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Abstract

The oncogenesis-promoting role of chromosomal rear-
rangements for several hematologic and solid malignancies
is well recognized. However, identifying targetable, action-
able, and druggable chromosomal rearrangements re-
mains a challenge. Targeting gene fusions and chromosomal
rearrangements is an effective strategy in treating gene
rearrangement–driven tumors. The NTRK (Neurotrophic
Tyrosine Receptor Kinase) gene family encodes three
tropomyosin-related kinase (TRK) receptors that preserve
central and peripheral nervous system development and
function. NTRK genes, similar to other genes, are subject
to alterations, including fusions. Preclinical studies have

demonstrated that TRK fusion proteins promote oncogen-
esis by mediating constitutive cell proliferation and sur-
vival. Several clinical trials have estimated the safety and
efficacy of TRK fusion kinase receptor inhibitors and have
demonstrated encouraging antitumor activity in patients
with NTRK-rearranged malignancies. Specifically, laro-
trectinib and entrectinib have emerged as potent, safe, and
promising TRK inhibitors. Herein, we discuss the poten-
tial oncogenic characteristics of TRK fusion proteins in
various malignancies and highlight ongoing clinical
trials of kinase inhibitors targeting them. Clin Cancer Res;
24(23); 5807–14. �2018 AACR.

Introduction
Tropomyosin-related kinase A, B, and C (TRKA, TRKB, and

TRKC) are receptor tyrosine kinases encoded by the genes
neurotrophic tyrosine receptor kinase 1, 2, and 3 (NTRK1,
NTRK2, and NTRK3), respectively. TRKs are membrane-span-
ning receptors composed of extracellular ligand-binding, trans-
membrane, and intracellular ATP-binding domains (1). The
extracellular domains of TrkA, TrkB, and TrkC exhibit high
structural similarity, composed of three leucine-rich motifs
flanked by two cysteine clusters and two immunoglobulin-like
I set domains (2). The immunoglobulin-like regions are
believed to encompass the ligand-binding sites. TRKs serve as
signal receptors for neurotrophins, their cognate ligands. Nerve
growth factor, brain-derived growth factor, and neurotrophin
3/4 are neurotrophic factors that activate TrkA, TrkB, and TrkC,
respectively. TRKs play a pivotal role in the physiology, devel-
opment, and function of the peripheral and central nervous
systems (3, 4). Ligand–receptor interaction results in receptor
dimerization and subsequent phosphorylation of the kinase
domain. Activated kinases promote cell proliferation, differen-
tiation, and survival by triggering downstream intracellular
signal transduction pathways (refs. 5–9; Fig. 1).

NTRK rearrangements are the most common alterations in
NTRK-mutated tumors (10). Our discussion herein focuses on

the role of NTRK fusions in cancer and ongoing clinical trials
involving TRK inhibitors.

NTRK Fusions in Carcinogenesis
NTRK oncogenic fusions arise from exact intrachromosomal

or interchromosomal rearrangements that juxtapose the kinase
domain-containing 30 region of NTRK with the 50 region of
NTRK's gene partner. Chimeric fusion proteins promote tumor-
igenesis via constitutive ligand-free activation of intracellular
biological pathways and signal transduction cascades that
control cell-cycle progression, proliferation, apoptosis, and
survival (11). Preclinical data demonstrated that chimeric
oncogenic fusions may lead to partial or complete deletion of
the immunoglobulin-like domain of TRK, which has an inhib-
itory influence on downstream signaling pathways in the
absence of activating ligands (2). Several NTRK fusion partners
have been identified so far and shown to contribute to the
development of various cancer types (Table 1).

Prevalence of NTRK Fusions in Solid
Tumors

NTRK oncogenic fusions are infrequent but recurrent events
observed in various types of congenital and acquired cancers
(Table 2). The exact frequency of NTRK fusions in solid
tumors remains unclear. The variations in frequencies among
different studies and tumors subtypes may be biased by
screened study cohorts and NTRK fusion detection techniques.
In an analysis of over 11,000 patients conducted by Caris
Diagnostics, TRK fusion proteins were detected by immuno-
histochemistry (IHC) in only 26 patients (0.23%; Gatalica
and colleagues abstract TARG-17-A047). Most common
fusions detected were TPM3 (Tropomyosin 3)-NTRK1, and

Department of Investigational Cancer Therapeutics, The University of Texas MD
Anderson Cancer Center, Houston, Texas.

Corresponding Author: David S. Hong, The University of Texas MD Anderson
Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-563-
5844; Fax: 713-563-0566; E-mail: dshong@mdanderson.org

doi: 10.1158/1078-0432.CCR-18-1156

�2018 American Association for Cancer Research.

Clinical
Cancer
Research

www.aacrjournals.org 5807

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/23/5807/2050042/5807.pdf by guest on 27 August 2022

http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-18-1156&domain=pdf&date_stamp=2018-11-6


ETV6 (ETS Variant 6)-NTRK3 (6 cases each). Furthermore,
Stransky and colleagues (12) reported various NTRK fu-
sions in 9 of 20 screened cancer samples. The estimated
prevalence varies among histologic subtypes and fusion part-
ners. The annual incidence of NTRK fusion–driven tumors
is estimated to be 1,500 to 5,000 cases in the United States

(13). Specific findings for NTRK fusions by tumor type are
described below.

Lung cancer
NTRK fusions are rare in lung cancer. Using next-generation

sequencing (NGS) and FISH, Vaishnavi and colleagues (14)

Table 1. NTRK gene family fusion partners and associated cancers

Tumor NTRK1 NTRK2 NTRK3

CRC TPM3 (16, 18), LMNA (19), TPR (51), SCYL3 (20)
NSCLC CD74 (14), MPRIP (14), SQSTM1 (15) TRIM24 (12)
GBM ARHGEF2 (27), BCAN (52), NFASC (53), TPM3 (54) ETV6 (27, 54)
Pilocytic astrocytoma NACC2 (55), QKI (55)
Spitzoid melanoma TP53 (56), LMNA (56)
Papillary thyroid cancer TPM3 (57),TFG (58), TPR (59)
MASC ETV6 (60, 61)
SBC ETV6 (34)
Infantile fibrosarcoma LMNA (62) ETV6 (63)
HNSCC PAN3 (12)
Mesoblastic nephroma ETV6 (64)
GIST ETV6 (28, 29)

Abbreviations: ARHGEF2, rho/rac guanine nucleotide exchange factor 2; BCAN, brevican; CRC, colorectal cancer; ETV6, ETS variant 6; GBM, glioblastoma
multiforme; GIST, gastrointestinal stromal tumor; HNSCC, head and neck squamous cell carcinoma; LMNA, lamin A/C; MASC, mammary analog secretory carcinoma;
MPRIP, myosin phosphatase rho interacting protein;NACC2, NACC familymember 2;NFASC, neurofascin; NSCLC, non–small cell lung cancer; PAN3, poly(A)-specific
ribonuclease subunit; QKI, KH domain containing RNA binding; SBC, secretory breast carcinoma; SCYL3, SCY1 like pseudokinase 3; SQSTM1, sequestosome 1;
TFG, TRK-fused gene; TP53, tumor protein P53; TPM3, tropomyosin 3; TPR, translocated promoter region; TRIM24, tripartite motif containing 24.

© 2018 American Association for Cancer Research
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The TRK signaling pathways. Interaction between TRK
and its cognate ligand will lead to downstream signal
transduction, resulting in activation of intracellular
pathways responsible for cellular proliferation, survival,
and invasion. BDGF, brain-derived growth factor; DAG,
diacylglycerol; ERK, extracellular signal-regulated
kinase; GRB2, growth factor receptor-bound protein 2;
IP3, inositol trisphosphate; MEK, mitogen-activated
protein kinase kinase; NGF, nerve growth factor; NT3,
neurotrophin 3; PDK, phosphoinositide-dependent
kinase; PI3K, phosphatidylinositol-4,5-bisphosphate
3-kinase; PIP2, phosphatidylinositol 4,5-bisphosphate;
PKC, protein kinase C; PLCg , phospholipase C-g ; RAF,
rapidly accelerated fibrosarcoma kinase; RAS, rat
sarcoma kinase; SHC, Src homology 2 domain
containing; SOS, sons of sevens.
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detected two novel NTRK1 gene fusion partners: Myosin
Phosphatase Rho Interacting Protein (MPRIP) and CD74. The
estimated frequency of NTRK fusion in this study was 3.3%, with
3 of 91 patients having NTRK1 fusions (14). The screened cohort,
however, did not exhibit any other chromosomal alterations
except for NRTK gene rearrangements. Furthermore, in a phase
I study, Farago and colleagues (15) performed an anchored
multiplex polymerase chain reaction (AMP) test to screen
1,378 cases of non–small cell lung cancer (NSCLC) for NTRK1,
NTRK2, NTRK3, ALK (Anaplastic Lymphoma Kinase), and ROS1
(ROS Proto-Oncogene1) fusions. Utilizing FISH, NTRK1 gene
fusions were detected in 2 patients: one with a TPM3-NTRK1
rearrangement, whereas the second patient, who had stage VI lung
adenocarcinoma, harbored a novelNTRK1 gene partner, SQSTM1
(Sequestosome 1).NTRK fusions were estimated to occur at a rate
of 0.1% (95% confidence interval, 0.01%–0.5%; ref. 15). Because
FISH was used to confirm the presence of these genetic alterations
in both studies (14, 15), the discrepancy in the reported frequen-
cies between these two studies may be attributed to their differ-
ence in sample size and screened patient populations.

Colorectal cancer
NTRK gene fusions are also uncommon in colorectal cancer,

and their estimated frequency likewise varies across different
studies (0.5%–2.0%; refs. 16, 17). Several studies have dem-
onstrated TPM3-NTRK1 fusions in colorectal cancer patients
(16–18). Creancier and colleagues (17) performed IHC and
quantitative reverse transcriptase-PCR tests to detect NTRK
rearrangements in 408 cases of patients belonging to all clini-
cal stages of colorectal cancer (I, II, III, and IV). Two cases
(0.5%) were NTRK fusion positive. A TPR (Translocated
Promoter Region)-NTRK1 oncogenic fusion was identified in
a 53-year-old female with stage II, poorly differentiated ade-
nocarcinoma. This patient also harbored wild-type (wt) KRAS
(Kirsten RAt Sarcoma viral oncogene homolog), NRAS
(Neuroblastoma RAS), and BRAF (B Rapidly Accelerated
Fibrosarcoma), but is MSI-positive/microsatellite instability
high (MSI-H) with loss of MLH1 (MutL Homolog 1)/PMS2
(Postmeiotic Segregation Increased 1 Homolog 2) and no
MLH1 promoter methylation. In addition, TPM3-NTRK1
fusion was detected in a 66-year-old male with moderately

differentiated adenocarcinoma of the left colon, also having
wt KRAS, NRAS, and BRAF, and is MSI positive. A novel gene
fusion with oncogenic potential, LMNA (Lamin A/C)-NTRK1,
was detected by FISH in a patient with liver and adrenal gland
metastases of colorectal cancer (19). In another study (20), a
61-year-old colorectal cancer patient with high MSI-H, wt RAS,
BRAF, and EGFR harbored a novel SCYL3 (SCY1 Like pseudo-
kinase protein 3)-NTRK1 rearrangement. Moreover, a retro-
spective study found NTRK fusions occurring in 2.5% of 2,044
heavily pretreated patients with metastatic colorectal cancer
(21). This is in contrast with a study by Pietrantonio and
colleagues (22), wherein they identified NTRK gene rearrange-
ments in 13 of 346 (4%) metastatic colorectal cancer patients.
Ten of the 13 patients [(76.9%), P < 00.1] with NTRK-
rearranged tumors also had MSI-H status. Genetic alterations
were detected using a targeted NGS technique utilizing Foun-
dation One, MSK-IMPACT, and Minerva panel (22). Although
NTRK gene fusions were screened and detected using highly
specific techniques, the sample size was small and may have
overestimated the exact prevalence of NTRK fusions in patients
with MSI-H metastatic colorectal cancer.

Papillary thyroid carcinoma
In general, the estimated prevalence rate of NTRK fusions in

patients with papillary thyroid carcinoma (PTC) does not exceed
12% (10) and varies among study populations according to
geographical distribution and methods of detections (23). NTRK
fusion oncogenes were also detected in 7 of 27 (26%) PTC patients
in a pediatric population. Patients having NTRK-rearranged PTC
presented with extensive disease and had worse prognosis than
those with BRAF mutations (24). Although ETV6-NTRK3 is a rare
somatic gene fusion in sporadic thyroid cancers, it was found to be
more common in radiation-related tumors (25).

Brain tumors
The rate of occurrence of NTRK fusions in brain tumors varies

based on age group: 40% in pediatric versus 3% in adult-type
tumors (12, 26, 27).NTRK2 fusions are most frequently detected
in glioblastoma multiforme (GBM; Gatalica and colleagues
abstract TARG-17-A047), whereas NTRK1 rearrangements were
detected in only 3 of 115 (3%) patients with GBM so far (27).

Table 2. Prevalence of NTRK gene fusions in solid tumors

Tumor type Prevalence (%) Detection methods References

Appendiceal cancer 2/97 (2%) MSK-IMPACT/sequenum Braghiroli et al. (65)
Cholangiocarcinoma 1/28 (4%) DNA seq Ross et al. (66)
CRC 13/346 (4%) NGS Pietrantonio et al. (22)
CRC MSI-H 10/13 (76.9%) NGS Pietrantonio et al. (22)
Melanoma 1/374 (0.3%) RNA-seq Stransky et al. (12)
GBM 3/115 (3%) AMP Zheng et al. (27)
HNC 2/411 (0.5%) RNA-seq Stransky et al. (12)
Infantile fibrosarcoma 2/4 (50%) FISH Knezevich et al. (63)
Low-grade glioma 2/461 (0.4%) RNA-seq Stransky et al. (12)
Lung adenocarcinoma 3/91 (3.3%) NGS/FISH Vaishnavi et al. (14)
MASC 2/3 (66 %) FISH/RT-PCR Skalova et al. (35)
PTC 4/33 (12%) RT-PCR Brzezianska et al. (67)
PHGG 28/127 (22%) NGS Wu et al. (54)
Polycystic astrocytoma 3/96 (3%) WGS Jones et al. (55)
SBC 12/13 (92%) RT-PCR Tognon et al. (34)
Spitzoid melanoma 23/140 (16%) NGS Wiesner et al. (56)

Abbreviations: AMP, anchored multiplex polymerase chain reaction; CRC; colorectal cancer; DNA seq, DNA sequencing; GBM, glioblastoma multiforme; HNC,
head and neck cancer; MASC, mammary analog secretory carcinoma; MSI-H, microsatelite instability-high; NGS, next-generation sequencing; PHGG, pediatric
high-grade glioma; PTC, papillary thyroid carcinoma; RNA-seq, RNA sequencing; RT-PCR, reverse transcriptase polymerase chain reaction; SBC, secretory breast
carcinoma; WGS, whole-genome sequencing.

Novel Targeted Therapy for NTRK-Rearranged Tumors

www.aacrjournals.org Clin Cancer Res; 24(23) December 1, 2018 5809

D
ow

nloaded from
 http://aacrjournals.org/clincancerres/article-pdf/24/23/5807/2050042/5807.pdf by guest on 27 August 2022



Sarcomas
Sarcomas represent a wide spectrum of uncommon tumors.

Yet, in phase I and phase II studies which included 17 different
NTRK fusion–positive tumor types detected by FISH or NGS,
21 of 55 (38%) patients were diagnosed with sarcoma includ-
ing 3 patients with gastrointestinal stromal tumor (GIST;
ref. 13). Drilon and colleagues (13) showed that sarcoma includ-
ing soft tissue, infantile fibrosarcoma, and GIST comprises the
largest cohort of cancer patients to harbor NTRK fusions in
their study. Moreover, two other studies identified 1 patient
each with ETV6-NTRK3 fusion GIST (28, 29). Interestingly, both
patients exhibited WT KIT/PDGFR/BRAF disease. Overall, the
estimated prevalence rate of NTRK fusions in sarcomas ranges
from 1% in adult-type sarcomas to 92% in patients with con-
genital fibrosarcoma (12, 13, 30). Furthermore, Doebele and
colleagues (31, 32) detected a novel LMNA-NTRK1 fusion using
the Foundation One Heme assay in a 41-year-old woman with
metastatic soft-tissue sarcoma to the lungs.

Other rare tumors
Secretory breast cancer and mammary analog secretory car-

cinoma (MASC) of the salivary gland are rare tumors with
distinct clinical and pathologic features. However, they harbor
the same underlying pathognomonic genetic alteration, ETV6-
NTRK3, resulting from the chromosomal rearrangement
t(12;15)(p12;q26.1) (33–35). ETV6-NTRK3 fusion is detected
in 92% and 100% of secretory breast cancer and MASC cases,
respectively (34, 36).

Detection of NTRK Fusions
NGS provides a precise method to detect NTRK gene fusions

(37). In addition to high sensitivity and specificity, it detects
gene partners that might have clinical implications in future
studies. Although NGS has changed the landscape of detecting
chromosomal rearrangements driving tumors, several chal-
lenges remain for NTRK fusion testing (38). For example, the
most popular commercially available DNA NGS panels, such as
Foundation One, may not detect certain NTRK fusions. The
addition of RNAseq to NGS testing has shown high sensitivity
and specificity rates, 93% and 100% respectively, in detecting
clinically actionable gene fusions (39). Data showed that RNA-
seq had led to unbiased results as well. In addition, RNAseq
requires no prior knowledge of fusion partners or intronic/
exonic break points. RNAseq use is now beyond research goals
and has been incorporated into clinical practice (40).

Although FISH is considered the gold standard in detecting
gene fusions, it can only detect a single target at a time. For
instance, commonly used break apart FISH probe scan detect
gene fusion but not the fusion partner. In addition, designing
multiple probes for detecting NTRK fusions partners is cost
ineffective and time consuming, making it not amenable for
high-throughput screening (38).

Hechtman and colleagues (41) showed that pan-TRK fusion
IHC test had sensitivity and specificity rates of 95.2% and 100%,
respectively. Authors concluded that the pan-TRK fusion IHC test
is a time- and tissue-efficient method for detectingNTRK fusions.
However, researchers at MD Anderson Cancer Center were not
able to replicate these findings (unpublished data).

A two-step diagnostic method incorporating rapid IHC
screening that uses a cocktail of antibodies including anti–

pan-Trk antibodies, followed by anchored multiplex PCR
(AMP; ref. 38), showed that IHC screening had a 100% negative
predictive value for excluding samples devoid of gene rearran-
gements (38).

TRK Fusion Protein Inhibitors in Clinical
Trials

The estimated prevalence rates of chromosome rearrange-
ments range from 17% to 20% in cancer (12, 42). Over the
past few years, various TKIs targeting the TRK family members
have been developed and tested in clinical trials. The most
promising thus far are summarized below, with a complete list
provided in Table 3.

MGCD-516 is a novel small-molecule multikinase inhibitor
that targets MET, AXL, MER, as well as members of the VEGFR,
platelet-derived growth factor receptor (PDGFR), discoidin
domain receptor tyrosine kinase 2 (DDR2), and TRK families
(43). A phase Ia/II trial (NCT02219711) enrolling patients with
advanced solid tumors is also ongoing, with MGCD-516 admin-
istrated at escalating doses within a 21- or 28-day cycle.

TSR-011 is an oral dual ALK (IC50, 0.7 nmol) and pan-TRK
(IC50, <3 nmol) inhibitor that had been tested in a phase I/IIa
clinical trial (NCT02048488) to determine its safety, toler-
ability, RP2D, and antitumor activity in patients with advanc-
ed tumors refractory to previous treatment with ALK inhibitors
(44). TSR-011 was administered orally in dose escalation
(30–480 mg 2 or 3 times a day) to 23 patients. This trial
demonstrated that TSR-011 was safe and well tolerated at a
fractionated dose of 60 mg daily. Dose-limiting toxicities
(DLT) were prolonged QTc and dysesthesia. Three of 5 pati-
ents with ALK-rearranged NSCLC achieved partial response.
TSR-011 efficacy is being investigated in ALK- and NTRK-
rearranged tumors.

Entrectinib is a novel, highly potent oral ATP-competitive,
pan-TRK, ROS1, and ALK TKI with low to sub-nanomolar anti-
enzymatic efficacy (IC50, 0.1–1.7 nmol/L; ref. 45). Two large
multicenter 3þ3 phase I clinical trials, ALKA-372-001 and
STARTRK-1, were designed and conducted to determine the
safety, efficacy, and antitumor activity of entrectinib in patients
with advanced or metastatic solid tumors harboring NTRK1/2/3,
ALK, and ROS1 rearrangements (46). A total of 119 patients
(54 in ALKA-372-001, 65 in STARTRK-1) received treatment using
different doses and schedules. Of them, only 60 patients pos-
sessed the aforementioned gene rearrangements. The majority of
the patients (82%, 98/119) received three or more prior lines of
treatment. Entrectinib was given to patients in the ALKA-372-001
on three different schedules, whereas entrectinib was adminis-
tered daily for 28 days to patients in the STARTRK-1 trial. NoDLTs
were observed in the ALKA-372-001 trial, whereas grade 3 fati-
gue and grade 3 cognitive disturbances were observed in the
STARTRK-01 trial with a daily entrectinib dose of 800 mg. The
most common adverse events (AE) of any grade were fatigue
(46%, 55/119), dysgeusia (42%, 50/119), paresthesia (29%,
34/119), nausea (28%, 33/119), and myalgia (23%, 27/119).
A daily entrectinib dose of 600 mg was determined to be the
maximum tolerated dose as well as the RP2D (46).

Twenty-five patients were enrolled in the phase II portions of
the trials, four of whom had NTRK fusions. The median progres-
sion-free survival duration in patients with NTRK-rearranged
tumorswas not reached as of the data cutoff date (95%confidence
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interval, 3.5months–not reached; ref. 46). The objective response
rate was 100% (95% confidence interval, 44%–100%) in patients
with NTRK-rearranged tumors, which include NSCLC (SQSMT1-
NTRK1), metastatic colorectal cancer (LMNA-NTRK1), MASC
(ETV6-NTRK3; refs. 15, 19, 46, 47), and glioneuronal tumor
BCAN (Brevican)-NTRK1 (48). The majority of the responses
occurred within the first two cycles of treatment. The authors
concluded that entrectinib is a safe, well-tolerated pan-TRK/
ROS1/ALK inhibitor, with patients having NTRK fusion–
rearranged malignancies exhibiting the most clinically promising
responses (46).

Larotrectinib is a highly selective, potent, ATP-competitive,
and small-molecule pan-TRK inhibitor with an IC50 in the low
nanomolar range (31). The safety and efficacy of larotrectinib
in treatment of locally advanced or metastatic solid tumors
were investigated in a series of multicenter phase I and II
clinical trials. A total of 55 patients with 17 different types of
NTRK fusion–driven solid tumor [median age, 45 years (range,
0.3–76.0 years); Eastern Cooperative Oncology Group score
�3] were enrolled in three trials: 8 in an adult phase I trial, 12 in
the SCOUT pediatric phase I/II trial, and 35 in the NAVIGATE
phase II basket trial (13). Larotrectinib was administered at
100 mg twice daily. Fifty-five percent of the patients were
treatment-na€�ve or had received one prior line of treatment,
whereas 31% had received at least three lines. As of the data
cutoff date (July 17, 2017), the objective, partial, and complete
response rates according to investigator assessment were 80%

(95% confidence interval, 67%–90%), 64%, and 16%, respec-
tively. Nine percent of the patients had stable disease, and 71%
of responses were ongoing at 1-year follow-up. The median
duration of response and progression-free survival had not
been reached after a median follow-up durations of 8.3 months
and 9.9 months, respectively. The median time to first response
was 1.8 months. The one-year progression-free survival was
55% (13).

Eight patients (15%) needed dose reductions, with tumor
regression maintained in all of them (one complete response,
five partial responses, and one stable disease). Majority of AEs
(93%) were grade 1or 2. Grade 3 or 4 AEs were anemia (11%),
fatigue (5%), increased alanine transaminase or aspartate trans-
aminase level (7%), nausea (2%), and dizziness (2%). Grade 3
treatment-related AEs were noted in less than 5% of the patients.
Overall, larotrectinib is a safe, well-tolerated pan-TRK inhibitor in
adults and children, andmay be a new standard of care forNTRK-
rearranged tumors.

Larotrectinib and entrectinib are the most clinically effective
TKIs that target TRK fusion proteins. Although entrectinib also
targets ROS1 and ALK fusion proteins, larotrectinib is, by far,
the only highly selective pan-TRK inhibitor in clinical trials.
Both drugs are safe and well tolerated, have ability to cross
the blood–brain barrier, and control brain metastatic disease
(13, 46). Although entrectinib's antitumor activity was tested in
two phase I trials, responses were limited to 25 patients and
only 4 had NTRK-rearranged tumors with partial response.

Table 3. Current clinical trials of TRK fusion inhibitors

NTRK
inhibitor Gene target Company Population Disease Phase NCTID

LOXO-101 NTRK1/2/3 Loxo Oncology Pediatric Solid tumor I NCT02637687
CNS II

Pediatric Solid tumor, NHL,
histiocytic tumor

II NCT03213704a

Adult Solid tumor II NCT02576431b

Adult Solid tumor I NCT02122913
Pediatric CNS II NCT03155620a

Adult HNC II NCT02465060a

Entrectinib NTRK1/2/3, ALK, ROS1 Ignyta Adult Solid tumor II NCT02568267b

Adult Solid tumor I NCT02097810
Pediatric Solid tumor,

neuroblastoma, CNS
I NCT02650401

Adult Melanoma II NCT02587650b

LOXO-195 NTRK1/2/3 Loxo Oncology Adult Solid tumor I, II NCT03215511
TSR-011 NTRK1/2/3, ALK Tesaro Adult Solid tumor I NCT02048488

Lymphoma II
PLX-7486 NTRK1/2/3, CSF1R Plexxikon Adult Solid tumor I NCT01804530
MGCD-516 NTRK1/2/3, KDR, MET, KIT, PDGFR, DDR2 Mirati Therapeutics Adult Solid tumor I NCT02219711

Adult Urinary tract tumor I, II NCT03015740c

Adult Liposarcoma II NCT02978859
Adult NSCLC II NCT02954991

DS-6051b NTRK1/2/3, ROS1 Daiichi Sankyo Adult Solid tumor I NCT02675491
Adult Solid tumor I NCT02279433

DCC-2701 MET, TRK, VEGFR2, TIE2 Deciphera Pharmaceuticals Adult Solid tumor I NCT02228811
Cabozantinib NTRK2, RET, KIT, FLT3, MET, KDR, FLT1, FLT4, AXL Exelixis Adult NSCLC II NCT01639508
Merestinib NTRK1/2/3, MET, AXL, ROS1, MKNK1, MKNK2,

FLT3, TEK, DDR1, DDR2
Eli Lilly Adult Solid tumor II NCT02920996

Abbreviations: CNS, central nervous system; CSF1R, colony-stimulating factor 1 receptor; DDR1/2, discoidin domain receptor tyrosine kinase1/2; FLT1, fms related
tyrosine kinase 1; HNC, head and neck cancer; KDR, kinase insert domain receptor; MKNK, mitogen-activated protein kinase-interacting serine/threonine protein
kinase; NCTID, ClinicalTrial.gov identifier; NHL, non-Hodgkin lymphoma; PDGFR, platelet-derived growth factor receptor; RET, rearranged during transfection;
VEGFR2, vascular endothelial growth factor receptor 2.
aNational Cancer Institute MATCH Trials.
bBasket trials.
cCombined with nivolumab.
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Larotrectinib, on the other hand, showed robust outcomes in a
series of phase I and II trials, which enrolled 55 patients with
17 unique NTRK fusion–positive solid tumors, who achieved
overall response rate (ORR) and complete response rates of
80% and 16%, respectively (13). The FDA awarded Orphan
Drug Designation to Entrectinib in 2015. Likewise, in May
2018, the FDA granted Priority Review for larotrectinib for the
treatment of adult and pediatric NTRK-rearranged tumors.

Acquired NTRK Mutations and Resistance
to TKIs

Resistance to larotrectinib is driven by three different categories
of mutations: (1) Solvent front mutations (NTRK1 p.G595R,
NTRK3 p.G623R); (2) Gatekeeper mutations (NTRK1 p.F589L);
and (3) xDFG (NTRK1 p.G667S, NTRK3 p.G696A; ref. 13).
Solvent front and xDFG mutations involve the nucleotide-
binding and activating loop of the kinase domain, respectively,
and sterically change the larotrectinib-binding site that decreases
larotrectinib's inhibitory properties and potency (13). Two
patients with colorectal cancer who experienced resistance to

larotrectinib treatment were found to have the NTRK p.G595R
mutation (Table 4; ref. 13)

NTRK1 p.G595R and NTRK1 p.G667C are point mutations
in the ATP-binding pocket of TrkA chimeric fusion proteins.
These mutations were described in a colon cancer patient with
LMNA-NTRK1 rearrangement who had developed resistance
to entrectinib. Whereas higher, clinically achievable doses of
entrectinib can overcome NTRK1 p.G667C–mediated resis-
tance in cancer cells, no other TRK inhibitors available in
clinical trials (e.g., larotrectinib, TSR-011) have demonstrated
activity against NTRK1 p.G595R.

NTRK3 p.G623R is a point mutation that mediates the
resistance of ETV6-NTRK3–rearranged tumors to treatment
with either entrectinib or larotrectinib (13, 49, 50).

LOXO-195 is a novel and highly selective second-generation
pan-TRK inhibitor developed to overcome NTRK1 p.G595R–
mediated resistance to TRK inhibitors. NCT03215511 is a mul-
ticenter, open-label phase I/II clinical trial designed to evaluate
the safety and efficacy of LOXO-195 in patients with NTRK-
rearranged solid tumors.

Conclusions
Patients with NTRK-rearranged tumors have achieved robust

and durable responses to treatmentwith TRK inhibitors in clinical
trials. Hence, targeting NTRK fusion proteins is an effective
strategy to improve outcomes in patients with NTRK-rearranged
malignancies, and incorporating molecular and mutational anal-
ysis results into cancer treatment planning is crucial.
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