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Gynecological cancers seriously affect the reproductive system of females; diseases
include ovarian tumors, uterine tumors, endometrial cancers, cervical cancers, and vulva
and vaginal tumors. At present, the diagnosis methods of gynecological cancer are
insufficiently sensitive and specific, leading to failure of early disease detection. N6-
methyladenosine (m6A) plays various biological functions in RNA modification and is
currently studied extensively. m6A modification controls the fate of transcripts and
regulates RNA metabolism and biological processes through the interaction of m6A
methyltransferase (“writer”) and demethylase (“erasers”) and the binding protein decoding
m6A methylation (“readers”). In the field of epigenetics, m6A modification is a dynamic
process of reversible regulation of target RNA through its regulatory factors. It plays an
important role in many diseases, especially cancer. However, its role in gynecologic
cancers has not been fully investigated. Thus, we review the regulatory mechanism,
biological functions, and therapeutic prospects of m6A RNA methylation regulators in
gynecological cancers.

Keywords: gynecological cancer, N6-methyladenosine (m6A), epigenetics, cervical cancer, endometrial cancer,
ovarian cancer
1 INTRODUCTION

Gynecological cancers are a series of tumors that seriously damage the female reproductive system;
diseases include ovarian cancer, uterine cancer, endometrial cancer, cervical cancer, and vulva and
vaginal cancer (1). Gynecological cancers become a serious global public health challenge due to
their high incidence in women of all ages (2). Among them, ovarian cancer, endometrial cancer, and
cervical cancer are the most common gynecological tumors. Considerable studies have shown that
the occurrence and development of gynecological cancers are related to the activation of oncogenes,
the inactivation of tumor suppressor genes, and the activation of abnormal cell signaling pathways.
In addition, epigenetic processes regulate gene expression through DNA methylation, histone
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modification, and noncoding RNA, thereby affecting the
occurrence and development of gynecological cancer (3).

Ovarian cancer is one of the most common malignant tumors
in women (3). It has the characteristic of insidious onset and has
no specific clinical symptoms in the early stage of the disease.
Moreover, sensitive and effective clinical screening methods for
ovarian cancer are currently limited, and approximately 70% of
patients are advanced at the time of diagnosis (4). According to
the American Cancer Society, the United States records
approximately 21,000 new cases of ovarian Cancer each year,
accounting for 5% of all female malignancies, with a mortality
rate of 62% and a five-year survival rate of 20%–30%, seriously
affecting women’s health (5). At present, the pathogenesis of
ovarian cancer is still unclear. The development of epigenetics
provides new means to discover specific biomarkers and
treatment methods, which greatly improve the diagnosis and
treatment prospects of ovarian cancer.

Cervical cancer is the fourth most common female
malignancy in the world and a leading cause of cancer-related
death in women (6, 7). Cervical cancer is diagnosed in more than
500,000 patients worldwide each year and leads to more than
300,000 deaths (8, 9). Although HPV vaccination is effective in
preventing cervical cancer, it remains the fourth most common
cancer among women globally due to inadequate screening
programs in many parts of the world (10, 11). Despite the
continuous innovation of radiotherapy and/or chemotherapy
on the basis of surgery, early lymph node metastasis still
occurs in some patients with cervical cancer, resulting in poor
prognosis and low survival rate. The five-year survival rate is still
approximately 40%, posing a serious threat to women’s health
(12–15). Thus, elucidating the molecular mechanism of cervical
cancer occurrence and metastasis has great clinical importance.

Endometrial cancer, as one of the most common
gynecological cancers, has become the fourth most common
malignant tumor and the fifth most common cause of death
among women in the United States (16, 17). According to WHO
statistics in 2021, the total incidence of endometrial cancer in the
United States was 7%, with 66,570 new cases (5). Despite
advances in drugs and surgical treatments for endometrial
cancer, recent studies have shown that survival rates for
endometrial cancer have not improved significantly, but death
rates have increased. Thus, improving the ability to identify the
prognostic risk factors of endometrial cancer and formulating
reasonable new treatment plans are greatly important for
improving the survival rate and prognosis of patients with
endometrial cancer (18). In recent years, the study of tumor
genesis, intracellular signaling pathway changes, and epigenetics
in tumor microenvironment has developed rapidly, providing a
new means for the discovery of specific biomarkers and
therapeutic methods (19).

m6A methylation was first identified in 1974 and
subsequently proven to be the most common and abundant
RNAmodification in eukaryotic cells (20). m6A modification not
only exists in mRNA, but also in various noncoding RNAs (21,
22). m6A modification affects cell function by regulating the
function and metabolism of RNA; it is involved in various
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pathophysiological processes, such as cell division, immune
regulation, and regulation of the occurrence of various cancers
(23, 24). A large number of studies have shown that m6A
modification is related to the proliferation, differentiation,
tumorigenesis, invasion, and metastasis of gynecological
cancers; it can function as an oncogene or anticancer gene
(25–28). Here, we comprehensively review the modification of
m6A and analyze the potential molecular mechanism of m6A in
gynecological cancers. The prospect of m6A modification as a
new marker and therapeutic target for gynecological cancer was
further clarified.
2 MOLECULAR MECHANISMS OF
M6A MODIFICATION

2.1 m6A Writers
Modification of m6A is dynamic and reversible, and
methyltransferases (writers) are mainly composed of KIAA1429
(VIRMA), METTL3, RBM15, WTAP, ZC3H13, METTL16,
METTL14, and CBLL1 (29). KIAA1429, also known as Virlike
m6A methyltransferase-associated protein (VIRMA), a newly
identified component of the RNA m6A methyltransferase
complex, plays a key role in guiding regionally selective m6A
deposition (30). Meanwhile, it regulates the expression of sex-
lethal genes by selective splicing of premRNA with WTAP (31).
Interestingly, METTL14 and METTL3, as core components of
m6A methyltransferase, form A stable METTL3-METTL14
heterodimer core complex, which plays A role in cell m6A
deposition on mammalian nuclear RNA (32). As a mammalian
splicing factor, WTAP has no methylation activity by itself, but
can interact with METTL14/METTL3 complex and affect
methylation (32). In addition, WTAP is a regulatory subunit
required for the formation of the m6A methyltransferase complex
(including METTL3 and METTL14), which plays an important
role in gene expression regulation and alternative splicing.
Moreover, in vivo localization to pre-mRNA rich nuclear spots
and catalytic m6A methyl transferase activity. In the absence of
WTAP, the RNA binding ability of METTL3 was significantly
weakened (33).The main feature of METTL3 and METTL14 is
that they contain methyltransferase domains (S-adenosine
methylene thiocyanine binding motifs, SAM-binding), which
transfer methyl groups to adenosine at N6 (34, 35). RBM15, an
RNA-binding protein, is involved in m6A modification and the
regulation of alternative splicing (AS) through the regulation of
Notch, Wnt, and other signaling pathways; it has inhibitory
functions in multiple signaling pathways (36). ZC3H13 is a
typical CCCH zinc finger protein, which acts as a tumor
suppressor and inhibits tumor development by regulating Ras-
ERK signaling pathway (37). METTTL16 is an emerging player in
the field of RNA modification in human cells. Originally thought
to be a ribosomal RNA methyltransferase, it has currently been
shown to bind and methylate MAT2A messenger RNA (mRNA)
and U6 small nuclear RNA (snRNA) (38). Casitas B family
lymphoma transforming sequence-like protein 1 (CBLL1), also
January 2022 | Volume 12 | Article 827956
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known as Hakai, was originally identified as the E3 ubiquitin
ligase of the E-cadherin complex (39). The molecular mechanisms
of m6A writers as show in Figure 1.

2.2 m6A Erasers
Thus far, only two m6A demethylases have been identified,
namely, ALKBH5 and FTO (40). ALKHB5 is a member of the
AlkB family and plays an important regulatory role in many
biological processes, such as mRNA modification and regulation
(41, 42). ALKBH5 also plays a regulatory role in the occurrence
and development of tumors (41). For example, ALKBH5 inhibits
pancreatic cancer by decreasing WIF-1 RNA methylation and
mediating Wnt signaling (43). ALKBH5 promotes the invasion
and metastasis of gastric cancer by reducing the methylation of
lncRNA NEAT1 (44). At the same time, autophagy in epithelial
ovarian cancer was inhibited by miR-7 and Bcl-2 (45). In
addition, ALKBH5 can regulate the expression of PD-L1 in
cholangiocarcinoma, promote the expression of PD-L1 on
monocytes/macrophages, and reduce the infiltration of bone
marrow-derived inhibitory cells, making tumors with strong
ALKBH5 nuclear expression pattern more sensitive to PD1
immunotherapy (46). Fat mass and obesity-related protein
(FTO), as the first m6A demethylase responsible for RNA
modification in cells, is involved in various physiological
processes, and its dysregulation is closely related to various
human diseases, especially the occurrence and development of
Frontiers in Oncology | www.frontiersin.org 3
tumors (47). The FTO gene was originally identified as being
involved in obesity and type 2 diabetes. This gene encodes the
FTO protein, belonging to the AlkB dioxygenase family
dependent on Fe2+ and 2-oxoglutarate (2OG) (48). FTO shows
complex biological functions in physiological process, and its
disorder is related to various human diseases (49). The molecular
mechanisms of m6A erasers as show in Figure 1.

2.3 m6A Readers
m6A binding protein, composed of YT521-B homolog (YTH)
domain protein, is mainly composed of HNRNP family
(HNRNPA2/B1, HNRNPC, and HNRNPG) and YTH domain
protein family (YTHDC1, YTHDC2, YTHDF1, YTHDF2, and
YTHDF3). In addition, it includes FXR, IGF2BP, eIF, and G3BP
family members (50). Heterogeneous nuclear ribonucleoproteins
(hnRNPs) represent a large family of RNA-binding proteins
(RBPs) that play roles in nucleic acid metabolism including
selective splicing, mRNA stabilization, transcription, and
translation regulation (51). The expression levels of hnRNPs
are altered in many types of cancer, suggesting that they play an
important regulatory role in tumorigenesis. The YTH domain
recognizes m6A modifications through a conserved aromatic
ring. This RNA binding domain is dependent on m6A
modification (52). Reading proteins recognize and read
information from m6A RNA in a methylation-dependent
manner. YTHDC1-2 and YTHDF1-3 are the main intracellular
FIGURE 1 | The molecular mechanisms of m6A modification in cancers. m6A modification is a dynamic and reversible process. m6A methylation is catalysed by
methyltransferase complex (writers), reversed by demethylases (erasers) and functionally facilitated by m6A-binding proteins (readers). m6A methylation participates in
carcinogenesis and tumor progression.
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proteins in the human body. YTHDC2 is located in the
cytoplasm of meiosis spermatocytes, and YTHDF1-3 mainly
recognizes the information of m6A methylation in the
cytoplasm (53, 54). The five proteins not only contain the
same domain, but also have special domains that determine
their different roles. The molecular mechanisms of m6A readers
as show in Figure 1.
3 M6A AND CANCERS

Previous studies have shown that the role of m6A methylation
regulators in carcinogenesis and tumor progression is mainly
achieved by regulating oncogene expression and inhibiting gene
expression (40). m6A methylation regulator plays a “double-
edged sword” role in tumor progression, which can promote the
expression of oncogenes and inhibit the expression of oncogenes
to promote tumor progression or the expression of oncogenes
and inhibit the expression of oncogenes to inhibit tumor
progression (55). With the deepening of studies on m6A
methylation, the pathophysiological processes of m6A
modification and regulation also expand, including mRNA
regula t ion, immune regulat ion, b iorhythm, neural
development, and autophagy (21, 56). The dual role of m6A in
cancer is increasingly recognized (57, 58). On the one hand, m6A
regulates the expression of oncogenes or tumor suppressor genes,
thereby affecting tumor progression. On the other hand, the level
of m6A and the expression and activity of m6A enzyme can be
regulated, affecting the role of m6A in cancer (58). Thus, m6A
methylation regulator is expected to be a potential target for
cancer therapy. The relationship between m6A modification and
various gynecological cancers is reviewed, and the role of m6A
regulatory factors in different gynecological cancers is
further clarified.

3.1 m6A in Cervical Cancer
3.1.1 Function of m6A on mRNA in Cervical Cancer
Post-expression regulation of genes is mainly carried out in four
aspects, namely, transcription, post-transcription, translation,
and post-translation. m6A modification is mainly manifested in
the RNA transcription process, which regulates gene expression
after RNA transcription by modifying the structure of RNA or
specific binding in the form of binding protein (59). As an
important m6A “reader”, YTHDF1 regulates the fate of m6A-
modified mRNA. Studies have found that the up-regulation of
YTHDF1 in cervical cancer is closely related to the poor
prognosis of cervical cancer patients. YTHDF1 regulates
RANBP2 translation in an m6A-dependent manner without
affecting its mRNA expression. RANBP2 can promote the
growth, migration, and invasion of cervical cancer cells. Thus,
YTHDF1 has a carcinogenic effect in cervical cancer by
regulating the expression of RANBP2, and YTHDF1 is a
potential target for cervical cancer treatment (26). YTHDF2, as
another member of the YTH domain protein family, is also up-
regulated in cervical cancer, and the higher expression in cervical
cancer indicates shorter survival time. After YTHDF2
Frontiers in Oncology | www.frontiersin.org 4
knockdown, the proliferation of cervical cancer cells was
transplanted to promote cell apoptosis, and the tumor cells
stagnated in the S phase (60).

In addition to m6A “readers” that play an important
regulatory role in cervical cancer, m6A “writers” play an
important regulatory role in the occurrence and progression of
cervical cancer. For example, METTL3 is significantly up-
regulated in cervical cancer tissues and cells; it is closely
associated with lymph node metastasis and poor prognosis in
cervical cancer patients. Moreover, METTL3 can promote the
proliferation and decrease apoptosis of cervical cancer cells in
vitro. METTL3 promotes the proliferation and aerobic glycolysis
of cervical cancer cells by targeting the 3’ -untranslated region
(3’-UTR) of hexokinase 2 (HK2) mRNA. In addition, METTL3
in combination with YTHDF1 enhances the stability of HK2.
These data suggest that METTTL3 may be a carcinogenic factor
in the development of cervical tumors. In the existing studies, the
role of METTTL3 in aerobic glycolysis of tumors is rarely
reported. Thus, METTTL3 regulates the stability of HK2
mRNA by recruiting YTHDF1 and acts as a carcinogen by
accelerating glycolysis through the YTHDF1/HK2 axis, which
provides a potential prognostic biomarker for cervical cancer
treatment (61). FTO mRNA level, as an m6A demethylase, is up-
regulated in cervical cancer tissues, and FTO regulates
chemotherapy resistance of cervical squamous cell carcinoma
(CSCC) through mRNA demethylation targeting b-catenin. FTO
regulates b-catenin expression by reducing m6A level in b-
catenin mRNA transcripts. Furthermore, the excision repair
cross-complementary group 1 (ERCC1) activity was improved
to enhance chemotherapy and radiotherapy resistance in vitro
and in vivo (62). In addition, Li et al. found that TATA binding
protein (TBP) can increase the expression of METTL3 in cervical
cancer cells by binding to the promoter of METTL3. In vivo and
clinical data confirm that m6A/PDK4 plays an active role in the
growth and progression of cervical cancer and liver cancer.
Furthermore, m6A regulates glycolysis of cancer cells through
PDK4, and the methylation of PDK4 is regulating the stability
and translation of its mRNA, thereby regulating glycolysis in
cancer cells (63). The roles of different m6A regulators in
regulating RNAs in cervical cancer are shown in Figure 2
and Table 1.

3.1.2 Function of m6A on ncRNA In Cervical Cancer
Noncoding RNAs (ncRNAs) have been shown to be involved in
the development and progression of cervical cancer (65). Circ-
RNAs are a class of ncRNAs with covalently closed circular
structures, which are generated by reverse splicing of exon
precursor mRNA or lasso intron splicing (70, 71). The most
studied function of circ-RNA is being a major regulator of gene
expression, and its role is to isolate or “sponge” other gene
expression regulators, especially miRNAs. They have also been
shown to work by directly regulating transcription and
interfering with splicing mechanisms (72). At present, with the
deepening of people’s understanding of cervical cancer, the
pathogenesis of circ-RNA in cervical cancer is widely studied.
Fei et al. found, by analyzing cervical cancer RNA sequencing
January 2022 | Volume 12 | Article 827956
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FIGURE 2 | The roles of different m6A regulators in regulating RNAs in cervical cancer. (A) m6A methylation regulators METTL3, FTO and YTHDF1 promote the
invasion and metastasis of cervical cancer by binding to mRNA and regulating mRNA expression. (B) m6A methylation regulators METTL3 and IGF2BP2 promote the
invasion and metastasis of cervical cancer by binding to circRNA and regulating target genes expression. (C) m6A methylation regulators METTL3, ALKBH5 and
IGF2BP3 promote/inhibit the invasion and metastasis of cervical cancer by binding to lncRNA and regulating target genes expression. (D) m6A methylation regulators
METTL3 inhibit the invasion and metastasis of cervical cancer by binding to lncRNA and regulating target genes expression.
TABLE 1 | The roles of different m6A regulators in regulating RNAs in cervical cancer.

m6A
regulators

Genes/RNAs Cell lines Location Role Mechanism Function References

YTHDF1 RANBP2 HEK293T, Hela, SiHa mRNA Oncogene Enhance expression of RANBP2 Promote cervical cancer
tumorigenesis and metastasis

(26)

METTL3 HK2 CaSki, SiHa, C33A, HT-
3, HaCaT

mRNA Oncogene Enhance expression of HK2 Promote cervical cancer
tumorigenesis and aerobic
glycolysis

(61)

FTO b-catenin SiHa, c-33a mRNA Oncogene down-regulated expression of b-
catenin

Enhance the activity of
ERCC1

(62)

METTTL3 PDK4 HeLa, SiHa, Huh7,
HepG2, MDA-MB-231,
ECT1/E6E7

mRNA Oncogene TBP promotes the expression of
METTL3

Regulating glycolysis in
cancer cells

(63)

IGF2BP2 circARHGAP12 HaCaT, HT-3, CaSki,
C33A, SiHa

CircRNA Oncogene Enhanced the stability of FOXM1
mRNA

Promote cervical cancer
tumorigenesis and metastasis

(64)

METTTL3 circ_0000069 SiHa, Caski, C33A,
Ect1, 293T

CircRNA Oncogene Inhibit the expression of miR-4426 Promote cervical cancer
tumorigenesis and metastasis

(65)

ALKBH5 LncRNA
GAS5-AS1

Caski, SiHa, C33A,
HeLa, HCvEpC

LncRNA Tumor
suppressor

Decreasing GAS5 N6-methyladenosine
m(6)A modification

Reduced cervical cancer
tumorigenesis and metastasis

(66)

IGF2BP3 KCNMB2-AS1 SiHa, HeLa, LncRNA Oncogene KCNMB2-AS1 competed with miR-
130b-5p and miR-4294 and up-
regulated IGF2BP3

Promote cervical cancer
tumorigenesis and metastasis

(67)

METLL3 ZFAS1 Hela, SiHa, C33A,
CaSki, 293T

LncRNA Oncogene ZAFS1 sequestered miR-647 and
regulated by METLL3

Promote cervical cancer
tumorigenesis and metastasis

(68)

METLL3 miR-193b Siha, Hela miRNA Tumor
suppressor

By targeting CCND1 Reduced cervical cancer
tumorigenesis and metastasis

(69)
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data, that a new m6A modified circ-RNA (circARHGAP12,
hsa_circ_0000231) was up-regulated in cervical cancer tissues
and cells. Further studies found that circARHGAP12 can
promote tumor progression of cervical cancer. In addition,
circARHGAP12 interacts with m6A reader IGF2BP2 to bind to
FOXM1 mRNA and enhance the stability of FOXM1 mRNA
(64). Another circ-RNA (hsa_circ_0000069) was also regulated
by m6A modification. Hsa_circ_0000069 expression was up-
regulated in cervical cancer, and m6A modification enhanced
the stability of circ_0000069. The proliferation and migration
of cervical cancer cells were promoted by inhibiting miR-4426
(65). miR-4426 expression in cervical cancer cells was down-
regulated due to the up-regulation of circ_0000069. Therefore,
m6A modification indirectly inhibits the expression of miR-4426,
which in turn inhibits cell proliferation and migration. However,
the downstream targets of miR-4426 remain unclear.

Long ncRNAs (LncRNAs), a group of large transcripts (more
than 200 nucleotides in length) without protein-coding potential,
play an important role in various human diseases, including
cancer. LncRNAs are involved in various pathophysiological
processes, such as cell proliferation, migration, invasion,
apoptosis, and chemotherapy resistance (73). m6A modification
is the most abundant internal modification of RNA and exists in
various RNAs, such as mRNA and lncRNA. At present, only few
lncRNAs have been functionally verified in cervical cancer,
especially those regulated by m6A modification. For example,
the expression of lncRNA GAS5-AS1 is significantly down-
regulated in cervical cancer tissues, and studies have found that
the down-regulation of GAS5-AS1 is significantly correlated with
late, distant, lymphatic metastasis, and poor prognosis of FIGO in
cervical cancer patients. Moreover, GAS5-AS1 interacts with
ALKBH5, which reduces the m6A modification of GAS5 and
increases its stability, revealing the important mechanism of
epigenetic changes in the occurrence and metastasis of cervical
cancer (66). Another lncRNA, KCNMB2-AS1, is significantly
overexpressed in cervical cancer and is associated with poor
prognosis. KCNMB2-AS1 is predominantly located in the
cytoplasm, and leads to upregulation of IGF2BP3, which is a
proven oncogene in cervical cancer, as endogenous RNA
competes with a large number of miR-130b-5p and miR-4294.
In addition, IGF2BP3 binds to KCNMB2-AS1 via three m6A
modification sites on KCNMB2-AS1. IGF2BP3, as the “reader” of
m6A, plays a stabilizing role in KCNMB2-AS1 and promotes the
occurrence and development of cervical cancer (67). LncRNA
ZFAS1 has been observed to be abnormally expressed in cervical
carcinoma (74). Yang et al. found that the expression of ZFAS1
was up-regulated in cervical cancer, and the up-regulation of
ZFAS1 was correlated with FIGO stage, lymph node, and distant
metastasis. This finding also suggested that the overall survival of
cervical cancer patients was poor (68). In addition, ZAFS1
isolated miR-647, an RNA–RNA interaction regulated by
METTL3-mediated m6A modification. Another study found
that METTL3 enhanced the stability of lncRNA FOXD2-AS1
and maintained its expression, and promoted the development of
cervical cancer. FOXD2-AS1 is significantly up-regulated in
cervical cancer cells and tissues, which is closely associated with
Frontiers in Oncology | www.frontiersin.org 6
poor prognosis. Moreover, FOXD2-AS1 promotes the migration
and proliferation of cervical cancer cells. Mechanistically,
METTL3 enhances the stability of FOXD2-AS1 and maintains
its expression. Meanwhile, FOXD2-AS1 recruits LSD1 to be
silenced on the promoter of P21, thus accelerating the
progression of cervical cancer (75).

MiRNAs are small ncRNAs (18-24 nucleotides) that negatively
regulate gene expression by binding to target mRNA in the 3
‘-untranslated region (UTR) during the post-transcriptional stage.
Many physiological and pathophysiological processes, including
cancer, are affected by miRNA activity (76). Huang et al. found
from the cervical cancer specimens that the low expression of
miR-193b was closely related to cervical cancer staging and
interstitial invasion. miR-193b, as a tumor suppressor, is
regulated by the m6A methylation regulator METTL3 in cervical
cancer. miR-193b inhibits the occurrence and development of
cervical cancer by targeting CCND1 (69). Currently, studies on
how m6A regulates miRNA expression in cervical cancer are
relatively few, and more studies are still required to further
reveal the regulatory mechanism of m6A in miRNA.

3.1.3 Prognostic Effect of m6A RNA Methylation
Regulators on Cervical Cancer
Worldwide, cervical cancer remains one of the most common
type of cancer with a major treatment challenge facing mankind
(77). The carcinogenesis of cervical cancer is a complex multistep
process characterized by a wide range of molecular abnormalities,
providing many potential therapeutic targets. Understanding
the mechanism of these molecules is crucial for their potential
therapeutic uses (78, 79). In recent years, RNAmodification plays
an important role in various biological processes, and its
abnormal regulation has become an important factor affecting
the occurrence and development of tumors. Several m6A RNA
methylation regulators have been found to be prognostic
factors for various cancers (80, 81). Wu et al. compared the
differential expression of 20 m6A RNA methylation regulators in
cervical cancer tissues by using RNA sequence data and clinical
information in TCGA database. Among them, five m6A RNA
methylation regulators (FTO, HNRNPA2B1, RBM15, IGF2BP1,
and IGF2BP3) were significantly correlated with the status of
cervical cancer. In addition, six m6A RNAmethylation regulators
(YTHDC2, YTHDC1, ALKBH5, ZC3H13, RBMX, and YTHDF1)
were selected to construct risk markers. The overall survival of
cervical cancer patients in the high-risk group was significantly
lower than that in the low-risk group, with an area under the
curve (AUC) of 0.718. Thus, this risk model can be used as an
independent prognostic factor for cervical cancer patients; it can
predict the overall survival of cervical cancer patients with
different clinical factors (82). METTL3 is a member of the m6A
methyltransferase family, which acts as an oncogene in cancer. Ni
et al. found that METTL3 and CD33(+) MDSCs were up-
regulated in cervical cancer tissues by analyzing paraffin-
embedded tumor specimens from 197 patients with cervical
cancer. METTTL3 expression was positively correlated with
CD33(+) cell density in tumor tissues. Meanwhile, METTL3
level in tumor microenvironment was significantly correlated
January 2022 | Volume 12 | Article 827956
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with tumor-advanced stage. The levels of METTTL3 and
CD33(+) MDSCs in tumor tissue were significantly correlated
with the reduction of DFS or OS. Thus, Cox model analysis
showed that the METTL3 level in cervical cancer cells was an
independent factor for patient survival (83). Pan et al. obtained
clinical and survival data and RNA sequencing data of 13 m6A
RNA methylation regulators from the TCGA database.
Consensus cluster analysis was performed to identify different
cervical cancer clusters according to the expression differences of
regulatory factors. Four regulatory factors (RBM15, METTTL3,
FTO, and YTHDF2) were abnormally expressed in cervical
cancer tissues. LASSO Cox regression analysis showed that
ZC3H13, YTHDC1, and YTHDF1 were independent prognostic
indicators of cervical cancer (84).
3.2 m6A in Endometrial Cancer
3.2.1 Function of m6A on mRNA in
Endometrial Cancer
m6A dynamic methylation mRNA may affect cell physiology,
especially key transcripts, which may lead to significant changes
in biological functions (49). In recent years, studies have shown
that m6A modified mRNA methylation plays an important role in
cell proliferation and tumorigenicity of endometrial cancer, and
the decrease or increase in m6A mRNA methylation is likely to be
the carcinogenic mechanism of most endometrial cancer,
promoting the occurrence and development of endometrial
cancer (27). m6A-dependent mRNA regulation affects various
biological processes in endometrial cancer and is involved in the
regulation of RNA structure, translation, and degradation (85).
ALKBH5, an RNA demethylase, is significantly up-regulated in
endometrial carcinoma and promotes the proliferation and
invasion of endometrial carcinoma. Studies have shown that
ALKBH5 mainly regulates the demethylation of target gene
IGF1R and enhances the stability of IGF1R mRNA, thereby
promoting IGF1R translation and activating IGF1R signaling
pathway. It further promotes the proliferation and invasion of
endometrial cancer, suggesting a potential therapeutic target for
endometrial cancer (27). FTO, another demethylase, can eliminate
m6A modification and regulate the metabolism of mRNA.
Although many studies have confirmed the relationship between
obesity and endometrial cancer, the molecular mechanism of
obesity and endometrial cancer progression has not been
clarified. Zhang et al. found that the expression of FTO was up-
regulated in endometrial cancer, and this effect promoted the
metastasis and invasion of endometrial cancer. In addition, FTO
catalyzed the demethylation of the 3’UTR region of HOXB13
mRNA, thereby eliminating the recognition of m6A modification
from YTHDF2 protein. Decreased mRNA attenuation of
HOXB13 leads to increased protein expression, whereas WNT
signaling pathway activation and downstream protein expression
lead to metastasis and invasion of endometrial carcinoma (86).

In addition to demethylase, methyltransferase plays an
important role in the development of endometrial carcinoma.
Liu et al. found that approximately 70% of tumor samples from
patients with endometrial cancer showed decreased m6A levels,
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either due to reduced METTL3 expression or loss of functional
mutations in METTL14. METTL14 mutations and METTL3
downregulation down-regulated m6A mRNA methylation
levels and enhanced endometrial carcinoma proliferation and
tumorigenicity. In addition, downregulation of m6A methylation
decreases the expression of the negative AKT regulator PHLPP2
and increases the expression of the positive AKT regulator
mTORC2, thereby activating the AKT pathway. Therefore,
m6A modification mediated by METTL14 and METTL3 is a
regulator of the AKT signaling pathway (87). In addition, the
expression of m6A reader protein YTHDF2 was significantly up-
regulated in endometrial cancer. YTHDF2 promoted the
degradation of IRS1 mRNA by binding to the methylation site
of the target transcript of IRS1, thereby inhibiting the expression
of IRS1, inhibiting the IRS1/AKT signaling pathway, and
ultimately inhibiting the tumorigenicity of endometrial cancer
(88). IGF2BP1 belongs to the IGF2BP family. Studies have shown
that IGF2BP1 is involved in the regulation of mRNA and affects
the function of tumor cells (89). Zhang et al. found that up-
regulation of IGF2BP1 expression in endometrial cancer is a
factor affecting patient survival. Moreover, IGF2BP1 enhances
PEG10 expression and promotes endometrial cancer cell
proliferation by recognizing the m6A site of PEG10 mRNA
(90). Another study found that PADI2-catalyzed MEK1
citrulline activates ERK1/2 and promotes IGF2BP1-mediated
SOX2 mRNA stability. PADI2-catalyzed MEK1 R113/189
citrulline is a key factor in endometrial cancer. These findings
suggest that targeting PADI2/MEK1 may be a potential therapy
for endometrial cancer patients (91). The roles of different m6A
regulators in regulating RNAs in endometrial cancer are shown
in Figure 3 and Table 2.

3.2.2 Function of m6A on ncRNA in
Endometrial Cancer
Abnormal regulation of ncRNA has been shown to be closely
associated with the progression of endometrial cancer. At
present, the study on the relationship between m6A and
ncRNA in endometrial cancer is still in the early stage. Shen
et al. studied 60 cases of endometrial carcinoma from tumor
tissues, cell lines, and xenograft mouse models. He found that the
LncRNA FENDRR expression level decreased and the m6A
methylation level increased in the cancer tissues of patients
with endometrial cancer. In vitro experiments showed that
YTHDF2 could recognize the abundance of m6A modified
LncRNA FENDRR in endometrial cancer cells and promote its
degradation. Overexpression of LncRNA FENDRR inhibited the
proliferation and promoted apoptosis of HEC-1B cells by
reducing the mRNA level of SRY-related HMG box
transcription factor 4 (SOX4) protein. In vivo experiments
confirmed that LncRNA FENDRR overexpression inhibited the
growth of endometrial cancer cells. Therefore, in endometrial
cancer, the m6A modification level of lncRNA FENDRR is
increased, and YTHDF2 is recruited to promote the
degradation of FENDRR. Subsequently, the downregulation of
FENDRR leads to the accumulation of SOX4 protein, thereby
promoting the proliferation of EEC cells (92).
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3.2.3 Prognostic Effect of m6A RNA Methylation
Regulators on Endometrial Cancer
Endometrial cancer is the sixth most common cancer in women
worldwide. The expression level of m6A regulatory factor may be
used for stratification of cancer prognosis, including endometrial
cancer. Wang et al. determined, by analyzing matched clinical
information from the TCGA database of endometrial cancer
patients, that replication number variations (CNVs) in the m6A
regulatory gene had a significant negative impact on patient
survival. Univariate Cox regression analysis showed that
IGF2BP1, KIAA1429, IGF2BP3, YTHDF3, and IGF2BP2 were
closely related to the survival and prognosis of endometrial
cancer patients. Among them, IGF2BP3, KIAA1429, and
IGF2BP1 can effectively predict the prognosis of patients (93).
In addition, Pang et al. found that IGF2BP1 and YTHDF3 had a
strong ability to stratify the prognosis of different endometrial
Frontiers in Oncology | www.frontiersin.org 8
cancer patients (94). Song et al. downloaded the human
endometrial carcinoma m6A sequencing dataset “GSE93911”
from the comprehensive gene expression database. A total of
181 genes with significantly differentially expressed and
differentially methylated loci in endometrial carcinoma were
screened. Among them, 31 genes were associated with survival,
and 11 genes were identified as risk prognosis models, including
GDF7, BNC2, SLC8A1, B4GALNT3, DHCR24, ESRP1, HOXB9,
IGSF9, KIAA1324, MSnX1, and PHGDH (95). In addition, Ma
et al. analyzed the sequences, copy number variation, and clinical
data obtained from the TCGA database. The changes in the m6A
RNA methylation regulators are closely related to the
clinicopathological stage and prognosis of endometrial
carcinoma. Among them, ZC3H13, YTHDC1, and METTTL14
have been identified as potential markers for the diagnosis and
prognosis of endometrial cancer. TIMER algorithm suggested
TABLE 2 | The roles of different m6A regulators in regulating RNAs in endometrial cancer.

m6A
regulators

Genes/
RNAs

Cell lines Location Role Mechanism Function References

ALKBH5 IGF1R HEC-1-A, RL95-2, T-HESCs mRNA Oncogene Enhance expression of IGF1R Promote endometrial cancer
tumorigenesis and metastasis

(27)

FTO HOXB13 AN3CA, KLE mRNA Oncogene Enhance expression of HOXB13 and
activate the WNT signaling pathway

Promote endometrial cancer
tumorigenesis and metastasis

(86)

YTHDF2 IRS1 HEC-1-A, RL95-2, T-HESCs mRNA Tumor
suppressor

Degrade IRS1 mRNA, Inhibition of
IRS1/AKT signaling pathway

Inhibit the tumorigenicity of
endometrial carcinoma

(88)

IGF2BP1 PEG10 Ishikawa, HEC-1-A, HEC-1-
B, RL-95-2, AN3CA, KLE

mRNA Oncogene Enhance expression of PEG10 Promote endometrial cancer
tumorigenesis and metastasis

(90)

IGF2BP1 SOX2 Ishikawa, ECC-1, HEK293 mRNA Oncogene Enhance expression of SOX2 Promote endometrial cancer
tumorigenesis and metastasis

(91)

YTHDF2 FENDRR Ishikawa, HEC-1-B LncRNA Oncogene Degrade LncRNA FENDRR Promote endometrial cancer
tumorigenesis and metastasis

(92)
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FIGURE 3 | The roles of different m6A regulators in regulating RNAs in endometrial cancer. (A) m6A methylation regulators ALKBH5, FTO, IGF2BP1 and YTHDF2
promote/inhibit the invasion and metastasis of endometrial cancer by binding to mRNA and regulating mRNA expression. (B) m6A methylation regulators YTHDF2
promote the invasion and metastasis of endometrial cancer by binding to lncRNA-FENDRR and down- regulating lncRNA-FENDRR expression.
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that immune cell infiltration was related to the expression
changes of ZC3H13, YTHDC1, and METTTL14. Meanwhile,
ZC3H13 or YTHDC1 knockdown can promote the proliferation
and invasion of endometrial cancer cells (96). Zhai et al. analyzed
406 cases of endometrial adenocarcinoma and 19 controls using
a TCGA dataset. FTO, RBM15, and YTHDF1 were identified as
independent prognostic markers for endometrial cancer, and
FTO and RBM15 were differentially expressed between
endometrial adenocarcinoma and hyperplasia. These data
suggest that FTO, RBM15, and YTHDF1 are critical in the
progression and prognosis of endometrial cancer (82, 97).
Interestingly, Zhang et al. found that CpG sites located at the
m6A regulatory site may be considered a potential prognostic
feature of endometrial cancer patients (98). In a more detailed
study, 19 m6A RNA methylation regulators were abnormally
expressed in endometrial carcinoma. Univariate and multivariate
Cox regression analyses showed that age, grade, and risk score
were independent risk factors. High FTO expression was
associated with poor overall survival (99).

3.3 m6A in Ovarian Cancer
3.3.1 Function of m6A on mRNA in Ovarian Cancer
Ovarian cancer is one of the most deadly gynecological
malignancies. It often leads to poor prognosis due to the
insidious onset and lack of effective early detection indicators
(100). YTHDF1 is a member of the YT521-B homologous domain
(YTH) protein family. The protein recognizes m6A through a
conserved aromatic cage in its YTH domain and mediates gene
regulation at the post-transcriptional level (52). Hao et al. found
that TRIM29 expression increased at the translational level in
cisplatin-resistant ovarian cancer cells and clinical tissues.
Increased TRIM29 expression is associated with poor prognosis
in patients with ovarian cancer. In addition, YTHDF1’s
recruitment of m6A-modified TRIM29 is involved in promoting
TRIM29 translation in cisplatin-resistant ovarian cancer cells.
Knockout of YTHDF1 inhibits the tumor stem cell-like
characteristics of cisplatin-resistant ovarian cancer cells, which
can be salvaged by ectopic expression of TRIM29 (101). YTHDF1,
as an upstream molecule of TRIM29, can recognize its 3’UTR and
promote its translation in ovarian cancer. Thus, TRIM29 is
expected to be a potential therapeutic target for ovarian cancer.
In addition, YTHDF1 can promote ovarian cancer progression by
increasing EIF3C translation. YTHDF1, as a direct target, binds to
m6A-modified EIF3C mRNA to increase EIF3C translation in an
m6A-dependent manner and simultaneously promotes overall
translation output. Thus, the occurrence andmetastasis of ovarian
cancer are promoted (102). Therefore, the YTHDF1-EIF3C axis is
expected to be a target for the development of cancer
treatment drugs.

Another study showed that the RNA demethylase ALKBH5
was upregulated in ovarian cancer tissues but lower in ovarian
cancer cell lines than in normal ovarian cell lines. Interestingly,
the molecular function toll-like receptor (TLR4) in the tumor
microenvironment also showed the same expression trend.
NANOG is a target of ALKBH5-mediated m6A modification.
The expression of NANOG increased after mRNA demethylation,
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thereby enhancing the aggressiveness of ovarian cancer cells. In
addition, the high expression of TLR4 activated the NF-Kappa B
pathway, upregulated the expression of ALKBH5, and increased
the level of m6A and the expression of NANOG, all of which
contributed to the occurrence of ovarian cancer (103). FBW7, a
tumor suppressor, is a substrate recognition component of the
SCF e3-ubiquitin ligase complex, which mediates protein
degradation of various carcinogenic proteins. Xu et al. used
MeRIP-Seq and RNA-Seq to evaluate downstream targets of
YTHDF2. They found that FBW7 was significantly down-
regulated in ovarian cancer tissues, and its high expression was
associated with a good prognosis and increased m6A
modification. FBW7 counteracts the tumor-promoting effect of
YTHDF2 by inducing proteasome degradation of YTHDF2 in
ovarian cancer. In addition, YTHDF2 can regulate the turnover of
m6A-modified mRNA, including pro-apoptotic gene BMF.
Therefore, FBW7 inhibits tumor growth and progression by
antagonizing the YTHDF2-mediated attenuation of BMF
mRNA in ovarian cancer tissues (28). FTO, an m6A
demethylase, plays an important role in the progression of
ovarian cancer. One study found that FTO enhanced the
second messenger 3’, 5’ -cyclic adenosine phosphate (cAMP)
signaling by decreasing the m6A modification level of 3’ UTR
and the mRNA stability of two phosphodiesterase genes (PDE1C
and PDE4B), inhibiting the dry character of ovarian cancer cells.
Therefore, FTO plays a tumor suppressor role in ovarian cancer
by inhibiting cAMP signaling (104).

Progress has also been made in the role of methyltransferase
in ovarian cancer. For example, methyltransferase METTL3 not
only promotes the growth and invasion of ovarian cancer by
regulating AXL translation and epithelial-to-mesenchymal
transformation (105), but also plays a carcinogenic role in the
progression of ovarian cancer cells by regulating the
phosphorylation of AKT and the expression of Cyclin D1, a
downstream effector (106). Thus, METTL3 may be a new
prognostic and/or therapeutic target for ovarian cancer. The
roles of different m6A regulators in regulating RNAs in ovarian
cancer are shown in Figure 4 and Table 3.

3.3.2 Function of m6A on ncRNA in Ovarian Cancer
RNA methylation can be methylated at the RNA level, which is
an extremely important epigenetic modification. Methylation of
RNA m6A was correlated with miRNA. On the one hand, the
target sites of miRNA showed m6A enrichment, and miRNA
positively regulated m6A modification activity. On the other
hand, miRNA synthesis relies on m6A methylation modification
(109). Li et al. found, by studying how YTHDF2 and miR-145
regulate the progression of ovarian cancer through m6A
modification, that YTHDF2 was significantly up-regulated in
ovarian cancer tissues compared with normal ovarian tissues.
Meanwhile, YTHDF2 significantly promoted the proliferation
and migration of ovarian cancer cell lines, and reduced the
modification level of m6A mRNA. The expression level of
miR-145 in ovarian cancer tissues and cells was negatively
correlated with that of YTHDF2, which is the direct target
gene of miR-145. Key crosstalk occurred between miR-145 and
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YTHDF2 through a double negative feedback loop. The
overexpression of YTHDF2 rescues the decreased proliferation
and migration of miR-145-induced ovarian cancer cells,
suggesting a new target for the treatment of ovarian cancer
(107). Another miRNA, miR-126-5p, is up-regulated in ovarian
cancer. The overexpression of miR-126-5P can promote
proliferation, migration, and invasion of ovarian cancer cells
and inhibit apoptosis. In addition, miR-126-5p activates the
Frontiers in Oncology | www.frontiersin.org 10
PI3K/Akt/mTOR pathway by targeting PTEN. Moreover, RNA
methyltransferase METTL3 promoted the maturation of miR-
126-5p through m6A modification of pri-miR-126-5p. Finally, in
vitro and in vivo experiments confirmed that METTL3 silencing
blocks the PI3K/AKT/mTOR pathway by disrupting miR-126-
5P targeted inhibition of PTEN, thereby hindering ovarian
cancer progression and tumorgenesis. Therefore, the down-
regulation of METTL3 can inhibit the up-regulation of PTEN
FIGURE 4 | The roles of different m6A regulators in regulating RNAs in ovarian cancer. m6A methylation regulators METTL3, YTHDF1, YTHDF2, FTO and ALKBH5
promote/inhibit the invasion and metastasis of ovarian cancer by binding to mRNA and regulating mRNA expression. In addition, METTL3 regulates the expression of
miR-126-5P and inhibits the proliferation and metastasis of ovarian cancer. YTHDF2 regulates the expression of miR-145 and promotes the proliferation and
metastasis of ovarian cancer.
TABLE 3 | The roles of different m6A regulators in regulating RNAs in ovarian cancer.

m6A
regulators

Genes/
RNAs

Cell lines Location Role Mechanism Function References

YTHDF1 TRIM29 SKOV3, A2780, SKOV3/
DDP, A2780/DDP

mRNA Oncogene Enhance expression of TRIM29 Promoting ovarian cancer
tumorigenesis and metastasis

(101)

YTHDF1 EIF3C HEK293T, A2780, SKOV3 mRNA Oncogene Enhance expression of EIF3C Promoting ovarian cancer
tumorigenesis and metastasis

(102)

ALKBH5 NANOG SKOV3, HEY, HO8910,
OVCAR3, Ishikawa

mRNA Oncogene Enhance expression of NANOG Promoting ovarian cancer
tumorigenesis and metastasis

(103)

YTHDF2 FBW7 SKOV3, OVCA420,
OVCA429, OVCAR8

mRNA Tumor
suppressor

FBW7 antagonizes YTHDF2-mediated
attenuation of BMF

Inhibiting ovarian cancer
tumorigenesis and metastasis

(28)

FTO PDE1C SKOV3, HEK293T, COV362,
OVCAR5

mRNA Tumor
suppressor

Decreased m6A modification level and
phosphodiesterase gene stability

Inhibiting ovarian cancer
tumorigenesis and metastasis

(104)

FTO PDE4B SKOV3, HEK293T, COV362,
OVCAR5

mRNA Tumor
suppressor

Decreased m6A modification level and
phosphodiesterase gene stability

Inhibiting ovarian cancer
tumorigenesis and metastasis

(104)

METTL3 AXL A2780, COV504, ES2, HO-
8910, OVCAR3, SKOV3

mRNA Oncogene Regulates AXL translation and epithelial-
to-mesenchymal transformation

Promoting ovarian cancer
tumorigenesis and metastasis

(105, 106)

YTHDF2 miR-
145

SKOV3, 3AO miRNA Oncogene Down-regulated miR-145 Promoting ovarian cancer
tumorigenesis and metastasis

(107)

METTTL3 miR-
126-5p

A278, COV504, SKOV3,
ES2, IOSE-80

miRNA Tumor
suppressor

Down-regulated miR-126-5p Inhibiting ovarian cancer
tumorigenesis and metastasis

(108)
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by miR-126-5p, and prevent the activation of PI3K/AKT/mTOR
pathway, inhibiting the occurrence and development of ovarian
cancer (108). The role and possible mechanisms of circRNAs in
autophagy in ovarian cancer have not been systematically
studied. Zhang et al. screened circRNA, miRNA, and mRNA
expression profiles of Torin 1-induced ovarian cancer cells. They
found that circRNA circRAB11FIP1 was up-regulated in ovarian
cancer cells, and silencing circRAB11FIP1 could inhibit
autophagy of ovarian cancer cells. CIRCRAB11FIP1-induced
autophagy accelerated the proliferation and invasion of ovarian
cancer cells. In addition, circRAB11FIP1 directly binds to Mir-
129 and regulates its targets ATG7 and ATG14. CircRAB11FIP1
mediates ATG5 and ATG7 mRNA expression levels depending
on m6A modification (110). Few studies on lncRNAs in ovarian
cancer have also been conducted. In recent years, studies have
found that lncRNA is an important functional regulator in
ovarian cancer. Wang et al. found that lncRNA RHPT1-AS1
was up-regulated in ovarian cancer tissues and was closely
associated with poor prognosis. However, m6A modification
improved the stability of RHPT1-AS1 methylated transcription
by reducing RNA degradation, leading to the up-regulation of
RHPT1-AS1 expression in ovarian cancer and promoting the
proliferation and metastasis of ovarian cancer (111).

3.3.3 Prognostic Effect of m6A RNA Methylation
Regulators on Ovarian Cancer
m6A RNA methylation is involved in the initiation and
progression of various cancers. Therefore, m6A RNA
methylation regulators are greatly important in tumor prognosis.
Fan et al. analyzed the prognostic value of the transcription levels
of 18 m6A RNA methylation regulators in ovarian cancer and
found that IGF2BP1, VIRMA, and ZC3H13 predicted the highest
prognostic score of ovarian cancer. Therefore, the authors suggest
that IGF2BP1, VIRMA, and ZC3H13 mRNA levels are important
factors in predicting prognosis and developing treatment strategies
(112). In addition, Han et al. downloaded the mutation and copy
number variation (CNV) data from 579 ovarian cancer patients
from TCGA database and analyzed gene expression and
prognostic value using integrated bioinformatics. Bioinformatics
and Cox multivariate analysis showed the significant correlation
between high expression of WTAP and ovarian cancer prognosis
(113). Meanwhile, analysis of other gene sets found that the
prognosis of ovarian cancer was associated with HNRNPA2B1,
KIAA1429, and WTAP (114). Na et al. identified NEBL,
PDGFRA, WDR91, and ZBTB4 genes as potential independent
prognostic risk characteristics of ovarian cancer (115).
4 CONCLUSIONS AND PERSPECTIVES

RNAm6Amodification, as a hotspot of epigenetics research, plays a
crucial role in the post-transcriptional regulation of gene expression;
it has attracted increased attention. It is also involved in various
biological processes and disease progression. RNA m6A
modification plays an important role in promoting or inhibiting
the growth, proliferation, migration, invasion, specific metastasis,
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drug resistance, and prognosis of gynecological cancers through
three effector factors, namely, writer, erasers, and readers. From the
viewpoint of the epitome, the tissue specificity and uneven
distribution of m6A modification provide new directions for
understanding the pathogenesis of multiple diseases, especially
tumors. m6A modification is a “double-edged sword”, promoting
or inhibiting the occurrence and development of tumor mainly by
regulating the mRNA level of oncogene or tumor suppressor gene.
The role of m6A modification in gynecological cancer is further
clarified with the deepening of the research on the network
mechanism of m6A modification regulation.

At present, studies on the biological effects of m6A modification
on gynecological cancers have made some progress, but some
problems should still be further studied and solved. Multiple
studies have shown that m6A RNA methylation regulators have
the potential for prognostic assessment and as biomarkers for early
diagnosis of gynecological cancers. For example, METTL3,
ZC3H13, YTHDC1, and YTHDF1 have been found to be
prognostic markers of cervical cancer (84). IGF2BP3, KIAA1429,
IGF2BP1, YTHDF3, ZC3H13, YTHDC1, and METTL14 can be
used as prognostic markers of endometrial cancer (93, 94).
HNRNPA2B1, KIAA1429, and WTAP can be used as prognostic
markers of ovarian cancer (114). However, these studies are based
only on systematic analyses of public databases. The prognostic
ability of m6A RNAmethylation regulators in gynecological cancers
remains limited due to the difficulty of obtaining sufficient detection
samples. Therefore, large-scale experimental verification and clinical
trials on m6A modification should be conducted to remedy this
defect in future studies. In addition, most current studies on m6A
modification in gynecological cancer are limited to the mechanism
of action in gynecological cancer cells. Thus, more translational
studies are required in the future to further clarify the use of m6A
alone or in combination with other therapies for gynecological
cancers for effective application to clinical treatment. Finally, the
immune system is the host’s defense system against infection and
disease. Meanwhile, immunotherapy is a new cancer treatment
strategy, which has been widely used to treat various solid tumors,
including gastrointestinal tumors and gynecological tumors (116,
117). In recent years, m6A regulatory factors have been widely
studied in tumor immunotherapy and immune evasion. Moreover,
tumor immunotherapy is the most promising therapeutic strategy,
and m6A modification-mediated immune invasion becomes a
hotspot in the study of the pathogenesis and prognosis of
gynecological tumors. However, the study of immune invasion
mediated by m6A modification in gynecological tumors is still in
its infancy, and m6A modification is expected to make new
breakthroughs in this field in future studies.
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