicles
G Hu et al

8

Cell Death and Disease



underlying disease pathogenesis while also providing insights

for other prion-like diseases such as AD and PD.126

Exosomes as Therapeutic Conduits

Exosomes via their ability to deliver specific cargo are critical

for cellular communication and physiology. This property of

exosomes can also be exploited as a treatment strategy to

deliver specific therapeutic molecules to the diseased tissues.

An elegant study by Zhuang et al.
127 analyzed the potential for

exosome therapeutics, through a noninvasive nasal delivery

method, for the treatment of neuroinflammatory diseases.

Herein the authors showed that exosome-mediated delivery of

curcumin and an inhibitor of signal transducer and activator of

transcription selectively and rapidly targeted themicroglia, and

significantly mitigated disease pathogenesis in three experi-

mental models of neuroinflammation. This study highlights a

novel and a noninvasive therapeutic approach for drug

delivery into the CNS. A review by Andaloussi et al.128 covers

the potential for exosomes as a delivery system for transport-

ing siRNAs across biological barriers such as the blood–brain

barrier. Exosomes-containing siRNAs could provide a means

of targeted therapeutic delivery into areas that are difficult to

traverse, such as the brain.129,130 The ability to non-invasively

deliver therapeutic exosomes to the CNS, with cell-specific

targeting, could provide a potential therapeutic approach for

the treatment and eradication of HIV-associated neurocogni-

tive disorders by targeting the latent reservoirs in the CNS.

Indeed, the application of exosomal delivery of natural HIV-

defense molecules to host cells has been shown to establish

HIV resistance to uninfected cells of vif-deficient HIV

infection.131 Combining noninvasive therapies with siRNA

targeting to HIV-1/HIV proteins could, thus, provide new

therapeutic approaches to treat HIV-associated end-organ

pathologies. Delivery of HIV gene-specific siRNA to infected

cells could control virus infection and could be considered as

adjunctive treatment(s) in combination with other therapeutic

modalities. An elegant review by Vlassov et al.
132 covering a

broader view of exosome therapeutics, including their use

against tumors, sets the stage for future work. Further studies

on specific applications of exosome-mediated therapeutic

delivery to specific cells are warranted in the field.

Intriguingly, assessment of the specific, signature contents of

disease-specific exosomes could provide useful information for

future development of exosome-based therapeutics. Indeed,

exosomes from milk, but not plasma, have been shown to

contain inhibitory factors for HIV-1 infection of monocyte-

derived dendritic cells (MDDCs) and for the subsequent viral

transfer to CD4 T cells through binding of MDDCs via DC-

SIGN.133 In addition, there are several reports highlighting the

potential for delivery of modifiedmiRNAs and normal siRNAs to

specific targets via the exosomes.129,130,134,135Formore details

please refer to the comprehensive review on the specific

potential of targeting HIVand exosomal miRNAs as therapeutic

approaches.8,136,137

Besides the targeting of exosomal contents, the exosome

itself could be a potential therapeutic target. It is well docu-

mented that accumulation of reactive oxygen species under-

lies PD-associated neuroinflammation and neurotoxicity.138

Exosomes loadedwith either antioxidant enzyme catalase or a

plasmid DNA-encoding catalase have been used to reduce

neuroinflammatory responses and exert neuroprotective

effects.139,140 Similarly, neurotropic factors that improve

neuronal functioning can also be developed as potential

therapeutic cargos for exosomal delivery. Along these lines

Zhao et al. have demonstrated that delivery of macrophage

exosomes containing glial cell line-derived neurotropic factor

ameliorated neurodegeneration and neuroinflammation in

PD mice.141

Conclusions

In summary the exponential growth in our understanding of

exosome biogenesis, composition, function and their use

continues to provide new insights into the normal physiology

as well as disease processes. These small vesicles are

secreted by many cell types, including all of the CNS cells, and

are a key component for cell–cell communication. They have

crucial roles in various diseases including cancer metastasis.

This review focuses mainly on the possible link between

exosomes, HIV-1 pathogenesis and HIV-associated CNS

disease. The ability to target exosomes involved in HIV-1

pathogenesis could provide a new means of controlling

infection, which in turn, could help to curtail many of the

commonly associated complications of the CNS. Further

studies are needed concerning the application of exosome

therapeutics, involving the use of these vesicles as a drug

delivery conduits and as therapeutic targets themselves, in the

context of battling HIV-1 infection and its associated end-organ

pathologies.
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